茶树酯型儿茶素合成途径及酚类物质积累特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
儿茶素是茶树的主要次生代谢产物,对决定茶叶品质及其健康功效具有重要作用。本文重点探索了茶树酯型儿茶素的合成代谢途径,研究了茶树酚类物质合成积累的组织特异性和发育特异性。主要研究结果如下:
     1.建立了茶树次生代谢研究的重要平台---茶树愈伤组织培养体系。
     开展了愈伤组织诱导、筛选、保存等方面研究,在此基础上,建立了茶树愈伤组织培养体系,为开展茶树儿茶素合成代谢及调控研究建立了良好平台。
     研究结果表明,在H、S和B三种诱导培养基中,只有B培养基适合于诱导生长迅速、组织疏松、质地均一的愈伤组织。从外植体上看,种子诱导出的愈伤组织具有较强的植株再生能力;幼茎和叶片诱导出的愈伤组织,其生长速度快、组织疏松,但再生能力弱。
     采用目视法和二分法,结合TLC和HPLC分析,对愈伤组织进行了筛选,得到含不同儿茶素含量的细胞系“yunjing63Y”和“yunjing63X”。分析结果显示,细胞系“yunjing63Y”和“yunjing63X”的儿茶素组分虽与鲜叶相似,但儿茶素含量差异较大,前者为7.77mg g~(-1)DW,后者仅为0.13mg g~(-1)DW。
     为保存具有稳定代谢能力的优良茶细胞系,本文对茶愈伤组织玻璃化法超低温保存技术进行了研究。结果表明:采用预培养4d、60%PVS2冰浴装载20min、100%PVS2冰浴脱水处理60min、40℃复温解冻细胞,可使茶愈伤组织的细胞存活率达到76%。
     2.探索了酯型儿茶素的合成代谢途径及其关键酶。
     采用体外酶学手段,结合TLC、HPLC、LC-MS、~1H NMR和13C NMR、蛋白质分离纯化技术,研究了酯型儿茶素合成和水解途径,建立了酯型儿茶素合成代谢相关酶的检测体系,分离纯化、鉴定了酯型儿茶素合成底物1-O-没食子酰-β-葡糖苷,纯化了酯型儿茶素合成酶:表儿茶素没食子酰基转移酶。
     研究结果首次提出了茶树酯型儿茶素合成及代谢途径,即茶树酯型儿茶素合成途径包含两步反应,首先没食子酸在依赖UDPG的没食子酰葡萄糖基转移酶(UDP-glucose:galloyl~(-1)-O-β-D-glucosyltransferase,UGGT)作用下,形成1-O-没食子酰-β-D-葡糖苷(βG)。1-O-没食子酰-β-D-葡糖苷(βG)作为活化的没食子供体,在表儿茶素没食子酰基转移酶(epicatechin:1-O-galloyl-β-D-glucose O-galloyltransferase,ECGT)作用下,将没食子基团转移到非酯型表儿茶素的C环-3-位点上,形成酯型儿茶素。此外茶树中酯型儿茶素,在酯型儿茶素水解酶(galloylated catechins hydrolase, GCH)催化下,可被水解形成非酯型儿茶素和没食子酸。
     为进一步寻找ECGT和UGGT在茶树中存在的证据,本文从茶树中分离、纯化并鉴定了βG;建立了基于粗酶提取液的UGGT、ECGT和GCH酶最适检测体系;利用硫酸铵分级沉淀、疏水柱层析、亲和柱层析和蛋白质的SDS-PAGE电泳分析技术,对ECGT进行了纯化;纯化后的ECGT其活性提高了1420倍。
     3.研究了茶树中酚类物质合成与积累的器官组织及发育特异性。
     利用LC-TOF/MS、分光光度计法等技术研究了主要酚类物质在茶树不同器官、叶片不同发育时期的积累规律。利用q-RTPCR技术和酶学分析手段,研究了茶树酚类物质主要合成酶和基因在不同器官、叶片不同发育时期的表达规律。利用香草醛盐酸显色技术,研究了儿茶素在茶树体内定位的器官组织特异性。
     研究结果显示,不同器官中酚类物质组分及含量差异较大。在鲜叶和茎中的儿茶素、黄酮醇、酚酸组分较多且含量较高;而在根中则相反,只能少量检测到B环双羟基的儿茶素和黄酮醇,缺乏酯型儿茶素。茶树中原花青素主要以儿茶素的二聚和三聚体形式存在,从含量差异上看,根中原花青素含量明显高于鲜叶和茎;从组分差异上看,根中主要是B环双羟基类型,而叶中则是B环一羟基、双羟基和三羟基类型同时存在。从基因表达差异上看,从鲜叶到茎到根,CHI、F3H和F3’5’H表达依次降低,这些差异可能与根中儿茶素和黄酮醇含量低、缺乏B环三羟基化合物有关。酶学实验显示,从鲜叶到茎到根,GCH酶活逐渐降低,UGGT和EGCT酶活在鲜叶和茎中无明显差异,而在根中则检测不到活性,这可能是根中缺乏酯型儿茶素的原因之一。
     研究结果还显示,随着鲜叶的发育,儿茶素、黄酮醇、酚酸、花青素和原花青素表现出不同的变化规律。其中儿茶素含量在一叶中最高,其次是芽;随着鲜叶发育程度增加,儿茶素单体GC、C和EC含量以及儿茶素聚合物含量较低且相对稳定,但EGC含量依次上升,而酯型EGCG和ECG的含量依次下降。黄酮醇的含量在一叶和二叶中较高。鲜叶中花青素的含量较低,且随着鲜叶发育依次减少。qRT-PCR结果显示,PAL,F3H,LAR和DFR基因的表达与不同发育时期鲜叶中儿茶素和黄酮醇积累规律相一致。酶学实验数据显示,随着鲜叶的发育,UGGT和ECGT的活性依次降低,相反GCH的活性依次增高,它们的变化与酯型EGCG和ECG的含量依次下降,而EGC含量依次上升趋势相吻合。
     香草醛盐酸试剂显色结果表明,茶树不同器官中儿茶素定位具有特异性。茶鲜叶中,除了主脉薄壁细胞外,大多数组织都有积累,其中以维管束和栅栏组织积累较多;在亚细胞水平上,儿茶素主要定位在叶绿体和导管壁上。在幼茎中,除髓部和皮层的薄壁细胞外,绝大部分组织都有明显的儿茶素积累。而根部的儿茶素主要积累在中柱鞘周围。此外,在光照培养和黑暗培养的愈伤组织中儿茶素分布有所不同。
Catechin (flavan-3-ols), as the main secondary metabolites in tea plant[Camelliasinensis (L.) O. Kuntze], shows decisive effects on the quality of tea and health functions.The aim of this study was to elucidate pathways of galloylated catechins biosynthesis andmetabolism, and to focus the tissue and developmental specificity of biosynthesis andaccumulation of phenolic compounds in tea plant. The main research achievements were asfollows.
