口蹄疫新型疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(foot-and-mouth disease,FMD)是由口蹄疫病毒(foot-and-mouth diseasevirus,FMDV)引起的,偶蹄动物共患的烈性、急性、接触性传染病。尽管该病的死亡率低,但由于该病传染性极强,能迅速形成大范围流行,而导致发病地区、乃至该国的畜产品出口贸易停止,从而造成巨大的经济损失。免疫接种是预防和控制该病的主要措施,目前用于预防FMD的主要疫苗是传统的弱毒苗和灭活苗,虽然这些传统疫苗能够提供较好的保护,但存在制备费用高、潜在的散毒危险等缺点,使得这两种疫苗的使用一直都存在着一定的争议。因此,研制更安全、高效、廉价的新型疫苗成为越来越多研究者关注的焦点。
     鉴于此,本研究对FMDV新型疫苗设计进行了新的探索,以构建了伪狂犬病毒(PRV)为载体的重组PRV-FMDV新型基因工程疫苗,以西门利克森林病毒(SFV)为复制子的“自杀性”DNA疫苗和以杆状病毒为载体的重组病毒疫苗,并对构建的三种候选疫苗进行了免疫效力研究;克隆并表达了猪源髓细胞分化因子MyD88,并探讨了其作为分子佐剂在小鼠体内对FMDV DNA疫苗免疫效果的影响。主要研究内容如下:
     1、共表达0型口蹄疫衣壳前体蛋白P1及其多抗原合成表位FHG的重组伪狂犬病毒FHG/P1/PRV的构建和免疫原性研究
     根据已公布的O型口蹄疫抗原表位设计合成了多抗原表位肽基因fhg,将其插入到中间转移载体pIECMV中,获得重组中间转移质粒pIEFHG,将pIEFHG与本室构建的口蹄疫-伪狂犬重组病毒TK~-/gG~-/P1~+基因组共转染猪肾细胞IBRS-2,通过空斑纯化得到了新型口蹄疫重组伪狂犬病毒株FHG/P1/PRV。结果表明,此重组病毒能同时表达具有生物学活性的O型口蹄疫衣壳前体蛋白P1以及多抗原合成表位肽FHG,并且伪狂犬病毒基因组上的多点插入表达并不影响其在宿主细胞上的增殖。将此疫苗免疫40日龄的仔猪,结果表明,重组病毒FHG/P1/PRV较之亲本株TK~-/gG~-/P1~+,能够诱导较好的体液免疫和细胞免疫。并且由于FHG/P1/PRV病毒基因组中的gE基因被插入失活,因此该疫苗能够与国际通用的PRV鉴别诊断方法配合使用,这为此疫苗的推广奠定了基础。
     2、FMDV DNA疫苗的构建和免疫效果
     分别以pcDNA3.1+和pSCA1为载体,构建了表达O型FMDV空衣壳蛋白的常规DNA疫苗表达质粒pceCAP和“自杀性”DNA疫苗表达质粒pSCAI-eCAP,转染BHK-21细胞,Western blot检测证实两种表达质粒均能正确表达FMDV空衣壳蛋白VP0,VP3,和VP1。将pceCAP和pSCAI-eCAP分别以100μg/只免疫Balb/c小鼠,并对这两种疫苗的免疫效果进行了比较,发现“自杀性”DNA疫苗组产生的ELISA抗体和中和抗体明显高于常规DNA疫苗组的,且“自杀性”DNA疫苗能诱导更强的细胞免疫。捕狙⒔峁砻鳌白陨毙浴盌NA疫苗pSCAI-eCAP能完全保护小鼠抵抗FMDV同型强毒的攻击。是一种极具潜力的FMDV候选DNA疫苗。
     3、杆状病毒介导的表达FMDV空衣壳蛋白的重组病毒疫苗的构建以及免疫原性的研究
     杆状病毒不能感染哺乳动物细胞,但可以进入不同物种和组织来源的多种哺乳动物细胞,并在合适的哺乳动物启动子控制下表达外源基因。目前利用杆状病毒作为体内基因投送的载体已受到广泛的关注。但研究证实血清补体系统是杆状病毒体内基因转导过程中的主要抑制因素。因此,为了消除杆状病毒的补体敏感性,在本研究中利用水泡性口炎病毒G蛋白修饰杆状病毒。将含有CMV启动子驱动的编码FMDV空衣壳蛋白的整个读码框表达的基因克隆到杆状病毒转移载体pFast-VSV-G中,构建重组病毒Ac-V-eCAP。体外转导试验表明,构建的重组病毒均能高效转导哺乳动物细胞.将重组病毒分别以不同的剂量(10~9PFU,10~8PFU,10~7PFU)肌肉注射免疫小鼠,试验结果表明,无论是从体液免疫水平还是细胞免疫水平来比较,重组杆状病毒Ac-V-eCAP以10~9PFU的剂量免疫小鼠时,能够诱导最高的体液免疫水平和细胞免疫水平,具有较好的免疫效果。病毒血症结果表明,Ac-V-eCAP当以10~9PFU的剂量免疫小鼠时能够针对FMDV同型强毒株的攻击提供较好的保护(4/5),但是还是略要低于灭活苗(5/5)。
     4、猪源髓细胞分化因子MyD88作为分子佐剂在小鼠体内对FMDV DNA疫苗免疫效果的影响
     通过cross-over PCR的方法从猪外周全血中克隆髓细胞分化因子MyD88,并对其序列进行分析。结果获得了髓细胞分化因子MyD88,全长882bp,序列测定及同源性分析表明其与GenBank中报道的牛以及人的髓细胞分化因子基因同源性较高,同源性分别为89%和87%;与人,鼠对应功能域的氨基酸序列的分析结果表明,death区,猪源MyD88与人、鼠源MyD88同源性分别为77.3%,72.7%。TIR区,猪源MyD88与人、鼠源MyD88同源性分别为97.8%,91%。结合分子建模的结果,预测了猪源MyD88蛋白death区位于40-105aa.,TIR区位于158-291aa.。将表达猪源MyD88基因的表达盒插入FMDV DNA疫苗pceCAP中,获得共表达质粒pcMyD88-eCAP,将pcMyD88-eCAP和pceCAP分别以100μg/只免疫Balb/c小鼠,并对这两种疫苗的免疫效果进行了比较,结果无论体液免疫还是细胞免疫,共表达质粒pcMyD88-eCAP较之普通质粒无显著免疫增强效应。这说明猪源MyD88蛋白可能在小鼠体内活性极低,不能激发天然免疫反应。
Foot-and-mouth disease virus(FMDV) is the causative agent of highly infectious and the economically most important animal viral disease affecting cloven hoofed animal in the world.Although mortality associated with FMD is usually low,the disease decreases livestock productivity,and affects countries cannot participate in international trade of animals and animal products.Immunization is the main method to prevent and control this disease.In the present,the available vaccines to prevent FMDV are mainly attenuated and inactivated vaccines.Although attenuated vaccine and inactive are effective to prevent animals from FMDV infection,there exist disadvantages such as,it is expensive and it is dangerous that the virus escapes from vaccine plant.It is urgent to develop more safe and effective vaccine to prevent and control FMD.
