多孔Ti-24Nb-4Zr合金孔隙特征及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以设计和研究新型医用多孔钛合金为目标,通过Mo当量设计材料的元素比例,采用高真空烧结炉和氩气气氛管式炉烧结多孔Ti-24Nb-4Zr合金,通过金相显微镜、SEM、XRD、三点弯曲试验、压缩测试、电化学测试测定合金孔隙率,分析孔隙形貌和试样力学性能,以及多孔合金的电化学性能。
     通过元素粉末冶金的方法制备的多孔Ti-24Nb-4Zr合金为亚稳定β型钛合金,并且随着造孔剂NH_4HCO_3添加量的增加,合金中α相所占比例增大。造孔剂碳酸氢铵的添加能有效改变烧结样品的孔隙率和孔径大小。孔隙率与造孔剂NH_4HCO_3添加量呈线性变化趋势,随着造孔剂添加量的增加,孔隙的平均孔径明显增大,但它对孔隙的圆度和最大孔径影响不是很大。试样孔隙内壁有明显的微孔,尺寸远小于普通孔隙尺寸,可见孔隙并不可能是完全封闭的。造孔剂NH_4HCO_3的添加能有效改变烧结产物的孔隙率和孔径大小,进而来影响其力学性能。随着孔隙率的升高,合金的杨氏模量、抗弯强度都明显下降,呈线性变化,因此可以通过设计添加不同的造孔剂来得到不同的力学性能要求的多孔钛合金。添加20wt.%NH_4HCO_3的多孔Ti-24Nb-4Zr合金弹性模量为3.3GPa,屈服强度为172MPa,基本符合医用植入材料的要求。多孔Ti-24Nb-4Zr合金的断裂为穿晶解理型的脆性断裂。由试样宏观断裂照片以及压缩试验中应力-应变曲线可以看出,试样表现出明显的斜45°方向的滑移失效,从应力应变曲线上看与一般的脆性断裂又不相同,因此多孔Ti-24Nb-4Zr合金的断裂机理是脆性断裂与塑性断裂相结合。
     试样在不同的烧结温度、烧结时间、压制压力条件下,最终的烧结产物的物相组成没有明显区别,确定为亚稳定β相晶体结构。随着烧结温度的升高,试样的密度呈明显下降趋势,与之对应的开孔率显著上升,材料的孔隙特征中孔隙孔径下降,圆度上升,同时由于孔隙特征的变化,压缩力学性能出现明显对应变化,压缩弹性模量及抗压强度都呈增长趋势。随着烧结时间的延长,试样密度有一定的下降趋势,同时开孔率对应上升,材料的孔隙特征中孔隙孔径下降,圆度上升,压缩力性与孔隙特征对应变化,压缩弹性模量有一定增长趋势。压制压力对于试样的影响在实验中未出现明显影响,其规律不具有普遍性,表明在90MPa到130MPa的冷压环境下,压制压力对最后的制品影响不大。
     四种材料具有相似的腐蚀电位,且制备的多孔钛合金所具有的腐蚀电位不高于其他三种材料,表明其具有较低的腐蚀倾向。多孔TNZ合金的阳极极化曲线中都伴随着钝化现象,在pH值为7.4的NaCl溶液中其维钝电流密度为3.4μA,击穿电位在1.2V左右,与参比材料相一致,在pH值为7.4的Hanks溶液中其维钝电流密度为4.4μA,击穿电位在0.6V左右,相比于参比材料较低,因此更容易产生过钝化。而且多孔TNZ合金并没有二次钝化现象,因此在较高的电压下其腐蚀速率较快。通过测试电化学阻抗谱及拟合分析表明多孔合金、纯Ti和Ti64合金的腐蚀体系的等效电路均为R(QR)模型。多孔合金的膜的阻抗在酸性环境中略低于其他三种材料。总之,通过相关的电化学测试,对制备的多孔钛合金进行耐蚀性评价,表明多孔合金具有较高的耐蚀性,能够满足生物医用的要求。
The purpose of this paper was to design and study biomedical porous titaniumalloy. The elements composition of this porous titanium alloy was designed by meansof Mo equivalent amount and it was prepared by high vacuum sintering furnace andargon t ube f urnace. The por osity, m orphology, m echanical pr operties a ndelectrochemical properties of this porous alloy were analyzed by optical microscope,SEM, XRD, tri-point bending test, compression test and electrochemical tests.
