二氧化氯和超细氧化铁在废水处理中的组合应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恐怖袭击从20世纪九十年代以来,有在全球范围内迅速蔓延的严峻趋势,以制造恐怖为手段,达到实现政治、社会、个人动机的目的。恐怖活动是指以制造社会恐慌、危害公共安全或者胁迫国家机关、国际组织为目的,采取暴力、破坏、恐吓等手段,造成或者意图造成人员伤亡、重大财产损失、公共设施损坏、社会秩序混乱等严重社会危害的行为,以及煽动、资助或者以其他方式协助实施上述活动的行为。目前世界各国基本上都已形成了对于包括抢劫、刺杀、临时爆炸装置、自杀性炸弹和绑架等恐怖袭击发生的危险级别的规定及其相应的预警系统。但是反恐事业具有多元性,相比于其他恐怖袭击来说,尤以生物和化学恐怖袭击因其具有不确定性、隐蔽性以及不可控性,其应对措施显得尤为重要。生物恐怖袭击在形式上主要是一些致病微生物,而化学恐怖袭击则主要包括重金属等在内的有毒化学物质,在使用上主要是通过食品、水体等为载体。因此,研究针对生物和化学恐怖袭击的易于大面积防控的技术和方法意义重大。
     基于这样的现实背景,在微生物的杀菌控制方面,由于二氧化氯(ClO_2)具有强氧化性,是一种具有高效广谱杀菌性能和较低的有毒付产物的环保型绿色杀菌消毒剂,且被世界卫生组织(WHO)列为Al级安全灭菌消毒剂,因此本文研究讨论了ClO_2对微生物的杀菌效果。在重金属污染防控方面,由于超细磁性氧化铁(Fe_2O_3)粒径小、易分散,具有铁的磁性以及良好的耐候性、耐光性,对紫外线具有良好的吸收和屏蔽效应等优点。因此,本文以军用印制板的重金属废水废液为目标物进行处理研究,主要研究内容如下:
     ⑴采用盐酸和亚氯酸钠反应制备了ClO_2,并采用分光光度法测定ClO_2浓度。
     ⑵研究制备了一种新型3D花状超细Fe_2O_3微粒,并对其进行相关的表征。表征结果表明,该微粒具有多孔、渗透性结构,可有效的去除水体中的重金属离子,达到净化水质的目的。
     ⑶研究了ClO_2的杀菌消毒试验。一方面,以葡萄为微生物载体,研究了气体ClO_2对葡萄表面接种的腐败致病菌——灰葡萄霉菌、青霉菌和交链孢霉菌的杀菌效果。结果表明,气体ClO_2可有效地杀灭葡萄表面的微生物,从而达到食用安全的目的。另一方面,利用液体ClO_2对污水进行处理,并比较各影响因素在杀菌消毒中的影响大小,并得出结论:杀菌消毒中各影响因素的大小依次为接触时间>反应温度> ClO_2投加量>搅拌速度,pH值的影响不大。
     ⑷研究了ClO_2对水体中有机物的去除效果,结果表明ClO_2投加量、反应时间、pH值以及水样中COD浓度对有机物去除效果有直接影响。研究了超细Fe_2O_3对水体中Cu~(2+)的去除效果以及影响因素。以印制板综合废水为例,研究了“ClO_2+超细Fe_2O_3”组合工艺处理,处理后废水出水水质达到了国家一级排放标准。
Since 1990s, terrorist attacks have rapid and serious prevalence tendency in the globalscope, which are with making terror as the means to achieve political, social and personalmotivation purpose. The purposes of terrorist activities are making social panic, endangeringpublic security or threatening state organs, international organization, which resort to severesocial harm behaviors, such as violence, destruction, threats, and other means to cause orintend to cause casualties, significant property damage, public facilities damage, socialdisorder and so on, and incitation, subsidization or other ways to assist the implementation ofthe above activities. At present, countries all over the world have basically developedprovisions of dangerous levels and corresponding warning system for robbery, kill,improvised explosive devices, the suicide bomb and kidnappings. However, anti-terrorismcareer has diversity. When compared to other terrorist attacks, especially chemical andbiological terrorist attacks, because of its uncertainty, imperceptibility and uncontrollability,corresponding measures are particularly important. The forms of biological terrorist attacksmainly are some pathogenic microorganisms. Moreover, chemical terrorist attacks are toxicchemicals including heavy metals, etc. In application respect, they take food, water and so onas carriers.