     Therefore,in the present study,we explored the new vaccine design against FMDV, such as that constructed the recombinant viruses based on pseudorabies virus (PRV)-vector expression system or baculovirus expression system,and suicidal DNA vaccines based on Semiliki Forest virus(SFV)-replicon.Furthermore,the immune efficacy and protection of the candidate vaccines were investigated.Additionally,swine myeloid differentiation factor 88(MyD88) was cloned and studied as FMDV DNA vaccine adjuvants.The most research works were as following:
     1.Construction and Immune Response Characterization of a Recombinant
     Pseudorabies Virus Co-expressing Capsid Precursor Protein(PI) and a Multiepitope Peptide of Foot-and-mouth Disease Virus in Swine
     Foot-and-mouth disease(FMD) is the most contagious and devastating disease of livestock.Our previous studies demonstrated that TK~-/gG~-/P1~+,a recombinant expressing the FMDV capsid precursor protein(P1) based on attenuated pseudorabies virus(PRV) TK~-/gG~-,can be used as a recombinant vaccine to protect pigs against both pseudorabies and FMD.However,because the P1 expression cassette is inserted in the gG locus of the genome of PRV TK~-/gG~-,this bivalent vaccine can not be used in conjunction with the PRV gE-ELISA,an extensively used discriminatory serological test in eradication programes for pseudorabies,which limits the clinical use of this bivalent vaccine.To circumvent this shortcoming,in this study,an expression cassette containing synthetic mulfiepitopes gene "FHG" consisting of six potential B cell epitopes and two potential T cell epitopes of FMDV,under the control of CMV promoter,was further inserted into the gE/gI locus of genome of TK~-/gG~-/P1~+,resulting in a new recombinant FHG/P1/PRV. The immunogenicity of FHG/P1/PRV were evaluated and compared with TK~-/gG~-/P1~+ in piglets.Our results clearly showed that FHG/P1/PRV performed better than or comparable with TK~-/gG~-/P1~+,as demonstrated by comparable PRV-specific neutralizing antibodies,enhanced FMDV-specific neutralizing antibodies and cellular immune responses.More importantly,no gE- and gG-specific antibodies could be detected in pigs immunized with FHG/P1/PRV.These data indicate that FHG/P1/PRV is a promising bivalent vaccine candidate with more extensive potential application than TK~-/gG~-/P1~+ against both pseudorabies and FMD.
     2.Construction and immune effect of new DNA vaccines against FMDV
     A DNA-based vaccine pceCAP and a suicidal DNA vaccine construct pSCAI-eCAP were generated respectively by subcloning the genes which may express FMDV Virus-Like Particles into expression vector pcDNA3.1+ and expression vector pSCA1.In tranfected BHK-21 cells,pceCAP and pSCAI-eCAP both could express FMDV VLP proteins.After immunization in Balb/c mice,the Pl-specific ELISA antibodies and neutralizing antibodies induced by pSCAI-eCAP was relatively higher than those obtained in mice immunized with the conventional DNA vaccine pceCAP.Further analyses of cell-mediated immune responses showed that pSCAI-eCAP induced higher IFN-γlevel.Collectively these results indicated that suicidal DNA vaccine is an alternative strategy to conventional DNA vaccine to control FMD.
     3.Construction and immune effect of recombinant baculovirus expressing the FMDV VLP proteins
     Although AcMNPV are failing to replicate in vertebrate cells,it does express aline genes that are dependent on the strength of the promoter used to drive transcription of the foreign gene.Follwing these findings,baculovirus have emerged as a vector with great potential for gene transfer in mammalian cells.However,in vivo gene delivery by systemic administration is hindered by the vector inactivation mediated by the complement system.Therefore,in this study we describes the generation of a recombinant baculovirus in which the vesicular stomatitis virus glycoprotein G(VSV-G) is present in the viral envelope.This protein was demonstrated to enhance the escape of baculovirus vectors from intracellular endosomes,increasing the transduction efficiency of the virus. The recombinant virus Ac-V-eCAP was constructed to carry the gene which could express FMDV VLPs under the control of the eytomegalovirus immediate-early promoter-enhancer and express vesicular stomatitis virus glycoprotein(VSV-G) in the viral envelope by inserting the VSV-G coding sequence downstream of the polyherdrin promoter.To characterize the induction of antigen-specific immune response mediated by baculovirus,mice were subjected to intramuscular with different doses of baculovirus vectors ranging from 10~8 to 10~(10)pfu/mL in a 100μL volume.Mice immunized with Ac-V-eCAP10~(10)pfu/mL showed the highest humoral immune response lever and cell uar immune response.