     The porous Ti-24Nb-4Zr alloy prepared by metal powder metallurgy method wasmetastable β titanium alloy. With the addition of more NH_4HCO_3powder, the αpercentage increased a ccordingly. The a ddition of f orming a gent c ould effectivelyincrease the porosity and pore diameter. With the addition of more forming agent, theporosity increased linearly an d t he av erage p ore d iameter i ncreased su bstantiallywhile little influence was observed to pore roundness and maximum diameter. Theinner wall of pores possessed micro pores which were far smaller than average poreswhich means those pores were not completely close. The addition of NH_4HCO_3couldinfluence mechanical properties of the porous alloy by changing its porosity and porediameter. A s t he porosity increases, t he Y oung’s m odulus and be nding s trengthdecreases linearly. This means that porous titanium alloys with different mechanicalproperties could be prepared by addition of different amount of forming agent. PorousTi-24Nb-4Zr alloy was prepared by adding20wt.%NH_4HCO_3, and it possessed anelastic m odulus of3.3G Pa a nd a yi eld s trength of172M Pa w hich m eet t herequirements of bi omedical i mplant m aterials. T he f ractography of por ousTi-24Nb-4Zr a lloy exhibited b rittle f racture w ith tra nsgranular c leavagecharacteristics. Ju dging f rom t he m acro f ractography a nd s tress-strain c urve ofimpression test, the samples showed evidently slip failure with45°orientation and itwas different from ordinary brittle facture which means that the fracture mechanismwas a mixture of brittle fracture and plastic fracture.
     The phase composition of final sintering products was metastable β phase whichshowed no distinct different when the samples were sintered with different sinteringtemperature and time as w ell as pressing pressure. When the sintering temperatureincreases, the density of samples and pore diameter decreases distinctively while theporosity and pore roundness increases sharply. Meanwhile as the pore characteristics changing, the c ompression m echanical p roperties c hange a ccordingly: t hecompression elastic modulus and compression strength increases. When the sinteringtime increases, the density of samples and pore diameter decreases slowly while theporosity and pore roundness increases, and the compression elastic modulus showsthe trend of increasing. Compression stress shows no obvious influence to the samples.The tests show that cold press with pressure of90M Pa to130M Pa exhibits littleinfluence to the final sintering samples.
     The four materials exhibits similar corrosion potential and that of the poroustitanium a lloy w as lo wer th an th e o ther th ree m aterials which means t he p oroustitanium alloy possesses lower corrosion tendency. The anodic polarization curves ofporous TNZ alloys showed that passivation occurred during the tests. The passivecurrent density was3.4μA and breakdown potential was1.2V in NaCl solution withpH value of7.4which was t he same with r eference material; the passive currentdensity was4.4μA and breakdown potential was0.6V in Hanks solution with pHvalue of7.4which was lower than reference material and means it is easier to overdeactivated. H owever, por ous T NZ a lloy s howed no s econdary pa ssivation w hichmeans that the corrosion velocity under high voltage is much faster than referencematerial. According to electrochemical impedance spectroscopy and fitting analysis,the equivalent circuits of corrosion systems of porous TNZ alloy, pure Ti and TC4areall R(QR) types. The impedance of porous TNZ alloy oxidization film was a littlelower than the other three materials. In sum, corrosion resistant evaluation by relevantelectrochemical tests shows that porous TNZ alloy possesses high corrosion resistancewhich could meet the requirements of biomedical applications.
引文
[1]何宝明,王玉林,戴正宏,生物医用钛及其合金材料的开发应用进展、市场状况及问题分析,钛工业进展,2003,20(4-5):82-87.
    [2]奇货,生物医用材料,中国科技信息,2002,11:4-6.
    [3]金怡,王海之,钱旻,生物医学材料及其产业发展前景分析,世界科技研究与发展,2001,23(6):43-45.
    [4]崔福斋,冯庆玲,生物材料学,科学出版社,北京,1996.
    [5]李军,新型医用钛合金TZNT机械性能、耐腐蚀性能及生物相容性能的研究,博士学位论文,东北大学,沈阳,2002.
    [6]冯颖芳,康浩方,张震,钛合金医用植入物材料的研究及应用,稀有金属,2001,25(5):349-354.
    [7]任伊宾,杨柯,梁勇,新型生物医用金属材料的研究和进展,材料导报,2002,16(2):12-15.
    [8] D. S umner a nd J. G atante, Determinants of s tress s hielding: design ve rsusmaterials v ersus i nterface, C linical O rthopaedics an d R elated R esearch,1992,274:202-212.
