区域旱情中长期预报及农业干旱风险综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个水资源短缺的国家,随着社会经济的迅速发展和气候变迁,极端天气现象频繁发生,干旱成为威胁经济发展与农业生产的主要制约因素。因此,区域干旱预报和风险评价已变为人类关心的问题和研究重点,了解区域干旱发展规律、提前预知未来干旱演进趋势,了解区域干旱风险级别已成为抗旱减灾中最主要的研究内容之一。本文对干旱中长期预报和农业干旱风险等问题进行了研究,主要研究成果如下:
     (1)区域干旱演变规律分析
     本文归纳总结了干旱的定义、干旱的分类以及各种干旱类型的代表性指标,并根据SPI标准化降水指标能反映不同时间、空间尺度干旱的特点,将其作为干旱划分指标,以辽宁省朝阳地区为例,通过功率谱法,探索了朝阳地区的干旱周期和演变规律,最终得出朝阳地区的干旱呈现5年~10年的波动周期。
     (2)基于小波分解的干旱等级组合预测模型研究
     干旱最主要的影响因素是降水量,降水量本身呈现出趋势性、周期性和波动性的特征,基于小波理论较强的分解能力,首先应用小波理论对降水量的趋势性、周期性和波动性成分进行分离,然后采用不同的模型对各成分分别进行预测,将预测结果进行重构,作为最终的预测结果。对于较难预测的波动性成分,本文对影响因子进行了筛选,将筛选后的因子作为降水量波动分量预测的因子集合。与其它模型的对比结果表明,基于小波分解的降水量组合预测模型,降低了降水量值预测误差,提高了预测合格率。根据干旱分级标准,将降水量转换成干旱等级,实现了干旱等级的间接预测。
     (3)基于土壤水量平衡模型的土壤墒情模拟
     从年际、季节和垂向的角度,归纳总结了土壤墒情变化规律,得出土壤墒情不但与降水量的大小存在着密切的关系,还与降水的季节分布有关。针对土壤水量平衡模型中作物蒸散发量ET确定复杂的问题,应用BP神经网络对其进行了模拟,并将模拟结果应用于土壤墒情的模拟。结果表明,其模拟结果达到了与基于Penman-Monteith公式计算得到的ET对土壤墒情的模拟结果相近的水平。故在资料不完备情况下,将BP神经网络拟合得到的ET输入到土壤水量平衡模型中,进行土壤墒情预报的方法可行。
     (4)基于GFS降水预报信息的土壤墒情预报研究
     土壤墒情是衡量农业干旱较为重要的指标,若能提前预报土壤墒情,将为区域抗旱减灾提供更可靠的依据。本文基于GFS全球降水中期数值预报系统对无雨和少雨预报精度较高的特点,将其预报的降水信息用于逐旬土壤墒情的定量预报;在抗旱部署时,决策者最关心的问题是干旱发展程度、何时得以缓解,本文根据国家旱情划分标准,将定量预报结果转化为相应的干旱等级。结果表明,定性的干旱预报结果合格率较高,而后将量级预报结果应用于全省2009年8月份的干旱等级预报中,也得到了较满意的结果。
     (5)基于可变模糊集合的农业干旱风险综合评价
     基于农业干旱风险存在模糊性的特点,综合考虑区域干旱风险的危险性、暴露性、区域脆弱性及抗旱减灾能力,将可变模糊集合应用于农业干旱风险综合评价中,综合数学权重和主观权重确定指标综合权重,以朝阳地区为例,对区域农业干旱风险进行综合评价,并将该方法应用于辽宁省14个市的农业干旱风险综合评价中,形成全省农业干旱风险区划图。结果表明,可变模糊集合的应用为区域农业干旱风险评价提供了新的思路,全省干旱风险图的生成为区域未来的农业干旱风险管理及抗旱减灾决策提供了有力的理论支持和可靠的技术保障。
     最后,对全文进行了总结,并对有待于进一步研究的问题进行了展望。
China is a water shortage country. With the social and economic development and environmental changing, the extreme weather phenomenon in China is more and more frequent. Drought is the main restraining factors which affects the economic development and agriculture production. Consequently, regional drought forecasting and risk assessment have been the key to the researches. Knowning the regional drought developing rules and drought risk is the main contents of drought-resisting. This article studies on the drought long-term forecasting and risks assessment. The research results are listed as follows:
     (1) The regional drought development law analysis
     This paper summarizes the drought definition, classification and the representative indices. According to the reflection different spaces or times distribution merits of SPI (Standardization Precipitation Index), it is used for drought development law analysis of Chaoyang City. Based on the power methods, it concludes that a five to ten years fluctuation drought cycle has been presented.
     (2) Drought grade combining precipitation model based on wavelet decomposition method
     Precipitation is showing a trendy, periodicity and volatility characteristics. Based on a strong decompose ability of wavelet theory, precipitation trendy, periodicity and volatility components are separated. Then use different prediction models to forecast the different components of precipitation, respectively, and take the predicted results of reconstruction of the three parts as the final predictions. For the difficult volatility characteristics of precipitation, the paper screened the circumfluence factors, and used these factors sets for precipitation model building. Comparison of results with the other models shows that the combination of wavelet decomposition precipitation precipitation model reduces the precipitation forecasted error and improved the forecast passing rate. Then, the precipitation is converted to drought grade according to national standard. And the study result shows that this method is feasible.