     1. Established an important platform for the study of secondary metabolism in teaplant---The callus culture system of tea plant.
     The callus culture system of tea plant was established based on callus induction,screening of callus and callus conservation research, which provide a good platform for theregulation of catechins metabolism in tea plant.
     The results of our study showed that among H, S and B induction mediums, only Bmedium was fit for inducing and screening calluses which grow quickly, loosely organizedand even textured. In terms of explant, the plant regeneration ability of callus inducedfrom seed was stronger; calluses induced from tender stems and leaves grow quickly andloosely organized with weaker regeneration ability.
     Cell lines “yunjing63Y”,“yunjing63X” with different catechin contents wereobtained by visual method and dichotomy, combining with TLC and HPLC analyses. Theresults showed that catechin components of the two cell lines were similar to that of freshleaves, but the catechin contents of cell lines “yunjing63Y”and “yunjing63X” differedobviously. The catechin contents of the former was7.77mg g~(-1)Dw, the latter was0.13mgg~(-1)DW.
     To preserve cell lines with stable metabolism, the cryopreservation of callus byvitrification in tea plant has been preliminarily investigated. It showed that the preculturefor four days was best, loading with60%PVS2in freezing bath for20minutes was optimal.Treating with100%PVS2dehydration in freezing bath for60minutes was suggested. Thecryopreservation of callus warmed in40℃water bath had the highest survival rate. The cells’ survival rate was as high as76%when these parameters were adopted through thewhole trial.
     2. Investigated biosynthesis pathways of galloylated catechins and its related keyenzymes.
     Synthesis and hydrolysis pathways of galloylated catechins were investigatedthrough enzymatic assays in vitro, combining TLC, HPLC, LC-MS,1H NMR,13C NMRand enzyme purification. The reaction assay of enzyms involved in galloylated catechinsmetabolism was established. The synthetic substrate of galloylated catechins:1-O-galloyl-β-D-glucose was isolated, purified and identified. Besides, galloylatedcatechins synthetase (epicatechin:1-O-galloyl-β-D-glucose O-galloyltransferase) waspurified.
     The results of the study presented pathways of galloylated catechins biosynthesis andmetabolism for the first time. The biosynthesis way of galloylated catechins containedtwo-step reactions: In the first-step reaction, the galloylated acyl donor β-glucogallin (βG) wasbiosynthesized by (UDP-glucose:galloyl-1-O-β-D-glucosyltransferase, UGGT) from thesubstrates gallic acid (GA) and uridine diphosphate glucose (UDPG). In the second-stepreaction, galloylated group was transferred to the3-postion of the C-ring in catechin andformed galloylated catechins by action of (epicatechin:1-O-galloyl-β-D-glucoseO-galloyltransferase, ECGT). Besides, the galloylated catechins could be hydrolyzed toungalloylated catechins and gallic acid with the (galloylated catechins hydrolase, GCH)action.
     To obtain further evidence for the existence of ECGT and UGGT in the tea plant, βG wasextracted and identified from tea plant; the optimal detection systems of UGGT, ECGT andGCH were established based on crude enzyme extract; ECGT was purified effectively byammonium sulfate grading precipitation, hydrophobic interaction chromatography, affinitycolumn chromatography and SDS-PAGE electrophoresis analysis technology, whichactivity was1420times higher than before.
     3. The tissue and developmental specificity of biosynthesis and accumulation ofphenolic compounds in tea plant were studied.
     The accumulation pattern of the main phenolic compounds in different organs andleaves at different developmental stages were investigated by the LC-TOF/MS andspectrophotometer method. The expression patterns of the main synthetase and genesinvolved in phenolic compounds metabolism in tea plant in different organs and leaves atdifferent developmental stages were studied through qRT-PCR technology. Thesite-specific accumulation of catechins in organs and tissues of tea plant was studied withvanillin-HCL staining method.
     The result showed the content and components of phenolic compounds existedsignificant differently in different tissues and organs. The high content and components ofphenolic compounds were abundant and diverse in both leaves and stems; on contrary, inroots, only catechin and flavonols with di-hydroxy in B-ring were lowly deteced,galloylated catechins were absent. Procyanidins in tea plant mainly existed in the form ofdipolymer and tripolymer of catechins. In terms of content, the content of procyanidins inroot was obviously higher than that of fresh leaf and stem; In terms of components,procyanidins in root were mainly catechins with double hydroxies in B-ring, while inleaves procyanidins coexisted on catechins with mono-to tri-hydroxyl in B-ring. In termsof gene expression, from fresh leaves, stems to roots, gene expressions decreased in turnfrom CHI, F3H, to F3’5’H, which may be related to the missing of tri-hydroxyl in B-ringand the low content of catechins, flavonols. Data of enzymatic experiment showed fromfresh leaves, stems to roots, enzymatic activity of GCH decreased in turn. There is noobvious difference of enzymatic activities of UGGT and EGCT in fresh leaves and stems,while in root the enzymatic activities coud not be detected, this may be one possible reasonfor why galloylated catechins was missed in roots.