    [9]朱振安,毛远青,骨科生物医用材料,生物骨科材料与临床研究,2005,2(3):21-23.
    [10]李世普,生物医用材料导论,武汉工业大学出版社,武汉,2000.
    [11]杨英慧,日本在生物医学、牙科和康复用金属材料方面的研究与进展,现代材料动态,2005,11:2-6.
    [12] D. R. Haynes, T. N. Crotti and M. R. Haywood, Corrosion of and changes inbiological e ffects o f co balt chrome al loy an d316L st ainless st eel p rostheticparticles w ith ag e, Jo urnal o f B iomedical Mat erials R esearch,2000,49(2):167-175.
    [13] J. Yang and K. Merritt, Production of monoclonal antibodies to study corrosionproducts of C O-CR biomaterials, Jo urnal of B iomedical Materials R esearch,1996,31(1):71-80.
    [14]皇甫强,牛金龙,钛合金在医学领域的应用,稀有金属快报,2005,24(1):33-34.
    [15]陶姗,新型生物医用近β型钛合金的组织及力学性能,硕士学位论文,昆明理工大学,2005.
    [16]于思荣,生物医学钛合金的研究现状及发展趋势,新材料产业,2001,2:23-25.
    [17] M. Long and H. J. Rack, Titanium alloys in total joint replacement—a materialsscience perspective, Biomaterials,1998,19(18):1621-1639.
    [18] H. Fukui, W. Yang, S. Tsuruta, et al., Reciprocal Tribocontact of BiomedicalAlloys, Materials Science Forum2004,449-452:1285-1288.
    [19]蔡玉荣,粉末烧结制备的生物医用多孔钛合金的力学性能,稀有金属快报,2005,24(10):39-41.
    [20]黎青,陈玲燕,沈军,多孔材料的应用与发展,材料导报,1995,6:10-13.
    [21]赵东元,朱海峰,金碧辉,多孔材料,中国基础科学,2005,3:19-20.
    [22]杨慧萍,张正德,金属多孔材料发展现状,稀有金属材料与工程,1997,26(1):1-6.
    [23]刘培生,黄林国,多孔金属材料制备方法,功能材料,2002,33(1):5-9.
    [24]汤慧萍,谈萍,奚正平等,烧结金属多孔材料研究进展,稀有金属材料与工程,2006,35(suppl.2):428-432.
    [25]许庆彦,熊守美,多孔金属的制备工艺方法综述,铸造,2005,54(9):840-843.
    [26]孙纪国,王浩,尘军,粉末冶金多孔材料性能研究,导弹与航天运载技术,2006,4:58-61.
    [27]左孝青,孙加林,泡沫金属制备技术研究进展,材料科学与工程学报,2004,6:452-456.
    [28]张勇,舒光冀,何德坪,用低压渗流法制备泡沫铝合金,材料科学进展,1993,7(6):473-478.
    [29]许庆彦,陈玉勇,李庆春,多孔铝合金的铸造工艺研究,材料科学与工艺,1998,6(1):36-40.
    [30]陈雯,刘中华,朱诚意等,泡沫金属材料的特性、用途及制备方法,有色冶矿,1999,1:33-36.
    [31]李伯琼,王德庆,陆兴,粉末冶金多孔钛的研究,大连铁道学院学报,2004,25(1):74-78.
    [32]魏莉,姚广春,张晓明等,粉末冶金法制备多孔金属材料技术,材料导报,2004,18(7):15-18.
    [33]北京市粉末冶金研究所,粉末冶金,机械工业出版社,北京,1974.
    [34]松山芳治,三谷裕康and铃木寿,粉末冶金学,科学出版社,北京,1978.
    [35]黄培云,粉末冶金原理,冶金工业出版社,北京,1982.
    [36]朱震刚,金属泡沫材料研究,物理,1999,2:84-88.
    [37]今川耕治,上野英俊,秋山茂,发泡金属多孔性金属材料的特性及用途,工业材料,1982,30(10):69-75.
    [38] D. Y. M. D elforge, I. F erreira, C. G. R. S ilva, e t a l., B razilian C ongress ofEngineering a nd M aterials S cience (Foz do I gua u, P araná, B razil)2006, pp.7569-7576.
    [39] J. Banhart, Manufacture, characterisation and application of cellular metals andmetal foams, Progress in Materials Science,2001,46(6):559-632.
    [40] D. G. Morris a nd M. A. M orris, N iTi intermetallic b y m ixing, m illing a ndinterdiffusing elemental components, Materials Science and Engineering: A,1989,110:139-149.