     What's more,the mice of this group were also protected from challenge(four of five mice were protected).Taken altogether,Ac-V-eCAP with the dose of 10~9pFU shows the best immunogenicity and may be used as a strategy to develop a new genetation of vaccine against FMDV in the future.
     4.Cloning swine myeloid differentiation factor 88(MyD88) gene and studying it as FMDV DNA vaccine adjuvants
     According to the reported myeloid differentiation factor 88(MyD88) sequence of different species and EST sequence of swine in genbank,pairs of primers were designed to amplify MyD88 gene from swine blood.Firstly,fragments of F1 and F2 which were both containing part of MyD88 and also covering each other partly were amplified by reverse transcription-polymerase chain reaction(RT-PCR).Then using F1 and F2 as template,MyD88 gene was amplified by cross-over PCR and cloned into pMD-18T vector.The product was sequenced and analysed.Nucleotide sequence of MyD88 gene of swine was 882bp in length,encoding 294 amino acids.Gene comparison of the swine MyD88 gene with other known MyD88 gene from different species was performed and analyzed.Corresponding full length of swine MyD88 gene and other reported sequences, it shared the highest identity with Bos taurus and Homo sapiens,the identity was 89%and 87%at the nucleotide level.It was nearly no significantly identity with the MyD88 gene from Branchiostoma belched.It was reported that MyD88 gene had two domains,one was Death-domain,the other was TIR-domain.The molecular modeling toward swine MyD88 also showed the same result.What's more,the amino acid sequence of the two domains was also compared with that of Homo sapiens and Mus musculus,individually. For the Death-domain,the identity of the swine MyD88 gene with the other two species was 77.3%and 72.7%.For the TIR-domaln,the identity of the swine MyD88 gene with the other two species was 97.8%and 91%.Based on all of these results,we may conclude that for the swine MyD88 protein,the Death-domain was at 40-105aa,while the TIR-domain was at 158-291aa.In conclusion,we had cloned the swine MyD88 gene and analysed its sequence both at nucleotide level,also at amino acid lever.We predicted the swine MyD88 protein two domains.All of these work would give us help on study of protein functions.Then we constructed co-expression plasmid pcMyD88-eCAP and immunized it with each mouse at 100μg.The results of immune response test showed that it had rarely stronger response compared to peeCAP.It was might because that MyD88 from swine had low activity in mice and so couldn't induce innate immune response.
引文
1.陈芳,孙红立,李震,曹祥荣.细胞因子的应用研究进展.上海畜牧兽医通讯,2003,5:6-9
    2.陈焕春,方六荣,何启盖,金梅林,吴美洲.猪伪狂犬病病毒鄂A株的分离鉴定.畜牧兽医学报,1998(2),29:156-161
    3.方六荣.猪繁殖与呼吸综合征“自杀性”DNA疫苗与活病毒载体疫苗研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    4.方六荣,肖少波,江云波,等.表达猪繁殖与呼吸综合征病毒(PRRSV)GP5的重组伪狂犬病毒TK-/gG-/GP5+的构建及其生物学特性初步探讨[J].病毒学报,2004,20(3):249-254
    5.侯云德.动物病毒载体与基因治疗的现状和前景(Ⅲ).生物工程进展,1994,14(4):1-17
    6.侯云德.分子病毒学.北京:学苑出版社,1990
    7.胡少敏,王海,吴忠道.杆状病毒作为哺乳动物细胞表达载体及其在医学中的应用.国外医学寄生虫病分册,2004,31(5):222-226
    8.金宁一,罗坤等,中国流行株HIV-1gag-gp120与IL-2/IL-6共表达核酸疫苗质粒的构建和实验免疫研究 中国预防兽医学报,2001,23(1):1-3
    9.金奇.医学分子病毒学.北京:科学出版社,2001
    10.谢庆阁.口蹄疫.北京:中国农业出版社,2004
    11.伊德华,韩福祥.家畜口蹄疫及其防制.北京:中国农业科技出版社,1994
    12.周复春.猪伪狂犬病毒鄂A株基因缺失突变株的构建。[博士论文].华中农业大学,1998
    13.Abe T,Takahashi H,Hamazaki H,et al.Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice.J Immunol,2003,171(3):1133-1139
    14.Acharya R,Fry E,Stuart D,Fox G,Rowlands D,Brown F.The three- dimensional structure of foot-and-mouth disease virus at 2.9A resolution.Nature,1989,337:709-716
    15.Agol VI,Paul AV,Wimmer E,Paradoxes of the replication of picornaviral genomes,Virus Res.1999 Aug;62(2):129-47
    16.Akira S,Takeda K,Kalsho T.To ll-like receptors:critical proteins linking innate and acquired immunity.Nat Immunol,2001;2:675
    17.Altmann F,Staudacher E,Wilson IB,Marz L,Insect cells as hosts for the expression of recombinant glycoproteins,Glycoconj J.1999,16(2):109-23
    18.Anderson D,Harris R,Polayes D,et al.Rapid generation of recombinant baculovirus and expression of foreign gene using the Bac to Bac baculovirus expression system.Focus,1995, 17(2):53-58
    19.Andino R,Rieckhof GE,Achacoso PL,Baltimore D.Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA.EMBO J.1993,(9):3587-3598
    20.Bachrach H L,Moore D M,Mckercher P D.Immune and antibody response to an isolated capsid protein of foot-and-mouth disease virus.J Immunol,1975,115(6):1636-1641
    21.Bahnemann HG.Binary ethylenimine as an inactivant for foot-and-mouth disease virus and its application for vaccine production.Arch Virol.1975,47(1):47-56
    22.Baranowski E,Ruiz-Jarabo C M,Sevilla N,Andreu D,Beck E,Domingo E.Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif:flexibility in aphthovirus receptor usage.J Virol,2000,74:1641-1647
    23.Barsoum J,Brown R,McKee M,Boyce FM,Efficient transduetion of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein,Hum Gene Ther,1997,8(17):2011-8
    24.Barton D J,O'Donnell B J,Flanegan J B.5' Cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis.EMBO J,2001,20:1439-1448
    25.Beard C W,Mason P W.Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus.J Virol,2000,74:987-991
    26.Beck E,Feil G,Strohmaier K,The molecular basis of the antigenic variation of foot-and-mouth disease virus,EMBO J,1983;2(4):555-9
    27.Belsham G L,Brangwyn J K.A region of the 5' noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells:involvement with the role of L-protease in translational control.J Virol,1990,64:5389-5395
    28.Belsham G J,Distinctive features of foot-and-mouth disease virus,a member of the picornavirus family:aspects of virus protein synthesis,protein processing and structure.Pro Biophys Mol Biol,1993,60:241-260.