     The results also showed that with the development of fresh leaves, catechins,flavonols, phenolic acids, anthocyanins and procyanidins displayed different changingpatterns. Among the developmental stages of fresh leaves, the content of catechin was thehighest in the first leaf, followed by bud, while reduced obviously in mature leaves. Withfresh leaves developed futher, the contents of monomer GC, C and EC and polymers werelow and relatively stable, but the content of EGC in turn increased, and the content of EGCG and ECG declined successively. The content of flavonols in leaf was relatively highin the first and second leaf. The content of anthocyanins in fresh leaves was relatively lowand reduced successively with the development of fresh leaves. Results of qRT–PCRshowed that gene expression patterns of PAL, F3H, LAR, DFR were consistent withaccumulation patterns of catechins and flavonols in fresh leaf at different developmentalstages. Data of enzymatic experiment showed that with the development of the fresh leaf,the activity of UGGT and ECGT reduced, in contrast, the activity of GCH increasedsuccessively. This changing pattern was consistent with the rule that the content of EGCGand ECG decline in turn while the content of EGC rises.
     The results of the vanillin-HCL staining showed that catechins existed ubiquitously inall inspected tissues in young tea leaf, but the distribution was concentrated in the vascularbundle and palisade tissue, whereas the large parenchyma cells of the main vein containedlower amounts of catechins. At the subcellular level, we found that catechins were locatedmainly in the chloroplasts of mesophyll cells and in the vessel wall. In young stems,catechins could be detected in most cells except the parenchyma cells of the pith and thecortex, whereas in roots, catechins could only be detected in those cells surrounding thepericycle. Moreover, we found differing distributions of catechins in calluses cultivated indarkness and light.
引文
[1] Feng WY. Metabolism of green tea catechins: an overview[J]. Curr Drug Metab.2006,7(7):755-809.
    [2] Forrest GI, Bendall DS. The distribution of polyphenols in the tea plant (Camelliasinensis L.)[J]. Biochem J.1969,113(5):741-755.
    [3] He Q, Yao K, Jia D et al. Determination of total catechins in tea extracts by HPLCand spectrophotometry[J]. Nat Prod Res.2009,23(1):93-100.
    [4] Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside tobench[J]. Mol Nutr Food Res.2006,50(2):176-187.
    [5] Kao YH, Chang HH, Lee MJ et al. Tea, obesity, and diabetes[J]. Mol Nutr Food Res.2006,50(2):188-210.
    [6] Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea--a review[J]. J AmColl Nutr.2006,25(2):79-99.
    [7] Winkel BSJ. The biosynthesis of flavonoids. In Grotewold E, eds, The Science ofFlavonoids[M]. Springer Science&Business Media, New York.2006pp71-96.
    [8] Dixon RA, Xie DY, Sharma SB. Proanthocyanidins--a final frontier in flavonoidresearch?[J]. New Phytol.2005,165(1):9-28.
    [9] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics,biochemistry, cell biology, and biotechnology[J]. Plant Physiol.2001,126(2):485-493.
    [10] Lois R, Dietrich A, Hahlbrock K et al. A phenylalanine ammonia-lyase gene fromparsley: structure, regulation and identification of elicitor and light responsivecis-acting elements[J]. EMBO J.1989,8(6):1641-1648.
    [11] Matsumoto S, Takeuchi A, Hayatsu M. Molecular cloning of phenylalanineammonia-lyase cDNA and classification of varieties and cultivars of tea plants(Camellia sinensis) using the tea PAL cDNA probe[J]. Theor Appl Genet.1994,89(6):671-675.
    [12] Whetten RW, Sederoff RR. Phenylalanine ammonia-lyase from loblolly pine:purification of the enzyme and isolation of complementary DNA clones[J]. PlantPhysiol.1992,98(1):380-386.
    [13] Shi CY, Yang H, Wei CL et al. Deep sequencing of the Camellia sinensistranscriptome revealed candidate genes for major metabolic pathways oftea-specific compounds[J]. Bmc Genomics.2011,12:131.
    [14]廖靖军,安成才,吴思et al.查尔酮合酶基因在植物防御反应中的调控作用[J].北京大学学报(自然科学版).2000,(4):566-575.
    [15] Nishihara M, Nakatsuka T, Yamamura S. Flavonoid components and flower colorchange in transgenic tobacco plants by suppression of chalcone isomerase gene[J].FEBS Lett.2005,579(27):6074-6078.
    [16] Springob K, Nakajima J, Yamazaki M et al. Recent advances in the biosynthesis andaccumulation of anthocyanins[J]. Nat Prod Rep.2003,20(3):288-303.
    [17]侯夫云,王庆美,李爱贤et al.植物花青素合成酶的研究进展[J].中国农学通报.2009,(21):188-190.
    [18] Holton TA, Cornish EC. Genetics and Biochemistry of Anthocyanin Biosynthesis[J].Plant Cell.1995,7(7):1071-1083.
    [19]孟丽,戴思兰. F3'5'H基因与蓝色花的形成[J].分子植物育种.2004,(3):413-420.
    [20]王泽农.茶叶生物化学[M].北京:农业出版社.1980:10-90.
    [21] Forkmann G, Martens S. Metabolic engineering and applications of flavonoids[J].Curr Opin Biotechnol.2001,12(2):155-160.
    [22]马春雷,陈亮.茶树黄酮醇合成酶基因的克隆与原核表达[J].基因组学与应用生物学.2009,(3):433-438.
    [23] Helariutta Y, Elomaa P, Kotilainen M et al. Cloning of cDNA coding fordihydroflavonol-4-reductase (DFR) and characterization of dfr expression in thecorollas of Gerbera hybrida var. Regina (Compositae)[J]. Plant Mol Biol.1993,22(2):183-193.
    [24] Bongue-Bartelsman M, O'Neill SD, Tong Y et al. Characterization of the geneencoding dihydroflavonol4-reductase in tomato[J]. Gene.1994,138(1-2):153-157.