    [41] P. S. Liu and K. M. Liang, Functional materials of porous metals made by P/M,electroplating a nd s ome ot her techniques, J ournal of M aterials Science,2001,36(21):5059-5072.
    [42]张小明,王学成, S HS法制备高孔隙度TiNi合金,稀有金属材料与工程,2000,29(1):61-63.
    [43] P. Sepulveda, Gelcasting foams for porous ceramics, American Ceramic SocietyBulletin,1997,76(10):61-65.
    [44]曹立宏,马颖,多孔锌合金孔隙率及通孔率的测定方法研究,甘肃科技,2006,22(5):110-112.
    [45]刘培生,多孔材料孔率的测定方法,钛工业进展,2005,22(6):24-37.
    [46]曾汉民,高技术新材料要览,中国科技出版社,北京,1993.
    [47]刘培生,多孔材料孔径及孔径分布的测定方法,钛工业进展,2006,23(2):29-34.
    [48] T. M. Puscas, M. Signorini, A. Molinari, et al., Image analysis investigation ofthe effect of the process variables on the porosity of sintered chromium steels,Materials Characterization,2003,50(1):1-10.
    [49]汤国华,杨俊和,张琢等,一种定量分析多孔材料孔隙结构的新方法,煤炭转化,2004,27(1):71-75.
    [50]朱胜利,多孔NiTi形状记忆合金的研究,博士学位论文,天津大学,天津,2005.
    [51]李丙运,戎利建,李依依,生物医用多孔Ti-Ni形状记忆合金的研究进展,材料研究学报,2000,14(6):561-567.
    [52]李飞舟,李红船,造孔剂含量对多孔预制体孔隙率的影响,佛山陶瓷,2006,16(7):4-6.
    [53]胡飞,朱胜利,杨贤金,用粉末冶金法制备医用多孔TiNi合金的研究,金属热处理,2002,27(7):6-9.
    [54] Y. H. Li, G. B. Rao, L. J. Rong, et al., Effect of pores on corrosion characteristicsof porous NiTi alloy in simulated body fluid, Materials Science and EngineeringA,2003,363(1-2):356-359.
    [55]袁斌,不封装的热等静压法制备的多孔NiTi形状记忆合金的相变与性能,博士学位论文,2004.
    [56]陈安玉,口腔种植学,四川科技出版社,成都,1989.
    [57]夏露,鲜苏琴,王培志等,多孔海绵状纯钛种植材料对成骨细胞生长的影响,口腔颌面修复学杂志,2005,6(3):179-182.
    [58]冯建,张朝平,多孔TiNi合金的制备工艺及其生物相容性,化学与生物工程,2005,3):22-25.
    [59]崔永鹏,何国求,刘晓山,医用多孔NiTi形状记忆合金的研究进展,上海金属,2006,28(6):37-41.
    [60]于振涛,周廉,生物医用型β型钛合金的设计与开发,稀有金属快报,2004,23(1):5-10.
    [61] T. Zhou, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, ScriptaMaterialia,2004,50(3):343-348.
    [62] M. D. McNeese, D. C. Lagoudas and T. C. Pollock, Processing of TiNi fromelemental powders by hot isostatic pressing, Materials Science and Engineering A,2000,280(2):334-348.
    [63] E.利弗森,材料的特征检测,科学出版社,北京,1998.
    [64]马新仿,张士诚,郎兆新,储层岩石孔隙结构的分形研究,中国矿业,2003,12(9):46-48.
    [65]王文峰,徐磊,傅雪海,应用分形理论研究煤孔隙结构,中国煤田地质,2002,14(2):26-28.
    [66]李德成, B. Velde, J. F. Delerue等,孔隙结构图像分析中不同实验因素对分析结果的影响,土壤学报,2002,39(1):52-56.
    [67]白晓红,朱贵田,土壤孔隙分布的光学图像分析,山西农业大学学报,1995,15(2):190-195.
    [68]陈海斌,李德源,廖海洋,松质骨孔隙率的二维光电检测,重庆大学学报,2003,26(1):58-61.
    [69]刘建立,徐绍辉,刘慧,预测土壤水力性质的形态学网络模型应用研究,土壤学报,2004,41(2):218-224.
    [70]王成,邵红梅,洪淑新,松辽盆地北部深层碎屑岩浊沸石成因、演化及油气关系研究,矿物岩石地球化学通报,2004,23(3):213-218.
    [71]任世彪,张代林,图像分析在焦炭气孔结构参数测定中的应用,安徽工业大学学报,2003,20(1):66-69.