     Therefore, the research should aim at biological and chemical terrorist attack and thetechnology that can be suitable to control of large areas easily. Based on the realisticbackground, in the aspect of controlling microbial sterilization, because chlorine dioxide hasstrong oxidizing, it is a kind of environment-friendly sterilization disinfectant that hasefficient broad-spectrum sterilization performance and low toxic byproducts and is listed asA1 level security sterilization disinfectant by the world health organization (WHO). So, thispaper discusses bactericidal effect of chlorine dioxide on microorganisms. In the aspect ofprevention and control of heavy metal pollution, Ultra-fine magnetic iron oxide has small size, magnetism of iron, easily dispersed, good weather resistance, light resistance, UV absorption,shielding effect and so on. Therefore, this article takes heavy metal waste water of the militaryprinted circuit board as study purpose and the main research contents are as follows:⑴Using the reaction of hydrochloric acid or sulfuric acid and sodium chlorite toprepare ClO_2and applying spectrophotometry to determine ClO_2concentration.⑵Preparing 3D flower-like Ultra-fine Fe_2O_3particles and carrying out its relatedcharacterization. Characterization results show that the particles have a porous, permeablestructure and can effectively remove heavy metals in water to purify water.⑶Studying the bactericidal effect of ClO_2. On the one hand, taking grapes as microbialcarriers, we study the bactericidal effect of ClO_2on corruption pathogen inoculated on thesurface of the grape -Botrytis mold, Penicillium and Alternaria mold. The results show thatClO_2gas can effectively kill microorganisms on the surface of grape to guarantee foodsecurity. On the other hand, we take liquid ClO_2to deal with sewage , compare the effect offactors on the bactericidal effect, and conclude that the effect of factors can be sorted asfollows: reaction time>temperature> ClO_2dosage>whipping speed. However, pH value haslittle change.⑷We study removal effect of the ClO_2on organic matter in water. The results showthat ClO_2dosage, reaction time, pH and the concentration of COD in water have directimpacts on removal efficiency of organic matter. We also study removal effect of Ultra-fineFe_2O_3on Cu~(2+)in water and influencing factors. Taking PCB wastewater for instance, westudy the combined " ClO_2+ Ultra-fine Fe_2O_3" process. Treated wastewater effluent achievesthe national emission standards.
引文
[1]马静,史套兴,田青,王晴于.生物恐怖袭击事件特点及其医学应对处置能力建设[J].解放军预防医学杂志, 2008, 26(5): 313-316.
    [2]边归国.生物战剂的类型与检测[J].中国环境监测, 2005, 21(5): 24-28.
    [3]靳晓红,郭胜清.生物战剂分类及其侦检方法研究进展[J].人民军医, 2004, 47(12):735-737.
    [4]钟东臣,卢伟.核武器、化学武器、生物武器及其防护[J].化学教学, 2007(8): 47-51.
    [5]邵志广.生物武器与生物恐怖[J].中学生物学, 2004(6): 3-5.
    [6]王成艳,胡役兰,曲爱娜,刘淑红.生物武器战的威胁对军事防生医学的挑战[J].中国急救复苏与灾害医学杂志, 2008, 3(11): 691-692.
    [7]胡役兰,惠武利,刘淑红,兰晓霞.生物武器战(生物恐怖)威胁对军事防生医学的挑战.第九屠全军流行病学·第八届全军防生物危害医学专业学术会议论文集:201-202.
    [8]袁跃彬,王志敏,陈传伟,俞顺章.上海、河南传染科医生对常见生物武器掌握现况调查[J].中国医师杂志, 2004, 6(10): 1435-1436.
    [9] Franz D.R., Zajtchuk R. Biological terrorism: understanding the threat,preparation,andmedical response[J].Dis. Mon., 2002, 48(8): 493-564.
    [10]蔡连捷.走近生物武器[J].生物学通报, 2004, 39(7): 20-21.
    [11]夏立平.亚太地区禁止生物武器的进程[J].国际观察, 2001(6): 29-33.
    [12]王鑫,祁军.论生物战中的职业杀手——生物战剂[J].口岸卫生控制, 2008, 13(6):1-4.
    [13]袁欣星.中学化学中常见的杀菌消毒剂[J].中学数理化(高二版), 2007(12): 83-84.
    [14]李惠.高效强力杀具消毒剂[J].大众商务, 2001(3).