    [25] Gong Z, Yamazaki M, Sugiyama M et al. Cloning and molecular analysis ofstructural genes involved in anthocyanin biosynthesis and expressed in aforma-specific manner in Perilla frutescens[J]. Plant Mol Biol.1997,35(6):915-927.
    [26] Aida R, Yoshida K, Kondo T et al. Copigmentation gives bluer flowers ontransgenic torenia plants with the antisense dihydroflavonol-4-reductase gene[J].Plant Sci.2000,160(1):49-56.
    [27] Bavage AD, Davies IG, Robbins MP et al. Expression of an Antirrhinumdihydroflavonol reductase gene results in changes in condensed tannin structureand accumulation in root cultures of Lotus corniculatus (bird's foot trefoil)[J]. PlantMol Biol.1997,35(4):443-458.
    [28] Robbins MP, Bavage AD, Strudwicke C et al. Genetic manipulation of condensedtannins in higher plants. Ii. Analysis Of birdsfoot trefoil plants harboring antisensedihydroflavonol reductase constructs[J]. Plant Physiol.1998,116(3):1133-1144.
    [29] Forkmann G, Ruhnau B. Distinct substrate-specificity of dihydroflavonol4-reductase from flowers of Petunia hybrida[J]. J Biosci.1987,42:1146-1148.
    [30] Johnson E, Yi H, Shin B. Cymbidium hybrida dihydroflavonol4-reductase does notefficiently reduce dihydrokaempferol to produce orange pelargonidin-typeanthocyanins[J]. Plant J.1999,19:81-85.
    [31] Stafford HA, Lester HH. Flavan-3-ol Biosynthesis: The Conversion of(+)-Dihydromyricetin to Its Flavan-3,4-Diol (Leucodelphinidin) and to(+)-Gallocatechin by Reductases Extracted from Tissue Cultures of Ginkgo bilobaand Pseudotsuga menziesii[J]. Plant Physiol.1985,78(4):791-794.
    [32] Tanner GJ, Francki KT, Abrahams S et al. Proanthocyanidin biosynthesis in plants.Purification of legume leucoanthocyanidin reductase and molecular cloning of itscDNA[J]. J Biol Chem.2003,278(34):31647-31656.
    [33] Punyasiri PA, Abeysinghe IS, Kumar V et al. Flavonoid biosynthesis in the tea plantCamellia sinensis: properties of enzymes of the prominent epicatechin and catechinpathways[J]. Arch Biochem Biophys.2004,431(1):22-30.
    [34] Xie DY, Sharma SB, Paiva NL et al. Role of anthocyanidin reductase, encoded byBANYULS in plant flavonoid biosynthesis[J]. Science.2003,299(5605):396-399.
    [35] Xie DY, Sharma SB, Dixon RA. Anthocyanidin reductases from Medicagotruncatula and Arabidopsis thaliana[J]. Arch Biochem Biophys.2004,422(1):91-102.
    [36] Xie DY, Sharma SB, Wright E et al. Metabolic engineering of proanthocyanidinsthrough co-expression of anthocyanidin reductase and the PAP1MYB transcriptionfactor[J]. Plant J.2006,45(6):895-907.
    [37] Li H, Flachowsky H, Fischer TC et al. Maize Lc transcription factor enhancesbiosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids inapple (Malus domestica Borkh.)[J]. Planta.2007,226(5):1243-1254.
    [38] Bogs J, Downey MO, Harvey JS et al. Proanthocyanidin synthesis and expression ofgenes encoding leucoanthocyanidin reductase and anthocyanidin reductase indeveloping grape berries and grapevine leaves[J]. Plant Physiol.2005,139(2):652-663.
    [39]张宪林.茶树新梢中非酯型儿茶素及其合成酶的变化规律[J].茶叶科学.2009,29(5),365-371.
    [40] Hou B, Lim EK, Higgins GS et al. N-glucosylation of cytokinins byglycosyltransferases of Arabidopsis thaliana[J]. J Biol Chem.2004,279(46):47822-47832.
    [41] Pang Y, Peel GJ, Sharma SB et al. A transcript profiling approach reveals anepicatechin-specific glucosyltransferase expressed in the seed coat of Medicagotruncatula[J]. Proc Natl Acad Sci U S A.2008,105(37):14210-14215.
    [42] White BL, Howard LR, Prior RL. Impact of Different Stages of Juice Processing onthe Anthocyanin, Flavonol, and Procyanidin Contents of Cranberries[J]. J AgricFood Chem.2011,59:4692-4698
    [43] Flamini R, Tomasi D. The anthocyanin content in berries of the hybrid grapecultivars Clinton and Isabella[J]. Vitis.2000,39(2):79-81.
    [44]宛晓春.茶叶生物化学[M].中国农业出版社.2003:15-18.
    [45] Lin LZ, Chen P, Harnly JM. New phenolic components and chromatographicprofiles of green and fermented teas[J]. J Agric Food Chem.2008,56(17):8130-8140.
    [46] Zhao J, Pang YZ, Dixon RA. The Mysteries of Proanthocyanidin Transport andPolymerization[J]. Plant Physiol.2010,153(2):437-443.
    [47] Noguchi A, Sasaki N, Nakao M et al. cDNA cloning of glycosyltransferases fromChinese wolfberry (Lycium barbarum L.) fruits and enzymatic synthesis of acatechin glucoside using a recombinant enzyme (UGT73A10)[J]. J Mol CatalB-enzym.2008,55(1-2):84-92.
    [48] Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula andArabidopsis[J]. Plant Cell.2009,21(8):2323-2340.
    [49] Saijo R. Pathway of gallic acid biosynthesis and its esterification with catechins inyoung tea shoots[J]. Agric Biol Chem.1983,47:455-460.
    [50] Fraser CM, Thompson MG, Shirley AM et al. Related Arabidopsis serinecarboxypeptidase-like sinapoylglucose acyltransferases display distinct butoverlapping substrate specificities[J]. Plant Physiol.2007,144(4):1986-1999.
    [51] Niemetz R, Gross GG. Enzymology of gallotannin and ellagitannin biosynthesis[J].Phytochemistry.2005,66(17):2001-2011.