    [72] S. M. Sweeney and C. L. Martin, pore size distributions calculated from3-Dimages o f D EM-simulated pow der c ompacts, A cta Materialia,2003,51(12):3635-3649.
    [73] H. J. Vogel and A. Kretzschmar, Topological characterization of pore space insoil-sample preparation and digital image-processing, Geoderma,1996,73(1-2):23-38.
    [74]徐建林,陈超,路阳等,铸造铝青铜显微组织的计算机辅助分析,铸造,2004,53(10):819-822.
    [75]熊向军,颗粒粒度粒形测量的新技术-时间转换理论及动态图像分析,中国粉体技术,2004,4:47-49.
    [76]徐建林,陈超,材料显微组织分析的研究,计量学报,2004,25(4):369-373.
    [77]师春生,田永琦,图像处理软件Photoshop在金相分析中的应用,东北大学学报(自然科学版),2000,增刊(9):42-44.
    [78] J. I. C alvo, A. H ernández, G. C aruana, e t a l., P ore s ize di stributions i nmicroprous membranes: I. surface study of track-etched filters by image analysis,Journal of Colloid and Interface Science,1995,175(1):138-150.
    [79] A. c erepi, C. D urand a nd E. B rosse, P ore m icrogeometry a nalysis i nlow-resistivity san dstone r eservoirs, Jo urnal o f P etroleum S cience an dEngineering,2002,35(3-4):205-232.
    [80] J. F. Delerue, E. Perrier, Z. Y. Yu, et al., New algorithms in3D image analysisand their application to the measurement of a spatialized pore size distribution insoils, Physics and Chemistry of the Earth, Part A: solid earth and Geodesy,1999,24(7):639-644.
    [81] E. A. G. Robertson and D. J. Campbell, simple, low-cost image analysis of soilpore s tructure, J ournal of a gricultural e ngineering R esearch,1997,68(4):291-296.
    [82] S. Deshpande, A. Kulkarni, S. Sampath, et al., Application of image analysis forcharacterization of porosity in thermal spray coatings and correlation with smallangle neutron scattering, Surface and Coatings Technology,2004,187(1):6-16.
    [83]王海宁,郑永平,康飞宇,膨胀石墨孔结构的定量研究,无机材料学报,2003,18(3):606-612.
    [84]王清,陈慧娥,蔡可易,水泥土微观结构特征的定量评价,岩土力学,2003,24(增1):12-16.
    [85]李燕月,刘月英,王伯羲,正极添加剂对极板孔隙结构和性能的影响,北京理工大学学报,2004,24(8):743-736.
    [86] S. Blacher, V. Maquet, F. Schils, et al., Image analysis of the axonal ingrowthinto poly (d, l-lactide) porous scaffolds in relation to the3-D porous structure,Biomaterials,2003,24(6):1033-1040.
    [87] S. B lacher, A. Léonard, B. H einrichs, e t al., Image a nalysis of X-raymicrotomograms o f P d-Ag/SiO2xerogel c atalysts s upported on A l2O3foams,Colloids and S urfaces A: P hysicochemical and E ngineering A spects,2004,241(1-3):201-206.
    [88]唐明,混凝土孔隙分形特征的研究,混凝土,2000,8:3-5.
    [89]郭永彩,谢利利,何振江等,基于分维计算的颗粒粒度分析方法,重庆大学学报(自然科学版),1998,21(1):7-11.
    [90]李留仁,赵艳艳,李忠兴等,多孔介质微观孔隙结构分形特征及分形系数的意义,石油大学学报(自然科学版),2004,28(3):106-111.
    [91]王清,王剑平,土孔隙的分形几何研究,岩土工程学报,2000,22(4):496-498.
    [92] A. N ussinovitch, N. J affe a nd M. G illilov, F ractal pore-size d istribution o nfreeze-dried ag ar-texturized f ruit s urfaces, F ood H ydrocolloids,2004,18(5):825-835.
    [93] J. Lipiec, R. Hatano and A. S owińska-Jurkiewicz, The fractal dimension of poredistribution patterns in variously-compacted soil, Soil and Tillage Research,1998,47(1-2):61-66.
    [94] A. P iotrowski a nd G. bi allas, I nfluence of s intering t emperature on por emorphology, microstructure, and fatigue behaviour of MoNiCu alloyed sinteredsteel, Powder Metallury,1998,41(2):109-114.
    [95]贾磊,谢辉,吕振琳, M o粉末烧结现象与烧结机制研究,铸造技术,2008,29(3):395-399.