    [15] Melvin A. Benarde, Bernard M. Israel, Vincent P. Olivieri, Marvin L. Granstrom.Efficiency of chlorine dioxide as a bactericide[J]. Appl. Environ. Microbiol., 1965, 13(5):776-780.
    [16]王岩,齐勇.第四代杀菌消毒剂-二氧化氯[J].中国城乡企业卫生, 2001(1): 21-22.
    [17]陈和祥.印制板生产中油墨废水的COD处理研究[J].环境科学与管理, 2010, 35(7):97-99.
    [18] Mike Hill. Military PCBs market and it’s certification[J]. Printed Circuit Information,2004 (8): 56-59.
    [19]钱卫,解强,陈长生,吴昊,孙道林.多层印制板层压工艺概述[J].印制电路信息,2010 (1): 16-19.
    [20]谢东方.印制电路板废水处理回用工程应用[J].上海化工, 2005, 30(2): 7-9.
    [21]陈志强,肖应东,黄华勇.印制板废水回用与优化升级新理念[J].印制电路信息,2010(5): 61-64.
    [22]刘文伟.浅谈印制线路板生产中含Cu废水的处理技术[J].水污染防治, 2010(6):83-84.
    [23]曾芳仔.浅析印制板生产废水处理技术[J].印制电路信息, 2008 (10): 54-56.
    [24]游震中,魏江洲,丁扣林.印制板废水处理工艺简析[J].印制电路信息, 2003(3):52-54.
    [25]蔡慧华,张小平.清洁生产及其在印制电路板制造业中的应用[J].广东化工, 2008,35(10): 75-79.
    [26]林金堵. PCB废水处理回用率应有个逐步提高的过程[J].印制电路信息, 2007(9):4-6.
    [27]贾宝琼,陈晓峰.印制线路板废水处理与回用工艺[J].电镀与涂饰, 2007, 5: 55-58.
    [28]林金堵.把PCB废水回用提到日程上来[J].印制电路信息, 2004, 6:3-4.
    [29]段宁.清洁生产、生态工业和循环经济[J].环境科学研究, 2001 14(6): 1-4.
    [30]张凯,崔兆杰.清洁生产理论与方法[M].北京:科学出版社, 2005.
    [31] Post M. A., Moore W. A.. Determination of chlorine dioxide in treated surface waters[J].Anal. Chem., 1959, 31 (11):1872–1874
    [32] Michael J. R., Buxton G. V.. Chlorine dioxide water disinfection: a perspectiveepidemiology study[J]. Archives Environment Health, 1981, 36:20-26.
    [33]欧延,邱晓滨,许宗祥,林敬东,廖代伟.均匀沉淀法合成纳米氧化铁[J].厦门大学学报(自然科学版), 2004, 43(6): 882-885.
    [34] Moodley P., Scheijen F.J.E., Niemantsverdriet J.W., Thüne P.C.. Iron oxide nanoparticleson flat oxidic surfaces-introducing a new model catalyst for fischer-tropsch catalysis[J].Catal. Today, 2010, 154: 142-148.
    [35] Chen J., Xu L., Li W., Gou X..α-Fe_2O_3nanotubes in gas sensor and lithium-ion batteryapplications[J]. Adv. Mater., 2005, 17:582-586.
    [36] Oliveira L.C.A., Petkowicz D.I., Smaniotto A., Pergher S.B.C.. Magnetic zeolites: A newadsorbent for removal of metallic contaminants from water[J]. Water Research, 2004, 38:3699-3704.
    [37] Zeng H., Li J., Liu J.P., Wang Z.L., Sun S.H.. Exchange-coupled nanocomposite magnetsby nanoparticle self-assembly[J]. Nature, 2002, 420:395-398.
    [38] Jordan A., Scholz R., Hauff K.M., Johannsen M., Wust P., Nadobny J., Schirra H.,Schmidt H., Deger S., Loening S., Lanksch W., Felix R.. Presentation of a new magneticfield therapy system for the treatment of human solid tumors with magnetic fluidhyperthermia[J]. J. Magn. Magn. Mater., 2001, 225:118-126.
    [39]王林.纳米氧化铁的制备与应用研究进展[J].科技致富向导, 2011(7): 84-87.
    [40]林碧亮,朴建杰,郑邯勇等.纳米氧化铁制备方法的研究进展[J].舰船防化, 2007, 1:20-24.