    [52] Kuai JP, Ghangas GS, Steffens JC. Regulation of Triacylglucose Fatty AcidComposition (Uridine Diphosphate Glucose:Fatty Acid Glucosyltransferases withOverlapping Chain-Length Specificity)[J]. Plant Physiol.1997,115(4):1581-1587.
    [53] Strack D, Knogge W, Dahlbender B. Enzymatic synthesis of sinapine from1-O-sinapoyl-β-D-glucose and choline by a cell-free system from developing seedsof red radish (Raphanus sativus L. var. sativus).[J]. Z. Naturforsch1983,38c:21-27.
    [54] Reeve RM. Histochemical tests for polyphenols in plant tissues[J]. Stain Technol.1951,26(2):91-96.
    [55] Gardner RO. Vanillin-hydrochloric acid as a histochemical test for tannin [J]. StainTechnol.1975,50:315-317.
    [56] Feucht W, Treutter D, Christ E. Localization and quantitative determination ofcatechins and proanthocyanidins in the phloem of elm and cherry[J]. Tree Physiol.1992,10(2):169-177.
    [57] McMurrough I, McDowell J. Chromatographic separation and automated analysis offlavanols [J]. Anal Biochem.1978,91:92-100.
    [58] Delcour JA, Janssens de Varabeke D. A new colourimetric assay for flavanoids inpilsner beers[J]. J Inst Brew.1985,91:37-40.
    [59] Sarkar SK, Howarth RE. Specificity of the vanillin test for flavanols[J]. J AgricFood Chem.1976,24(2):317-320.
    [60] Markham KR. Techniques of flavonoid identification(Biological TechniqueSeries)[M]. Academic Press,London.1982.
    [61] Vogt T, Pollak P, Tarlyn N et al. Pollination-or Wound-Induced KaempferolAccumulation in Petunia Stigmas Enhances Seed Production[J]. Plant Cell.1994,6(1):11-23.
    [62] Buer CS, Muday GK, Djordjevic MA. Flavonoids are differentially taken up andtransported long distances in Arabidopsis[J]. Plant Physiol.2007,145(2):478-490.
    [63] Murphy A, Peer WA, Taiz L. Regulation of auxin transport by aminopeptidases andendogenous flavonoids[J]. Planta.2000,211(3):315-324.
    [64] Peer WA, Bandyopadhyay A, Blakeslee JJ et al. Variation in expression and proteinlocalization of the PIN family of auxin efflux facilitator proteins in flavonoidmutants with altered auxin transport in Arabidopsis thaliana[J]. Plant Cell.2004,16(7):1898-1911.
    [65] Wagner GJ, Hrazdina G. Endoplasmic reticulum as a site of phenylpropanoid andflavonoid metabolism in Hippeastrum[J]. Plant Physiol.1984,74:901-906.
    [66] Zhang HB, Wang L, Deroles S et al. New insight into the structures and formationof anthocyanic vacuolar inclusions in flower petals[J]. Bmc Plant Biology.2006,6:1-34.
    [67] Saslowsky D, Winkel-Shirley B. Localization of flavonoid enzymes in Arabidopsisroots[J]. Plant J.2001,27(1):37-48.
    [68] Saslowsky DE, Warek U, Winkel BS. Nuclear localization of flavonoid enzymes inArabidopsis[J]. J Biol Chem.2005,280(25):23735-23740.
    [69] Taylor LP, Grotewold E. Flavonoids as developmental regulators[M]. Curr OpinPlant Biol.2005,8(3):317-323.
    [70] Yazaki K. Transporters of secondary metabolites[J]. Curr Opin Plant Biol.2005,8(3):301-307.
    [71] Grundhofer P, Niemetz R, Schilling G et al. Biosynthesis and subcellulardistribution of hydrolyzable tannins[J]. Phytochemistry.2001,57(6):915-927.
    [72] Marrs KA, Alfenito MR, Lloyd AM et al. A glutathione S-transferase involved invacuolar transfer encoded by the maize gene Bronze-2[J]. Nature.1995,375(6530):397-400.
    [73] Stafford HA. Activation of4-hydroxycinnamate hydroxylase in extracts fromsorghum[J]. Plant Physiol.1974,54(5):686-689.
    [74] Hrazdina G, Zobel AM, Hoch HC. Biochemical, immunological, andimmunocytochemical evidence for the association of chalcone synthase withendoplasmic reticulum membranes[J]. Proc Natl Acad Sci USA.1987,84(24):8966-8970.
    [75] Burbulis IE, Shirley BW. Interactions among enzymes of the Arabidopsis flavonoidbiosynthetic pathway[J]. PNAS.1999,96:12929-12934.
    [76] Hrazdina G. Compartmentation in aromatic metabolism. In H.A. Stafford and R.K.Ibrahim [eds.], Phenolic metabolism in plants[M], Plenum Press, New York,.1992.
    [77] Hrazdina G, Jensen RA. Spatial organization of enzymes in plant metabolicpathways[J]. Annu Rev Plant Physiol Plant Mol Biol.1992,43:241-267.
    [78] Wang H, Wang W, Li H et al. Expression and tissue and subcellular localization ofanthocyanidin synthase (ANS) in grapevine[J]. Protoplasma.2010.179:103-113.
    [79] Kao YY, Harding SA, Tsai CJ. Differential expression of two distinct phenylalanineammonia-lyase genes in condensed tannin-accumulating and lignifying cells ofquaking aspen[J]. Plant Physiol.2002,130(2):796-807.
    [80] Yau CP, Zhuang CX, Zee SY et al. Expression of a microsporocyte-specific geneencoding dihydroflavonol4-reductase-like protein is developmentally regulatedduring early microsporogenesis in rice[J]. Sex Plant Reprod.2005,18(2):65-74.
    [81] Alfenito MR, Souer E, Goodman CD et al. Functional complementation ofanthocyanin sequestration in the vacuole by widely divergent glutathioneS-transferases[J]. Plant Cell.1998,10(7):1135-1149.