    29.Belsham,G.J.,C.C.Abrams,A.M.King,J.Roosien,and J.M.Vlak..Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells,1991,J.Gen.Virol,72:747-751
    30.Bembridge G P,Lopez J A,Cook R,Melero J A,Taylor G.Recombinant vaccinia virus coexpressing the F protein of Respiratory Syncytial Virus(RSV) and Interleukin-4(IL-4) does not inhibit the development of RSV-specific memory cytotoxie T lymphocytes,whereas priming is diminished in the Presence of high levels of IL-2 or Gamma interferon.J Virol,1998,72(5):4080-4087
    31.Berglund P,Smerdou C,Fleeton M N,Tubulekas I,Liljestrom P.Enhancing immune responses using suicidal DNA vaccines.Nat Biotechnol,1998,16:562-565
    32.Berinstein A,Roivainen M,Hovi T,Mason P W,Baxt B.Antibodies to the vitronectin receptor (integrin α v β 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells.J Virol,1995,69:2664-2666
    33.Berglund P,Smerdou C,Fleeton MN,Tubulekas I,Liljestrom P.Enhancing immune responses using suicidal DNA vaccines.Nat Biotechnol.1998,16(6):562-565
    34.Berinstein A,Tami C,Taboga O,.Protective immunity against foot-and-mouth disease virus induced by a recombinant vaccinia virus Vaccine,2000,18:2231-2238
    35.Bienz K,Egger D,Troxler M,Pasamontes L.Structural organization of poliovirus RNA replication is mediated by viral protein of rhe P2 genomic region.J Virol,1990,64(3):1156-1163
    36.Bittle J L,Houghten R A,Alexander H,Shinnick T M,Sutcliffe J G,Lerner R A,Rowlands D J,Brown F.Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence.Nature,1982,298:30-33
    37.Bittle J L,Houghen R A,Alexander H,et al.Protection against foot-and-mout h disease by immunization wit h a chemically synt hesized peptide predicted f rom t he viral nucleotide sequence[J].Nature,1983,298:31-33
    38.Borrego B,Fernandez-Pacheco P,Ganges L,Domenech N,Fernandez-Borges N,Sobrino F,Rodriguez F.DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses.Vaccine 2006,24:3889-99
    39.Boyce F M,Butcher N L.Baculovirus mediated gene transfer into mammalian cells.Proc Natl Acad Sci USA,1996,93:2348-23521
    40.Boyd D,Hung CF,Wu T C.DNA vaccines for cancer.Drugs,2003,6(12):1155-1164Brown F,Picornaviruses[M].In:Immunochemistry of viruses Ⅱ.Elsevier,Amsterdam,1990,153-169
    41.Brown F.Vaccination tody and tomorrow.Biosci Rep,1995,15(6)493-502.
    42.Bukreyev A,Whitehead S S,Prussin C,Murphy B R,Collins P L.Effect of Coexpression of Interleukin-2 by Recombinant Respiratory Syncytial Virus on Virus Replication,Immunogenicity,and Production of Other Cytokines.J Virol,2000,74(15):7151-7157
    43.Burrows R.,Studies on the carrier state of cattle exposed to foot-and-mouth disease virus,J Hyg,(London) 1966,64:81-90
    44.Carbonell L F,Klowden M J,Miller L K.Baculovirus-mediatedexpression of bacterial genes in dipteran and mammalian cells.J Virol,1985,56(1):153-160
    45.Condreay J P,Witherspoon S M,Clay W C,et al.Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector.Proc Natl Acad Sci USA,1999,96(1):127-132
    46.Chen T,Zang Y,Zhu J,Lu H,Han J,Qin J.Expression of a novel recombinant stem cell factor/macrophage colony-stimulating factor fusion protein in baculovirus-infected insect cells. Protein Expr Purif,2005,41(2):402-408
    47.Cheng W F,Hung C F,Chai C Y,Hsu K F,He L,Rice C M,Ling M,Wu T C.Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene.J Immunol,2001 a,166:6218-6226
    48.Cheng W F,Hung C F,Hsu K F,Chai C Y,He L,Ling M,Slater L A,Roden R B,Wu T C.Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments.Hum Gene Ther,2001b,12:235-252
    49.Chow M,Newman JF,Filman D,Hogle JM,Rowlands DJ,Brown F,Myristylation of picomavirus capsid protein VP4 and its structural significance,Nature.1987,327(6122):482-6
    50.Clarke B E,Newton S E,Carroll A R,Francis M J,Appleyard G,Syred A D,Highfield P E,Rowlands D J,Brown F.Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein.Nature,1987,330:381-384
    51.Collen T,Dimarchi R,Doel T R.A T cell epitope in VP1 of foot-and-mout h disease virus is immunodominant for vaccinated cattle[J].J Immunol,1991,146:749-755
    52.Doedens JR,Kirkegaard K,Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A.EMBO J.1995,14(5):894-907
    53.Domingo E.,M.Davila,J.Ortin,Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus,Gene 1980,333-346
    54.Domingo E,Baranowski E,Esearmis C,Sobrino F.Foot-and-mouth disease virus.Comp Immunol Microbiol Infect Dis.2002;25(5-6):297-308
    55.Domingo E,Escarmis C,Baronowski E,Ruiz-Jarabo C M,Carrillo E,Nunez J I,Sobrino,F.Evolution of foot-and-mouth disease virus,Virus,2003,91:47-63