    [41]梁美娜,刘海玲,刘树森,朱一年.纳米氧化铁的制备及其对砷的吸附作用[J].应用化学, 2007, 24(12): 1418-1423.
    [42]胡军,周跃明,梁喜珍,花榕,郑兰梅.纳米氧化铁对铀吸附性能的研究[J].光谱实验室, 2011, 28(2): 718-722.
    [43]喻德忠,蔡汝秀,潘祖亭.纳米级氧化铁的合成及其对六价铬的吸附性能研究[J].武汉大学学报(理学版), 2002, 48(2): 136-138.
    [44]张增光,翟雅琴,王松鹤.纳米氧化铁絮凝剂在册田水库源水处理中的应用[J].化工进展, 2009(z28): 203-207.
    [45] Han Y., Sherman D. M., Linton R. H., Nielsen S. S., Nelson P. E.. The effects of washingand chlorine dioxide gas on survival and attachment of Escherichia coli O157: H7 togreen pepper surfaces[J]. Food Microbiology, 2000, 17:521-533.
    [46] Sy. Kaye V., Mc Watters, Kay H., Beuchat, Larry R. Source. Efficacy of GaseousChlorine Dioxide as a Sanitizer for Killing Salmonella, Yeasts, and Molds onBlueberries, Strawberries, and Raspberries[J]. Journal of Food Protection, 2005, 68,6:1165-1175(11).
    [47] Sy. Kaye V., Murray Melinda B., Harrison M. David. Beuchat Larry R.. Evaluation ofGaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Escherichia coliO157:H7, Listeria monocytogenes, and Yeasts and Molds on Fresh and Fresh-CutProduce[J]. Journal of Food Protection, 2005, 68, 6:1176-1187(12).
    [48] Lee Sun-Young, Dancer Genisis Iris, Chang Su-sen, Rhee Min-Suk, Kang Dong-Hyun.Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on applesurfaces[J]. International Journal of Food Microbiology, 2006, 108: 364-368.
    [49] Du Jin-hua, Fu Mao-run, et al. Effects of Chlorine Dioxide Gas on PostharvestPhysiology and Storage Quality of Green Bell Pepper (Capsicum frutescens L. var.Longrum)[J]. Agricultural Sciences in China, 2007, 6(2): 214-219.
    [50] Vicente M. Gómez-López, Peter Ragaert, et al. Shelf-life of minimally processed lettuceand cabbage treated with gaseous chlorine dioxide and cysteine[J]. InternationalJournal of Food Microbiology, 2008, 121:74-83.
    [51] Kim Jeongmok, Marshall Maurice R., Du Wen-Xian, Otwell W. Steve, Wei Cheng-I.Determination of Chlorate and Chlorite and Mutagenicity of Sea food Treated withAqueous Chlorine Dioxide[J]. J. Agric. Food Chem., 1999, 47: 3586-3591.
    [52] Linda S. Andrews, Anna M. Key, Roy L. Martin, Robert Grodner, Douglas L. Park.Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine[J].Food Microbiology, 2002, 19:261-267.
    [53] Jimenez-Villarreal J.R., Pohlman F.W., Johnson Z.B., Brown A.H.. Effects of chlorinedioxide, cetylpyridinium chloride, lactic acid and trisodium phosphate on physical,chemical and sensory properties of ground beef[J]. Meat Science, 2003, 65:1055–1062.
    [54] Du Jinhua, An Y.H, Linton R.H.. Inactivation by chlorine dioxide gas (ClO2) ofListeriamonocytogenes spotted onto different apple surfaces[J]. Food Microbiology,2002, 19: 481-490.
    [55] Du J., Han Y., Linton R.H.. Efficacy of chlorine dioxide gas in reducing Escherichia coliO157:H7 on apple surfaces[J]. Food Microbiology, 2003, 20: 583-591.
    [56]葛元新,朱志良,赵建夫.水体中腐殖酸含量与ClO2投加量间的相互关系研究[J].河南师范大学学报(自然科学版), 2006, 34(1): 73-76.
    [57]黄君礼,李绍峰,崔崇威.饮用水消毒剂ClO2的研究进展[J].哈尔滨建筑大学学报,2001,43(5):39-43.
    [58]宁甲昱王东岩蔡学敏孙军二氧化氯与氯溴杀菌消毒剂杀菌原理的区别[J].中国水产, 2004,(4):86-87.