    [82] Debeaujon I, Peeters AJ, Leon-Kloosterziel KM et al. The TRANSPARENTTESTA12gene of Arabidopsis encodes a multidrug secondary transporter-likeprotein required for flavonoid sequestration in vacuoles of the seed coatendothelium[J]. Plant Cell.2001,13(4):853-871.
    [83] Saijo R, Takeo T. Some properties of the initial four enzymes involved in shikimicacid bio-synthesis in tea plant[J]. Agri Biol Chem.1979,43:1427-1432.
    [84]刘乾刚.,黄雨初.茶叶叶绿体分离及其功能的研究[J].茶叶科学.1989,9:65-72.
    [85]刘乾刚.茶叶叶绿体在多酚类合成及其制茶转化中的作用[J].福建农业学报.2001,(3):48-50.
    [86]张广辉,吕才有,段红星.茶树离体植株再生与遗传转化[J].分子植物育种.2010,(2):345-349.
    [87] Mondal TK, Bhattacharya A, Laxmikumaran M et al. Recent advances of tea(Camellia sinensis) biotechnology[J]. Plant Cell Tiss Org.2004,76(3):195-254.
    [88]周带娣.生物技术在茶树上应用的进展[J].茶叶通讯.1993,(3):26-29.
    [89] Zaprometov MN, Zagoskina NV, Strekova VY et al. Formation of phenoliccompounds and the process of diferentiation in tea callus culture[J]. Soviet PlantPhysiol.1979,26:387-393.
    [90] Zaprometov MN, Strekova VY, Subbotina GA et al. Kinetin action ondiferentiationand phenolic compounds formation in tea callus culture[J]. SovietPlant Physiol.1986,33(282-28).
    [91] Zaprometov MN, Zagoskina NV. Further evidence for chloro Plant participationbiosynthesis of phenolic compounds[J]. Soviet Plant Physiol.1987,34:136-143.
    [92] Strekova VY, Zagoskina NV, Subbotina GA et al. Effect of prolonged illuminationon synthesis of phenolic compounds and chloro Plant formation in tea callustissues[J]. Soviet Plant Physiol.1989,36:65-71.
    [93] Zagoskina NV, Usik TU, Zaprometov MN. Efect of illumination time on phenolmetabolism of photomixotrophic tea callus cultures[J]. Soviet Plant Physiol.1990,37:829-834.
    [94] Bagratishvili DG, Zaprometov MN, Butenko RG. Formation of phenolic compoundsin suspension cultures of tea Plant cels and influence exerted on it by level ofnitrate and hormonal efectors in the nutrient medium[J]. Soviet Plant PhysioL.1980,27:318-324.
    [95]成浩,王玉书,杨素娟et al.培养基组分对茶树悬浮培养细胞儿茶素含量的影响[J].茶叶科学.1995,15(2):111-116
    [96] Shibasaki-Kitakawa N, Takeishi J, Yonemoto T. Improvement of catechinproductivity in suspension cultures of tea callus cells[J]. Biotechnol Progr.2003,19(2):655-658.
    [97]于惠敏,霍丽云,狄焕灵et al.低温对君子兰愈伤组织的长期保存作用[J].山东师范大学学报(自然科学版).2002,(2):119-120.
    [98] Lambe P, Mutembel HSN, Deltour R. Somatic embryogenesis in pearl millet:strategies to reduce genotype limitation and to maintain long-term totipotency [J].Plant Cell Tiss Org.1999,55:23-29.
    [99] Kato M. Regeneration of plantlets from tea stem callus[J]. Japan J Breed.1985,35:317-322.
    [100] Nakamura Y. Differentiation of adventitious buds and its varietial difference instem segment culture of Camellis sinensis (L.) O. Kuntze[J]. Tea Indu. Res Rep.1989,70:41-49.
    [101] Kato M. Micropropagation through cotyledon culture in Camellia japonica L. andC. sinensis L[J]. Japan. J. Breed.1986,36:31-38.
    [102] Mondal TK, Bhattacharya A, Ahuja PS et al. Transgenic tea [Camellia sinensis (L.)O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediatedtransformation of somatic embryos[J]. Plant Cell Rep.2001,20(8):712-720.
    [103] Matsumoto S, Fukui M. Agrobacterium tumefaciens-mediated gene transfer to teaplant[J]. Cells JARQ.1998,32(4):287-291.
    [104] Chung FL, Schwartz J, Herzog CR et al. Tea and cancer prevention: studies inanimals and humans[J]. J Nutr.2003,133(10):3268S-3274S.
    [105] Furuya T, Orihara Y, Tsuda Y. Caffeine and theanine from cultured cells ofCamellia sinensis[J]. Phytochemistry1990,29:2539-2543.
    [106]苏国庆,王莉,刘玉军.植物细胞培养中的高产细胞系筛选[J].海南师范学院学报(自然科学版).2005,(4):364-368.
    [107] Yamamoto Y, Mizuguchi R. Selection of a high and stable pigment-producingstrain in cultured euphorbia millii Cells[J]. Theor Appl Genet.1982,61:113-116.
    [108]吴蕴祺,朱蔚华,陆俭et al.红豆杉愈伤组织中sinenxans高产细胞系的选择及其培养[J].中国药学杂志.1998,33(01).15-18
    [109]成浩,李素芳,孙锦荷.茶树培养细胞花色苷累积型与非累积型株系间的差异性研究[J].茶叶科学.2000,(02):124-128.
    [110]苗琦,谷运红,王卫东et al.植物组织培养物的超低温保存[J].植物生理学通讯.2005,(3):350-354.
    [111] Takagi H, Thinh NT, Kyesmu PM. Cryopreservation of vegetatively propagatedtropical crops by vitrification[J]. Acta Horticulture.1998,461:485-490.
    [112] Sakai A, Kobayashi S, Oiyama I. Cryopreservation of nucellar cells of navelorange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification[J]. Plant CellRep.1990,9:30-33.
    [113]张玉进,张兴国,庞杰et al.魔芋茎尖玻璃化冻存研究[J].作物学报.2001,(1):97-102.