    56.Doel T R,Gale C,Do Amaral CMC F,et al.Heterotypic protection induced by synthetic peptides corresponding to three serotypes of foot-and-mouth disease virus[J].J Virol,1990,64:2260-2264
    57.Done S H,Morris D,Paton P,Kitching.FMD break out in UK.International pig veterinary society 17th congress.2002,AMES,IOWA,USA
    58.De la Tone JC,Davila M,Sobrino F,Ortin J,Domingo E.Establishment of cell lines persistently infected with foot-and-mouth disease virus.Virology.1985,145(1):24-35
    59.Deshpande M S,Ambagala T C,Hegde N R,Hariharan M J,Navaratnam M,Srikumaran S.Induction of cytotoxic T-lymphocytes specific for bovine herpesvirus-1 by DNA immunization.Vaccine,2002,20:3744-3751
    60.Devaney M A,Vakharia V N,Llogd R E.Leader protein of foot-and-mouth disease virus is required for cleavage of the P220 component of the cap-binding protein complex.J Virol,1988,62:4407-4409
    61.Diciommo DP and Bremner R.Rapid,high level protein production using DNA-based Semliki Forest Virus vectors.J Bio Chem.1998,273(29):18060-18066
    62.Dimarchi R,Brooke G,Gale C,Cracknell V,Doel T,Mowat N.Protection of cattle against foot-and-mouth disease by a synthetic peptide.Science,1986,232:639-41
    63.Doel T R,Chong W K T.Comparative immunogenicity of 146S,75S and 12S particles of foot-and-mouth disease virus[J].Arch Virol,1982,73:85-91
    64.Donaldson AI.Risks of spreading foot and mouth disease through milk and dairy products.Rev Sci Tech.1997,16(1):117-124
    65.64 Escarmis C,Toja M,Medina M,Domingo E,Modifications of the 5' untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture,Virus Res.199226(2):113-25
    66.Escarmis C,Dopazo J,Davila M,Palma E L,Domingo E.Large deletions in the 5'-untranslated region of foot-and-mouth disease virus of serotype C.Virus Res,1995,35:155-167
    67.Facciabene A,Aurisicchio L,La Monica N,Baculovirus vectors elicit antigen-specific immune responses in mice,J Virol,2004,78(16):8663-72
    68.Falk M M,Sobrino F,Beck E.VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus.J Virol,1992,66:2251-2260
    69.Ferguson N M,Donnelly C A,Anderson R M.The foot-and-mouth disease epidemic in Great Britain:pattern of spread and impact of intervention.Science,2001,292:1155-1160
    70.Fleeton M N,Liljestrom P,Sheahan B J,Atkins G J.Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine.J Gen Virol,2000,81:749-758
    71.Forss S,Schaller H,A tandem repeat gene in a picornavirus,Nucleic Acids Res,10(20),6441-50
    72.Fournier P,Zeng J,Schirrmacher V.Two ways to induce innate immune responses in human PBMCs:paracrine stimulation of IFN-alpha responses by viral protein or dsRNA.Int J Oncol,2003,23(3):673-680
    73.Fumihiko Takeshita,Toshiyuki Tanaka,Tomoko Matsuda,Miyuki Tozuka,Kouji Kobiyama,Sukumar Saha,Kiyohiko Matsui,Ken J.Ishii,Cevayir Coban,Shizuo Akira,Norihisa Ishii,Koichi Suzuki,Dennis M.Klinman,Kenji Okuda and Shin Sasaki,Toll-Like Receptor Adaptor Molecules Enhance DNA-Raised Adaptive Immune Responses against Influenza and Tumors through Activation of Innate Immunity,JOURNAL OF VIROLOGY,July 2006,80(13),6218-6224
    74.Geissler M,Gesien A,Wands JR,Inhibitory effects of chronic ethanol consumption on cellular immune responses to hepatitis C virus core protein are reversed by genetic immunizations augmented with cytokine-expressing plasmids.J Immunol,1997,159(10):5107-13
    75.Gregory A M,Tarasvech C,Marvin J G.Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding region of foot-and-mouth disease virus as a vaccine candidate.virology,1999,263:496-506
    76.Gregory A M,Vivian O'Donnell,Tarasvech Cl.Immune response and protection against foot-and-mouth disease virus challenge in swine vaccinated with adenovirus-FMDV constructs.Vaccine,2001,19:2152-2162
    77.Grigera PR,Sagedahl A,Cytoskeletal association of an aphthovirus-induced polypeptide derived from the P3ABC region of the viral polyprotein,Virology,1986,154(2):369-80
    78.Groener A,Granados R R,Burand J P.Interaction of Autographa californica nuclear polyhedrosis virus with two nonpermissive cell lines.Intervirology,1984,21(4):203-209
    79.Gromeier M,Wimmer E,Gorbalenya A E.Genetics,pathogenesis and evolution of picornaviruses within the poliovirus internal ribosomal entry site control neurovirulence.J Virol.1999,73(2):958-964
    80.Grubman MJ,Baxt B,Foot-and-mouth disease,Clin Microbiol Rev,2004,17(2):465-93
    81.Grubman M J,Zellner M,Bablanian G,Mason P W,Piccone M E.Identification of the active-site residues of the 3C proteinase of foot-and-mouth disease virus.Virology,1995,213:581-589
    82.Grubman,M.J.,S.A.Lewis,and D.O.Morgan,Protection of swine against foot-and-mouth disease with viral capsid proteins expressed in heterologous systems.1993,Vaccine,11:825-829.