    [59]王春梅.纳米氧化铁的溶剂热/水热合成及性能表征.硕士学位论文[D]. 2010.
    [60] Jorg Rockenberger, Erik C. Scher, A. Paul Alivisatos. A New NonhydrolyticSingle-Precursor Approach to Surfactant-Capped Nanocrystals of Transition MetalOxides[J]. J. Am. Chem. Soc. 1999, 121: 11595-11596.
    [61] Yoon T.-S.,Oh J., Park S.-H., Kim V., Jung B. G., Min S.-H., Park J., Hyeon T., KimK.-B.. Single and Multiple-Step Dip-Coating of Colloidal Maghemite (γ-Fe_2O_3)Nanoparticles onto Si, Si3N4, and SiO2 Substrates[J]. Advanced Functional Materials,2004, 14(11): 1062–1068.
    [62] Sun Shouheng, Zeng Hao. Size-Controlled Synthesis of Magnetite Nanoparticles [J]. J.Am. Chem. Soc., 2002, 124:8204-8205.
    [63] Taeghwan Hyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na.Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without aSize-Selection Process[J]. J. Am. Chem. Soc., 2001, 123:12798-12801.
    [64] Li Z., Sun Q., Gao M.. Angew Y.. Preparation of Water-Soluble Magnetite Nanocrystalsfrom Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4[J]. Chem.Int . Ed., 2005, 44:123-126.
    [65]俞海云,孙思修,林作栋,宋新宇,张卫民,樊唯镏.利用P204-正庚烷萃取体系制备纳米氧化氢氧化铁和氧化铁的研究[J].无机化学学报, 2004(6): 652-656.
    [66]王林.纳米氧化铁的制备与应用研究进展[J].高教论述, 2011(11): 67.
    [67]李艳玲,李先国,冯丽娟,刘爱岑.纳米氧化铁的研究进展[J].化学研究与应用, 2004,16(6): 741-744.
    [68]胡鸿飞,李大成,吉红兵.纳米氧化铁的制备方法与进展[J].四川有色金属, 2001(1):15-20.
    [69]谢东方.印制电路板废水处理技术应用实践[J].安全与环境工程, 2005, 12(1):42-45.
    [70]华松林,何淦锋,何明.线路板废水处理工艺的探讨[J].工业安全与环保, 2002, 28:15-17.
    [71]路金辉,游震中.线路板废水处理工程介绍[J].给水排水,2002, 28(4):29-31.
    [72]于春泽. PCB废水(液)处理技术装备现状与展望[J].印制电路信息, 2001 (10):39-43.
    [73]玉占君,张文伟.线路板含铜弱蚀废液的处理[J].辽宁师范大学学报,2002, 25(4):407-408.
    [74]陈健,刘俊.碱性蚀刻废液的回收处理[J].印制电路信息,2002(9): 55-56.
    [75]王金元,印制线路板生产废水治理中的自动控制[J].广州环境科学, 2003, 18(3):39-41.
    [76]贺启环.微电解技术在印制电路板生产综合废水处理中得应用[J].印制电路信息,2008, 9: 42-48.
    [77]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水处理中的应用[J].工业水处理,1998, (6): 4-6.
    [78] Rahaman A., Agrawal A., Reduction of nitrate and nitrite by iron metal: Implications forground water remediation. In 213th Amrican Society Nation Meeting[J]. Preprints ofextended abstracts, 1997, 37(1): 157-159.
    [79] Muftikian R., Fernaando Q., Korte N.E.. A method of the rapid dechlorination of lowmolec-ular weight chlorianated hydrocarbons in water[J]. Water Research, 1995, 29(10):2434-2439.
    [80] Konstanouros E., Method of regenerating ammoniacal etching solutions useful foretching metallic copper[P]. US 4280887, 1981-07-28.
    [81]胡志锋SC菌剂对废水中Cu~(2+)去除的初步研究[J].四川环境,2000,(2)。
    [82] A Tsezos, B. volesky. The mechanism of uranium biosoption by Rhizopus arrhizus[J].Biotech.Bioeng.1982,24:340-385.
    [83]屠霄霞,王辉.利用CP-150萃取回收PCB碱性蚀刻废液中的铜[J].浙江万里学院学报. 2009,(5).
    [84]彭军,胡勇有.Fenton试剂在印制电路板工业废水处理中的应用[J].工业用水与废水.2006,37(3):31-34.