    [114] Matsumoto T, Sakai A, Nako Y. A novel preculturing for enhancing the survival ofinvitro-grown meristems of wasabi (Wasabia japonica) cooled to-196°C byvitrification[J]. Cryo Tech.1998,19:27-36.
    [115]胡明珏,王君晖.拟南芥悬浮细胞系的玻璃化法超低温保存[J].细胞生物学杂志.2004,(1):81-84.
    [116] Kim SI, Choi HK, Son JS et al. Cryopreservation of Taxus chinensis suspensioncell cultures[J]. Cryo Lett.2001,22(1):43-50.
    [117]郭燕霞,刘玉军.长鞭红景天悬浮培养细胞的玻璃化法超低温保存研究[J].西北植物学报.2006,(8):1605-1611.
    [118]郭玉琼,赖钟雄,吕柳新.玻璃化法超低温保存荔枝胚性愈伤组织及其植株再生[J].福建农林大学学报(自然科学版).2007,(1):34-37.
    [119] Tskagi H, Tinh N, Islam OM. Cryopreservation of in vitro-grown shoot tips oftaro(Colocasia esculenta (L.)Schott) by vitrification[J]. Plant Cell Rep.1997,16:594-599.
    [120]陈勇,陈娴婷,王君晖.瓯柑愈伤组织的玻璃化法超低温保存研究[J].浙江大学学报(理学版).2004,(2):197-201.
    [121]梁宏,王起华.植物种质的玻璃化超低温保存[J].细胞生物学杂志.2005,(1):43-45.
    [122] Niino T, Tashiro K, Suzuki M. Cryopreservation of in vitro grown shoot tips ofcherry and sweet cherry by one-step vitrification[J]. Sci Hortic.1997,70:155-163.
    [123] Niino T, Sakai A, Yakuwa H. Cryopreservation of in vitro-grown tips of apple andpear by vitrication[J]. Plant Cell Tiss Org1992,28:261-266.
    [124]郭玉琼,赖钟雄,吕柳新.玻璃化法超低温保存龙眼胚性愈伤组织的初步探讨[J].福建农业大学学报.2006,(03):262-265.
    [125] Beckmann J, Korber C, Rau G. Redefining cooling rates in terms of ice frontvelocity and thermal gradient: first evidence of relevance to freezing injury oflymphocytes[J]. Cryobiology.1990,27:279-287.
    [126]梁称福.植物组织培养研究进展与应用概况[J].经济林研究.2005,23(4):99-105.
    [127] Georgiev MI, Weber J, Maciuk A. Bioprocessing of plant cell cultures for massproduction of targeted compounds[J]. Appl Microbiol Biotechnol.2009,83(5):809-823.
    [128]查夫拉HS,许亦农,麻密.植物生物技术导论[M].北京:化学工业出版社.2005:112-116.
    [129] Lu MB, Wong HL, Teng WL. Effects of elicitation on the production of saponin incell culture of Panax ginseng[J]. Plant Cell Rep.2001,20:674-677.
    [130] Linus HW, Eijkelboom C, Hagendoom MJM. Relation between primary andsecondary metabolism in plant cell suspensions[J]. Plant Cell Tiss Org1995,43:111-116.
    [131]蔡朝晖,高山林,朱丹尼.东北红豆杉愈伤组织的诱导、生长及紫杉醇含量的测定[J].药物生物技术.1995,2:11-14.
    [132]徐刚标,何方,陈良昌.银杏愈伤组织诱导与继代培养的研究[J].中南林学院学报.1999,(3):32-36.
    [133]陈学森,邓秀新,章文才.培养基及培养条件对银杏愈伤组织黄酮产量的影响[J].园艺学报.1997,(4):373-377
    [134]王黎,张治国,蔡志光et al.软紫草愈伤组织的初步培养[J].广西植物.1994,14(04):345-348
    [135]成浩,李素芳.茶树组织培养再生技术的研究[J].中国茶叶.1996,(03):28-30.
    [136]安利国.细胞工程[M].北京:科学出版社[J].2005:180-181.
    [137] Wusteman M, Robinson M, Pegg D. Vitrification of large tissues with dielectricwarming: biological problems and some approaches to their solution[J].Cryobiology.2004,48(2):179-189.
    [138] Gonzalez-Arnao MT, Panta A, Roca WM et al. Development and large scaleapplication of cryopreservation techniques for shoot and somatic embryo culturesof tropical crops[J]. Plant Cell Tiss Org2008,92(1):1-13.
    [139] Takagi H. Recent development in cryopreservation of shoot apices of tropicalspecies. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical PlantGermplasm:Current Research Progress and Application[M]. JIRCAS(Tsukuba),IPGRI(Rome).2000:178-193.
    [140] Sakai A. Plant cryopreservation. In: Fuller BJ, Lane N,Benson EE(eds). Life in theFrozen State[M]. Boca Raton, London, New York, Washington DC: CRC Press.2004:329-345.
    [141]薛庆善.体外培养的原理和技术[M].北京:科学出版社.2001:128-136.
    [142] Gross GG. Partial purification and properties of UDP-glucose:vanillate1-O-glucosyl transferase from oak leaves[J]. Phytochemistry1983,148:67-70.
    [143] Bradford MM. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem.1976,72:248-254.
    [144] Lewinsohn E, Gijzen M, Croteau R. Wound-inducible pinene cyclase from grandfir: purification, characterization, and renaturation after SDS-PAGE[J]. ArchBiochem Biophys.1992,293(1):167-173.
    [145] Liu Y, Gao L, Xia T et al. Investigation of the site-specific accumulation ofcatechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HClstaining[J]. J Agric Food Chem.2009,57(21):10371-10376.
    [146] Battestin V, Macedo GA. Tannase production by Paecilomyces variotii[J].Bioresource Technol.2007,98(9):1832-1837.
    [147] Lu MJ, Chen C. Enzymatic modification by tannase increases the antioxidantactivity of green tea[J]. Food Res Int.2008,41(2):130-137.