    83.Gutierrez A,Martinez-Salas E,Pintado B,Sobrino F.Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5'- and the 3'-noncoding regions.J Virol,1994,68:7426-7432
    84.Hariharan M J,Driver D A,Townsend K,Brumm D,Polo J M,Belli B A,Catton D J,Hsu D,Mittelstaedt D,McCormack J E,Karavodin L,Dubensky T W Jr,Chang S M,Banks T A.DNA immunization against herpes simplex virus:enhanced efficacy using a Sindbis virus-based vector.J Virol,1998,72(2):950-958
    85.Harris and Brown,Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus,J Gen Virol,1977,34(1):87-105.
    86.Haydon,A.D.Bastos,N.J.Knowles,A.R.Samuel,Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates,Genetics 2001,157:7-15.
    87.Hazama M,Mayumi-Aono A,Asakawa N,Kuroda S,Hinuma S,Fujisawa Y.Adjuvant-independent enhanced immune responses to recombinant herpes simplex virus type 1glycoprotein D by fusion with biologically active interleukin-2.Vaccine,1993,11(6):629-636
    88.Heath A W,Playfair J H.Cytokines as immunological adjuvants.Vaccine,1992,10(7):427-434
    89.Hedger R S.The carrier state in foot-and-mouth disease,and the probang test.Vet J,1971,26:45-50
    90.Hofmann C,Sandig V,Jennings G,et al.Efficient gene transfer into human hepatocytes by baculovirus vectors.Proc Natl Acad Sci USA,1995,2(22):10099-10103
    91.Hofmann C,Strauss M.Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system.Gene Ther,1998,5(4):531-536
    92.Hofmann C,Huser A,Lehnert W,et al.Protection of baculovirus-vectors against complement mediated inactivation by recombinant soluble complement receptor type Ⅰ.Biol Chem,1999,380(3):393-395
    93.Hoott van Iddekinge B J L,de Wind N,Wensvoort G,et al.Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs;influence of different promoters on gene expression and on protection[J].Vaccine,1996,14:6-12
    94.Hsu KF,Hung CF,Cheng WF,He L,Slater LA,Ling M,Wu TC,Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen.Gene Ther,2001 Mar;8(5):376-83
    95.Huckriede A,Bungener L,Holtrop M,de Vries J,Waarts B L,Daemen T,Wilschut J.Induction of cytotoxic T lymphocyte activity by immunization with recombinant Semliki Forest virus:indications for cross-priming.Vaccine,2004,22(9-10):1104-1113
    96.Jackson T,Stuart D I,Fry E.Structure and receptor binding.Virus,2003,91:33-46
    97.Jin ML,Li XM,Qian P,Guo DC,Xu ZF,Chen HC.Construction of recombinant pseudorabies virus expressing P1 gene of Foot-and Mouth disease virus.Chin J Vet Sci 2004,24:525-7
    98.Jones I,Morikawa Y.Baculovirus vectors for expression in insect cells.Cur Open Biotechnology,1996,7(5):512-516
    99.Ju CM,Fan HY,Tan YD,Liu ZF,Xi X,Cao SB,et al.Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2.Vet Microbiol 2005;109:179-90
    100.Kim J J,Ayyavoo V,Bagarazzi ML,et al.In vivo engineering of a cellular immune response by coadministration of IL- 12 expression vector with a DNA immunogen.J Immunol,1997,158(2):816-826
    101.King A M,Sanger D V,Harris T J.Heterogeneity of the genome-linked protein of foot-and-mouth disease virus.J Virol,1980,34:627-634
    102.Kirman J R,Turon T,Su H,Li A,Kraus C,Polo J M,Belisle J,Morris S,Seder R A.Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A.Infect Immun,2003,71:575-579
    103.Kleid D G,Yansura D,Small B,Dowbenko D,Moore D M,Grubman M J,McKercher P D,Morgan D O,Robertson B H,Bachrach H L.Cloned viral protein vaccine for foot-and-mouth disease:responses in cattle and swine.Science,1981,214:1125-1129
    104.Knowles N J,Davies P R,Henry T et al.Emergence in Asia of foot-and-mouth disease viruses with altered host range:characterization of alterations in the 3A protein.J Virol,2001a,75(3):1551-1556
    105.Knowles N J,Samuel A R,Davies P R et al.Outbreak of foot-and-mouth disease virus serotype O in the UK caused by a pandemic strain.Vet Rec,2001b,148(9):258-259
    106.Kohno A,Emi N,Kasai M,Tanimoto M,Saito H.Semliki Forest virus-based DNA expression vector transient protein production followed by cell death.Gene Ther,1998,5:415-418
    107.Leitner W W,Hwang L N,de Veer M J,Zhou A,Silverman R H,Williams B R,Dubensky T W,Ying H,Restifo N P.Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways.Nat Med,2003,9:33-39
    108.Leitner W W,Ying H,Driver D A,Dubensky T W,Restifo N P.Enhancement of tumor-specific immune response with plasmid DNA replicon vectors.Cancer Res,2000a,60:51-55
    109.Lewis,S.A.,D.O.Morgan,and M.J.Grubman..Expression,processing,and assembly of foot-and-mouth disease virus capsid structures in heterologous systems:induction of a neutralizing antibody response in guinea pigs,1991,J.Virol,65:6572-6580
    110.Li B,Wu H Y,Qian X P,et al.Expression,purification and serological analysis of hepatocellular carcinoma associated antigenHCA587 in insect cells.World J Gastronterol,2003,9(4):678-682
    111.Li E,Brown S L,Dolman C S,et nl.Production of functional anti-bodies generated in a nonlytic insect cell expression system.Protein ExprPurif,2001,21(1):121-128