    [96]张汉卿,碳酸氢铵晶体学及其结构与性能的关系,物理学报,1984,33(3):391-398.
    [97] Y.-p. Zhang, Z.-y. Chung and X.-p. Zhang, Porous Titanium-nickel Alloys withAdjustable P orosity F abricated U sing P ore-forming Agent a nd C onventionalSintering, Journal of Materials Science&Engineering,2007,25(6):938-943.
    [98] M. M. D ewidar a nd J. K. L im, P roperties of s olid core a nd po rous s urfaceTi–6Al–4V implants manufactured by powder metallurgy, Journal of Alloys andCompounds,2008,454(1-2):442-446.
    [99] S. M. Green, D. M. Grant and N. R. Kelly, Powder metallurgical processing ofNi-Ti shape memory alloy, Powder Metallury,1997,40(1):43-47.
    [100] W. Bonfield, M. Wang and K. E. Tanner, Interfaces in analogue biomaterials,Acta Materialia,1998,46(7):2509-2518.
    [101]李永华,多孔NiTi形状记忆合金的燃烧合成及其性能研究,博士学位论文中科院金属所,沈阳,2002.
    [102] G. C. Kuczynski in Fundamentals of sintering theory, Vol. Syracuse UniversityPress, Binghamton, N. Y.,1972, pp.101-117.
    [103]宝鸡有色金属研究所,粉末冶金多孔材料,冶金工业出版社,北京,1978.
    [104]中国金属学会,金属物理性能及测试方法,冶金工业出版社,北京,1987.
    [105]刘道新,材料的腐蚀与防护,西北工业大学出版社,西安,2006.
    [106] D. D. M acdonald, R eview of mechanistic a nalysis by electrochemicalimpedance spectroscopy, ElectrochimicaActa,1990,35(10):1509-1525.
    [107]周伟舫,电化学测量,上海科学出版社,上海,1983.
    [108]崔晓莉,等效电路中元件参数数值对交流阻抗谱的影响,河北师范大学学报(自然科学版),2002,26(4):376-380.
    [109]崔晓莉,江志裕,膜电阻对自组装膜修饰电极电化学行为的影响,电化学,2001,7(3):270-275.
    [110]吴浩青,李永舫,电化学动力学,高等教育出版社,北京,1998.
    [111]史美伦,李通化,周国定,表面粗糙度的交流阻抗研究及其在铜电极上的应用,同济大学学报,1995,23(1):83-87.
    [112] B. E. C onway, O. J. Bockris a nd R. E. White, M odern A spects ofElectrochemistry, Electrochemical Impedance Spectroscopy and Its Applications,KluwerAcademic/Plenum Publishers, New York,1999.
    [113]程志亮,杨秀荣,电化学交流阻抗技术表征自组装多层膜,分析化学,2001,29(1):6-10.
    [114]崔晓莉,江志裕,交流阻抗谱的表示及应用,上海师范大学学报(自然科学版),2001,30(4):53-61.
    [115]扈显琦,梁成浩,交流阻抗技术的发展与应用,腐蚀与防护,2004,25(2):57-60.
    [116] Y. H. Li, G. B. Rao, L. J. Rong, et al., The influence of porosity on corrosioncharacteristics of porous NiTi alloy in simulated body fluid, Materials Letters,2002,57(2):448-451.
    [117] K. W. Ng, H. C. Man and T. M. Yue, Corrosion and wear properties of lasersurface m odified N iTi w ith Mo and Z rO2, Applied S urface S cience,2008,254(21):6725-6730.
    [118]曹楚南,腐蚀电化学原理(第二版),化学工业出版社,北京,2004.
    [119]魏宝明,金属腐蚀理论及应用(第一版),化学工业出版社,北京,1984.
    [120] Y. B. Wang a nd Y. F. Z heng, C orrosion be haviour a nd bi ocompatibilityevaluation of low modulus Ti-16Nb shape memory alloy as potential biomaterial,Materials Letters,2009,63():1293-1295.
    [121] Y. F. Zheng, B. L. Wang, J. G. Wang, et al., Corrosion behaviour of Ti-Nb-Snshape memory alloys in different simulated body solutions, Materials Science andEngineeringA,2006,438-440():891-895.
    [122] N. Zaveri, M. Mahapatra, A. Deceuster, et al., Corrosion resistance of pulsedlaser-treated T i–6Al–4V im plant in s imulated b iofluids, E lectrochimica A cta,2008,53(15):5022-5032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700