    [148] Shirley AM, McMichael CM, Chapple C. The sng2mutant of Arabidopsis isdefective in the gene encoding the serine carboxypeptidase-like proteinsinapoylglucose: choline sinapoyltransferase[J]. Plant J.2001,28(1):83-94.
    [149] Stehle F, Brandt W, Milkowski C et al. Structure determinants and substraterecognition of serine carboxypeptidase-like acyltransferases from plant secondarymetabolism[J]. FEBS Lett.2006,580(27):6366-6374.
    [150] Wajant H, Mundry KW, Pfizenmaier K. Molecular cloning of hydroxynitrile lyasefrom Sorghum bicolor (L.). Homologies to serine carboxypeptidases[J]. Plant MolBiol.1994,26(2):735-746.
    [151] Li AX, Steffens JC. An acyltransferase catalyzing the formation of diacylglucose isa serine carboxypeptidase-like protein[J]. Proc Natl Acad Sci USA..2000,97(12):6902-6907.
    [152] Lehfeldt C, Shirley AM, Meyer K et al. Cloning of the SNG1gene of Arabidopsisreveals a role for a serine carboxypeptidase-like protein as an acyltransferase insecondary metabolism[J]. Plant Cell.2000,12(8):1295-1306.
    [153] Fraser CM, Rider LW, Chapple C. An expression and bioinformatics analysis of theArabidopsis serine carboxypeptidase-like gene family[J]. Plant Physiol.2005,138(2):1136-1148.
    [154] Michalczuk L, Bandurski RS. Enzymic synthesis of1-O-indol-3-ylacetyl-beta-D-glucose and indol-3-ylacetyl-myo-inositol[J].Biochem J.1982,207(2):273-281.
    [155] Ikegami A, Eguchi S, Kitajima A et al. Identification of genes involved inproanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit[J]. Plant Sci.2007,172(5):1037-1047.
    [156] Terrier N, Torregrosa L, Ageorges A et al. Ectopic expression of VvMybPA2promotes proanthocyanidin biosynthesis in grapevine and suggests additionaltargets in the pathway[J]. Plant Physiol.2009,149(2):1028-1041.
    [157] Li AX, Eannetta N, Ghangas GS et al. Glucose polyester biosynthesis. Purificationand characterization of a glucose acyltransferase[J]. Plant Physiol.1999,121(2):453-460.
    [158] Springer TL, McGraw RL, Aiken GE. Variation of condensed tannins in roundheadLespedeza germplasm[J]. Crop Sci.2002,42(6):2157-2160.
    [159] Haslam E. Vegetable tannins-lessons of a phytochemical lifetime[J].Phytochemistry.2007,68(22-24):2713-2721.
    [160] Parmentier F. A direct spectrophotometric method for the assay of tannase[J]. ArchInt Physiol Biochim.1970,78(1):131-133.
    [161] Niehaus JU, Gross GG. A gallotannin degrading esterase from leaves ofpedunculate oak[J]. Phytochemistry.1997,160:91-96.
    [162] Aguilar CN, Gutierrez-Sanchez G. Review: Sources, properties, applications andpotential uses of tannin acyl hydrolase[J]. Food Sci Tech Int.2001,7(5):373-382.
    [163] Yoshinori T. Enzymic solubilization of tea cream[P]. US Patent ApplicationNo.3959497.1976.
    [164] Li M, Kai Y, Qiang H et al. Biodegradation of gallotannins and ellagitannins[J]. JBasic Microbiol.2006,46(1):68-84.
    [165] Coggon P, Moss GA, Graham HN et al. The Biochemistry of Tea Fermentation:Oxidative Degallation and Epimerization of the Tea Flavanol Gallates[J]. J AgricFood Chem1973,21:727-733.
    [166] Xie DY, Jackson LA, Cooper JD et al. Molecular and biochemical analysis of twocDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J].Plant Physiol.2004,134(3):979-994.
    [167] Ashihara H, Deng WW, Mullen W et al. Distribution and biosynthesis offlavan-3-ols in Camellia sinensis seedlings and expression of genes encodingbiosynthetic enzymes[J]. Phytochemistry.2010,71(5-6):559-566.
    [168] Jaakola L, Pirttila AM, Halonen M et al. Isolation of high quality RNA frombilberry (Vaccinium myrtillus L.) fruit[J]. Mol Biotechnol.2001,19(2):201-203.
    [169]夏涛,高丽萍.类黄酮及茶儿茶素生物合成途径及其调控研究进展[J].中国农业科学.2009,(08):2899-2908.
    [170] Morikawa T, Nakamura S, Kato Y et al. Bioactive saponins and glycosides.XXVIII. New triterpene saponins, foliatheasaponins I, II, III, IV, and V, fromTencha (the leaves of Camellia sinensis)[J]. Chem Pharm Bull2007,55(2):293-298.
    [171] Singh K, Rani A, Paul A et al. Differential display mediated cloning ofanthocyanidin reductase gene from tea (Camellia sinensis) and its relationship withthe concentration of epicatechins[J]. Tree Physiol.2009,29(6):837-846.
    [172] MARI Y, MASANOBU K, MANABU S et al. Gene Encoding MethylatedCatechin Synthase [P].2008:20080318272
    [173]吕海鹏,林智,谭俊峰et al.茶叶中的EGCG3"Me研究[J].食品与发酵工业.2008,34(1):22-25.
    [174] Mueller LA, Walbot V. Models for vacuolar sequestering of anthocyanins. Inregulation of phytochemicals by molecular techniques[M]. Romeo, J. T.; Saunders,J. A.; Matthews, B. F., eds.; Elsevier Science Ltd: Oxford, UN.2001:297-312.
    [175] Suzuki T, Yamazaki N, Sada Y et al. Tissue distribution and intracellularlocalization of catechins in tea leaves[J]. Biosci Biotechnol Biochem.2003,67(12):2683-2686.
    [176] Harborne JB. Flavonoids[M]; Science Press: Beijing, China.1983:252-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700