    [85]何志毅,周怡,王博.Fenton法处理线路板生产废水中有机物[J].江苏环境科技.2005,4(18).
    [86]巫世文. MBR工艺在PCB线路板废水处理中的运用评论[J].环境工程. 2008,26(5).
    [87]姚梅峰,方江敏,周兴求,张临苏,赵永. AF_BAF深度处理PCB生产废水的试验研究[J].环境科学与技术. 2007,30(7):96-97 .
    [88]郭新超;金奇庭;王艳芳;孙长顺;薛峰.光助芬顿法降解印制电路板脱膜废液[J].土木建筑与环境工程, 2005,(5).
    [89]陈和祥.印制电路板生产中油墨废水处理技术研究[J].环境科技. 2010,(1).
    [90]陶虎春,张琦,李绍峰.酸化—Fenton—混凝工艺处理印制电路板显影废水的研究[J].工业水处理. 2009(11).
    [91]柏云,傅庆红,张静,叶勤,冯易军.电解催化法制备二氧化氯的研究[J].四川大学学报(自然科学版), 2003, 40(1): 112-116.
    [92]杨桂花,陈嘉川.二氧化氯的制备及其应用[J].山东轻工业学院学报, 2004, 18(4):1-4.
    [93]陈循军,崔英德,郭彪.二氧化氯的性质、制备及应用[J].广州化工, 2002, 30(2):11-15.
    [94]汪多仁.二氧化氯的合成与应用[J].低温与特气,2000, 18(5): 36-37.
    [95]王奎涛,张林霞,张炳烛.高纯度二氧化氯制备工艺中稳定剂的研究[J].应用化工,2005, 34(6): 351-352.
    [96] Gates D.J.. Chlorine dioxide generation technology and mythology. ConferenceProceedings. Advances in Water Analysis and Treatment, AWWA, 1989, Philadephia,PA.
    [97]娄向东,刘双枝,王天喜,成庆堂,席国喜.纳米氧化铁化学制备方法研究进展[J].无机盐工业, 2005, 37(12): 741-744.
    [98]史培阳,张影,刘承军,姜茂发.溶剂热结晶法制备纳米氧化铁的工艺研究[J].稀有金属材料与工程, 2007, 36(z2): 766-769.
    [99]史培阳,刘承军,王媛媛,姜茂发.反应条件对氧化铁结晶行为的影响.硅酸盐学报, 2008, 36(9): 1300-1303.
    [100]邵梅珍.纳米氧化铁的制备与展望[J].衡水师专学报, 2001, 3(4): 57-59.
    [101]李珍,吴明红,顾建忠,焦正,吕森林,王德庆.电子束辐射技术制备纳米氧化铁[J].高校化学工程学报, 2006, 20(3): 481-484.
    [102] Xu Suo-ping, Zhu Guang-jun. Progress in chemically prepared nano-scale iron oxidepigment[J]. Paint&Coatings Industry, 2004, 3.
    [103] Chen Lei, Yang Weng-Jun, Yang Chang-Zheng. Preparation of nanoscale iron and Fe_3O_4powders in a polymer matrix[J]. Journal of Materials Science, 1997, 32: 3571-3575.
    [104] Xu X.L., Guo J.D., Wang Y.Z.. A novel technique by the citrate pyrolysis forpreparation of iron oxide nanoparticles[J]. Materials Science and Engineering B77,2000: 207-209.
    [105] Roshaida Arbain, Munirah Othman, Samayamutthirian Palaniandy.Preparation of ironoxide nanoparticles by mechanical milling[J]. Minerals Engineering, 2011, 24: 1-9.
    [106] Wang, L.-L., Jiang, J.-S.. Preparation of a-Fe_2O_3nanoparticles by high-energy ballmilling[J]. Physica B 390, 2007, 330(1-2): 23-27.
    [107]缪应菊,刘潍涓,刘刚,王亚明.纳米氧化铁的制备工艺综述[J].材料开发与应用,2009, 24(2): 71-76.
    [108]李玲.纳米氧化铁粉体的制造方法[P].CN1427042A.2003-07-02.
    [109]娄敏毅,王德平.偶联剂修饰纳米磁性微球的制备及其表征[J].上海生物医学工程, 2004, 25(3): 14-19.
    [110]宋丽贤,卢忠远,刘德春等.分解沉淀法制备磁性纳米Fe_3O_4的研究及表征[J].化工进展, 2006, 25(1): 54-57.