    112.Mayr G A,O'Donnell V,Chinsangaram J,et al.Immune responses and protection against foot-and-mouth disease virus(FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs.Vaccine,2001,19:2152-2162
    113.Mayr GA,Chinsangaram J,Grubman MJ.Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate.Virology,1999,263(2):496-506
    114.Meloen RH,Langeveld JP,Schaaper WM,Slootstra JW.Synthetic peptide vaccines:unexpected fulfillment of discarded hope? Biologicals.2001;29(3-4):233-236
    115.Mettenleiter T C.Immunobiology of Pseudorabies(Aujeszky'sdisease).Vet Immunol Immunopathol,1996,54(1-4):221-229
    116.Meyer K,Petersen A,Niepmann M,Beck E.Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site.J Virol,1995,69:2819-2824
    117.Moraes,M.P.,G.A.Mayr,P.W.Mason,and M.J.Grubman..Early protection against homologous challenge after a single dose of replicationdefective haman adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus(FMDV) strain A24,Vaccine,2002,20:1631-1639
    118.Nagata T,Ishikawa S,Shimokawa E,et al.High level expression and purification of bioactive bovine interleukin-18 using a baculovirus system.Vet immunol Immunopathol,2002,87(122):65-72
    119.Neff S,Sa-Carvalho D,Rieder E,Mason P W,Blystone S D,Brown E J,Baxt B.Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor.J Virol,1998,72:3587-3594
    120.Newman JF,Piatti PG,Gorman BM,Burrage TG,Ryan MD,Flint M,Brown F,Foot-and-mouth disease virus particles contain replicase protein 3D,Proc Natl Acad Sci U S A.1994,91(2):733-7.
    121.Nobiron I,Thompson I,Brownlie J,Collins M E.Cytokine adjuvancy of BVDV DNA vaccine enhances both humoral and cellular immune responses in mice.Vaccine,2001,19(30):4226-4235
    122.Nunez J I,Baranowski E,Molina N,Ruiz-Jarabo C M,Sanchez C,Domingo E,Sobrino F.A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig.J Virol,2001,75:3977-3983
    123.Park S,Lee H,Kim T,t al.Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein.Biochem Biophys Res Commun,2001,289(2):444-450
    124.Parry N R,Fox G,Rowlands D,et al.St ructural and serological evidence for a novel mechanism of antigenic variation in foot-and-mout h disease virus[J].Nature,1990,347:569-572
    125.Paula Gomes,Ernest Giralt,David Andreu.Surface plasmon resonance screening of synthetic peptides mimicking the immunodominant region of C-S8c1 foot-and-mouth disease virus.Vaccine,2000,18:362-370
    126.Pfaff E,Mussgay M,Bohm H O,Schulz G E,Schaller H.Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus.EMBO J,1982,1(7):869-874
    127.Piccone M E,Rieder E,Mason P W,Grubman M J.The foot-and-mouth disease virus leader proteinase gene is not required for viral replication.J Virol,1995,69:5376-5382
    128.Pieroni L,Maione D,La Monica N,In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors,Hun Gene Ther,2001,12(8):871-81
    129.Polatnick J,Isolation of a foot-and-mouth disease polyuridylic acid polymerase and its inhibition by antibody,J Virol.1980,33(2):774-9
    130.Poomputsa K,Kittel C,Egorov A,et al.Generation of recombinant influenza virus using baculovirus delivery vector.J Virol Methods,2003,110(1):111-114
    131.Qian P,Li X,Jin M,Peng G,Chen H.An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus:one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine.Vaccine 22(2004) 2129-2136
    132.Reddy J R,Kwang J,Varthakavi V,Lechtenberg K F,Minocha H C.Semiliki forest virus vector carrying the bovine viral diarrhea virus NS3(p80) cDNA induced immune responses in mice and expressed BVDV protein in mammalian cells.Comp Immunol Microbiol Infect Dis,1999,22:231-246
    133.Ribeiro BM,Gatti CD,Costa MH,Moscardi F,Maruniak JE,Possee RD,Zanotto PM,Construction of a recombinant Anticarsia gemmatalis nucleopolyhedrovirus(AgMNPV-2D)harbouring the beta-galactosidase gene,Arch Virol.2001,146(7):1355-67
    134.Roosien,J.,G.J.Belsham,M.D.Ryan,A.M.King,and J.M.Vlak..Synthesis of foot-and-mouth disease virus capsid proteins in insect cells using baculovirus expression vectors,1990,J.Gen.Virol,71:1703-1711
    135.Rweye M M,Terry G,Oay T W F.Stability and immunogenicity of empty particles of foot-and-mouth disease virus[J].Arch Virol,1979,56:69-79
    136.Ryan MD,Belsham GJ,King AM,Specificity of enzyme-substrate interactions in foot-and-mouth disease virus polyprotein processing,Virology.1989,173(1):35-45
    137.Ryan MD,King AM,Thomas GP,Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence,J Gen Virol.1991 Nov;72(Pt 11):2727-32
    138.Saiz M,Nunez JI,Jimenez-Clavero MA,Baranowki E,Sobrino F,Foot-and-mouth disease virus:biology and prospects for disease control,Microbes Infect.2002,4(11):1183-92
    139.Salt J S.The carrier state in foot and mouth disease - an immunological review.Br Vet J,1993,149:207-223
    140.Sandig V,Hofmann C,Steinert S,et al.,Gene transfer into hepatocytes and human liver tissue by baculovirus vectors,Hum Gene Ther,1996,7(16):1937-1945
    141.Sangar DV,Bryant J,Harris TJ,Brown F,Rowlands DJ,Removal of the genome-linked protein of foot-and-mouth disease virus by rabbit reticulocyte lysate,J Virol,1981,39(1):67-74