    [111]王弘,刘杏芹,沈瑜生.[Fe(C_5H_5N)_4]Cl_2配合物水解氧化法制备γ-Fe_2O_3气敏微粉及其表征[J].云南大学学报(自然科学版), 1997, 19(1): 7-9.
    [112]魏雨,赵建录.高浓度三价铁催化相转化制备纳米γ-Fe_2O_3胶粒[J].催化学报, 1998,19(1): 7-8.
    [113] Chen Dehong,Jiao Xiuting,Chen Daimng.Solvothermal synthesis ofα-Fe_2O_3 particleswith different morphologies[J]. Materials Research Bulletin, 2001, 36(5): 1057-1064.
    [114] Raming T P,Winnubst A. J .A.,Kats C. M. van,Philipse A. P..The Synthesis andMagnetic Properties of Nanosized Hematite (α-Fe_2O_3) Particles[J]. Journal of Colloidand Interface Science, 2002, 249(2): 346-350.
    [115]徐甲强,侯振雨,田孟魁等.用溶胶法和微乳液法制备纳米级氧化铁材料[J].郑州轻工业学院学报, 1998, 13(45): 27-30.
    [116]景苏,鲁新宁.室温固相法合成纳米FeOOH及Fe_2O_3[J].南京工业大学学报, 2002,24(6): 52-54.
    [117] Grimm S,Schultz M,Barth S.Flame pyrolysis-a preparation route for ultrafine pureγ-Fe_2O_3powders and the control of their particle size and properties [J].MaterialsScience, 1997, 32(4): 1080-1092.
    [118]欧平,徐刚,倪利红,韩高荣.α-Fe_2O_3的水热法合成及其形成机理[J].稀有金属材料与工程, 2008, 37(z2): 453-455.
    [119]陈建君,邓慧芳,王尚平,徐荣,罗龙飞,钟声亮.多孔氧化铁纳米花的合成和表征[J].江西师范大学学报(自然科学版), 2010, 34(1): 68-71.
    [120]董睿,姜继森,杨燮龙.非水介质中制备纳米氧化铁.无机材料学报, 2002, 17(5):967-972.
    [121]赵克辉,王承权,闫涛,顾思民,马丽景,白守礼.纳米Fe_2O_3的制备与气敏性质的研究.化工进展,2002, 21(8): 579-584.
    [122]王春梅.纳米氧化铁的溶剂热/水热合成及性能表征.硕士学位论文.烟台大学[D].2010.
    [123]孙中溪.纳米氧化铁的制备、表征、相变及其表面酸碱性质研究.硕士学位论文.济南大学[D]. 2006.
    [124]张强.电化学法合成纳米氧化铁的研究.硕士学位论文.上海大学[D]. 2005.
    [125]孙贵磊,闫鸿浩,李晓杰,张越聚,王小红.外界条件对爆轰制备纳米氧化铁的影响研究.真空, 2007, 44(5): 13-15.
    [126]徐国花,李先国,冯丽娟.溶胶-凝胶法与冷冻干燥技术结合制备纳米氧化铁.青岛科技大学学报, 2003, 24(4): 354-357.
    [127]钟红梅,杨延钊,张卫民,李雪梅,杨永会,徐显刚,孙思修.回流法制备纳米氧化铁的研究.山东大学学报(理学版), 2002, 37(2):160-162.
    [128]曾芳仔.浅析印制板生产废水处理技术[J].印制电路信息, 2008(10): 54-56.
    [129]梁文兴,梁劲洪.油墨废水处理研究[J].环境, 2005(1): 83-85.
    [130]杨裴,夏俊玲,石硕年等.氧化-混凝法处理油墨废水的研究[J].天津化工,2004(9):60-62.
    [131]何志毅,周怡. Fenton法处理线路板生产废水中有机物质[J].江苏环境科技,2005,18(4): 14-16.
    [132]刘文伟.浅探印制线路板生产中含Cu废水的处理技术[J].海峡科学, 2010, 6:83-84.
    [133]胡惠康,赵国华.高浓度络合态铜离子废水的预处理研究[J].工业水处理, 2002,22(4): 37-39.
    [134]彭义华.络合铜废水预处理技术探讨[J].重庆环境科学, 2003, 25(5): 31-35.
    [135]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005, 32(4): 36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700