    142.Sanz-Parra A,Jimenez-Clavero MA,Garcia-Briones MM,Blanco E,Sobrino F,Ley V.Recombinant viruses expressing the foot-and-mouth disease virus capsid precursor polypeptide (P1) induce cellular but not humoral antiviral immunity and partial protection in pigs.Virology 1999;259:129-34
    143.Sanz-Parra A,Vazquez B,Sobrino F,Cox SJ,Ley V,Salt JS.Evidence of partial protection against foot-and-mouth disease in cattle immunized with a recombinant adenovirus vector expressing the precursor polypeptide(P1) of foot-and-mouth disease virus capsid proteins.J Gen Virol 1999;80:671-9
    144.Saunders K,King A M,McCahon D,Newman J W,Slade W R,Forss S.Recombinant and oligonucleotide analysis of guanidine-resistant foot-and-mouth disease virus mutants.J Virol,1985,56:921-929
    145.Shoji I,Aizaki H,Tani H,et al.Efficient gene transfer into various mammalian cells,including non2hepatic cells,by baculovirus vectors.J Gen Virol,1997,78(Pt10):2657-6641
    146.Smith GE,Summers MD,Fraser MJ.Production of human beta interferon in insect cells infected with a baculovirus expression vector.Mol Cell Biol,1983,3(12):2156-2165
    147.Sobrino F,Blanco E,Garcia-Briones M,Ley V.Synthetic peptide vaccines:foot-and-mouth disease virus as a model.Dev Biol Stand,1999,101:39-43
    148.Sutmoller P,Auge M N,de Mello K E,Honigman,F.Infectivity for cattle and pigs of three strains of foot-and-mouth disease virus isolated from carrier cattle,Am.J.Vet.Res,1967,28:101-105
    149.Tani H,Limn CK,Yap CC,et al.In vitro and in vivo gene delivery by recombinant baculoviruses.J Virol,2003,77(18):9799-9808
    150.Tjia ST,Altenschildesche GM,Doerfler W.Autographa calif ornica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells.Virology,1983,125(1):107-117
    151.Toja M,Escarmis C,Domingo E.Genomic nucleotide sequence of a foot-and-mouth disease virus clone and its persistent derivatives.Implications for the evolution of viral quasispecies during a persistent infection,Virus Res,1999,64:161-171
    152.Tsai J.The welfare analysis of the effects of the fooot-and-mouth disease epidemic on the hog industry in Taiwan.J Agric Econo,1999,65:143
    153.Tubulekas I,Berglund P,Fleeton M,Liljestrom P.Alphavirus expression vectors and their use as recombinant vaccines:a minireview.Gene,1997,190(1):191-195
    154.Vakharia VN,Devaney MA,Moore DM,Dunn JJ,Grubman MJ,Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts,J Virol.1987,61(10):3199-207
    155.Van Zijl M,Wensvoort G,de Kluyver E,Hulst M,van der Guldenn,Gielkens A,Berns A,Moormann R.Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera.J Virol,1991,65(5):2761-2765.
    156.Vidalin O,Fournillier A,Renard N,Chen M,Depla E,Boucreux D,Brinster C,Baumert T,Nakano I,Fukuda Y,Liljestrom P,Trepo C,Inchauspe G.Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens.Virology,2000,276(2):259-270
    157.Volkman L E,Goldsmith P A.In vitro survey of Autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells.Appl Environ Microbiol,1983,45(3):1085-1093.
    158.Wang C Y,Chang T Y,Walfield A M,Ye J,Shen M,Zhang M L,Lubroth J,Chen S P,Li M C,Lin Y L,Jong M H,Yang P C,Chyr N,Kramer E,Brown F.Synthetic peptide-based vaccine and diagnostic system for effective control of FMD.Biologicals,2001,29(3-4):221-228.
    159.Wang C Y,Chang T Y,Walfield A M,Ye J,Shen M,Chen S P,Li M C,Lin Y L,Jong M H,Yang P C,Chyr N,Kramer E,Brown F.Effective synthetic peptide vaccine for foot-and-mouth disease in swine.Vaccine,2002,20(19-20):2603-2610
    160.Ward G,Rieder E,Mason P W.Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune response in swine.J Virol,1997,71:7442-7447
    161.Wesche H,Henzel WJ,Shillinglaw W,et al.MyD88:an adapter that recruits IRAK to the IL-1receptor complex,Immunity,1997;7(6):837
    162.Wimmer E.Genomeplinked proteins of viruses.Cell,1982,28(2):199-201.
    163.Wong H T,Cheng S C,Chan E W.Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection.Virology,2000,278(1):27-35.
    164.Wong H T,Cheng S C S,Sin F W Y,Chan E W C,Sheng Z T,Xie Y.A DNA vaccine against Foot-and-mouth disease elicits an immune response in swine is enhanced by co-administration with interleukin-2.Vaccine,2002,20:2641-2647
    165.Xiang W,Cuconati A,Paul AV,Cao X,Wimmer E,Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB.RNA.1995,1(9):892-904.
    166.Yap CC,Ishii K,Aoki Y,Aizaki H,Tani H,Shimizu H,Ueno Y,Miyamura T,Matsuura Y,A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA.Virology.1997 May 12;231(2):192-200
    167.Yu X,Xiao S,Fang L,Jiang Y,Chen H.Enhanced immunogenicity to food-and-mouth disease virus in mice vaccination with alphaviral replicon-based DNA vaccine expressing the capsid precursor polypeptide(P1).Virus Genes 2006;33:337-44
    168.Zhao Y,Chapman DAG,Jones IM.Improving baculovirus recombination.Nucleic Acids Res,2003,31(1):6215
    169.Zibert A,Maass G,Strebel K,Falk M M,Beck E.Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA.J Virol,1990,64:2467-2473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700