     (3) Soil moisture simulation based on soil-water balance model
     The annual and seasonal changing rules of soil moisture are aummarized. We found that the soil moisture is not only relates to the precipitation quantity, but also relates to the precipitation seasonal distributing characters. According to the complex calculations of crop water requirement in the soil water balance model, BP network is used for crop water requirement simulation. It shows that the BP simulation gets a similar result to the Penman-Monteith. The usage of ET based BP network for the soil moisture simulations will be feasible when the information is incomplete.
     (4) Soil moisture prediction based on precipitation prediction system of GFS
     Soil moisture is an important index for agricultural assessment. It will provide more dependable information if known soil moisture the before drought occurs. Based on the characteristics of higher prediction precision of no rain and light rain of global forecasting system, the precipitation forecasting information of GFS is used for soil moisture quantity forecasting. During making a detailed plan to fight the drought, policy-makers concern more about the drought degree and when the drought degree will be reduced. According to the national drought standard, the quantity forecasting result is translated into drought grade. It shows that the prediction passing percent is high. The study results are used for August drought prediction and the satisfying outcomes.
     (5) Agricultural comprehensive drought risk assessment based on variable fuzzy sets
     Based on the fuzzy characteristics of comprehensive drought risk in agriculture, variable fuzzy sets theory was used for agriculture comprehensive drought risk assessment of the fourteen cities in Liaoning province of China. Multi-layers and multi-indices variable were established using fuzzy evaluation model and estimated the agriculture drought risk in terms of dangerousness, vulnerability, exposure and drought-resistibility of the fourteen cities respectively. According to the combination weights of the four drought risks factors, agriculture comprehensive drought risk grade of each city was obtained. According to the assessment results, agriculture drought risk zoning map was drawn by the software of MapInfo. The assessment result shows that agriculture comprehensive drought risk of Liaoning province has strong regional features. The western region of Liaoning is a high-risk area for agricultural drought, the central region of Liaoning is moderately risky area, and the eastern region of Liaoning is a low risk area.
     Finally, the conclusions are drawn and the problems to be further studies are discussed.
引文
[1]International Institute for Environment and Development and World Recourse Institute. World Resources [M].New York. Basic Books, Inc.1987.
    [2]宋连春,邓振镛,董安祥,等.全球变化热门话题丛书——干旱[M].北京:气象出版社,2003.
    [3]Wilhite D A. Drought as a natural hazard:Concepts and definitions [A]. Drought:A Global Assessment[C].London & New York:Routledge Press.2000.
    [4]董加瑞,王昂生.干旱洪涝灾害预测及损失评估耦合模式[J].自然灾害学报,1997,2:70-77.
    [5]贾人明.美国水资源利用与管理[J].科技导报,1998,5:59-60.
    [6]张宏平,张汝鹤.陕西省干旱灾害的农业风险评估[J].灾害学,1998,13(4):57-61.
    [7]高庆华.关于建立自然灾害评估系统的总体构思[J].灾害学,1991,6(3):70-77.
    [8]Harris Jonathan M, et al. Carrying capacity in Agriculture Globe and regional issue[J]. Ecological Economics,1999,129(3):443-461.
    [9]Rijisberman, et al. Different approaches to assessment of design and management of sustainable urban water system [J].2000,129(3):333-345.
    [10]李玉中,程延年,安顺清.北方地区干旱规律及抗旱综合技术[M].北京:中国农业科学技术出版社,2002.
    [11]孙永罡,白人海,谢安.中国东北地区干旱趋势的年代际变化[J].北京大学学报(自然科学版),2004,40(5):806-813.
    [12]张宁宁.朝阳地区干旱特征分新及抗旱对策研究[J].中国农村水利水电.2006,9:61-63,66.
    [13]American Meteorological Society. Meteorological drought-Policy statement [J]. Bulletin of American Meteorological Soeiety,1997,78:847-849.
    [14]孙荣强.干旱定义及其指标评述[J].灾害学,1994,9(1):17-21.
    [15]成福云.干旱灾害对21世纪初我国农业发展的影响探讨[J].水利发展研究,2002,2(10):31-33.
    [16]国家科委全国重大自然灾害综合研究组.中国重大自然灾害及减灾对策分论[M].北京:科学出版社,1993.
    [17]Madden R A,Julian P R. Detection of 40-50 day oseillation in the zonal windin the tropical Pacific[J]. Journal of the Atmospheric Science,1971,28:702-708.
    [18]Nitta T, Yamada S. Recent warning of the tropical sea surface temperature and its relationship to the Northern Henfisphere dirculation[J]. Journal of the Meteorological Society of Japan,1989,67(4):375-383.
    [19]刘清仁.松花江流域水旱灾害发生规律及长期预报研究[J].水科学进展,1994,5(4):319-327.
    [20]李永康,陈方维,马开玉.长江中下游夏季特大旱涝预测研究[J].水科学进展,2000.11(3):266-271.
    [21]黄忠恕.长江流域历史水旱灾害分析[J].人民长江,2003,34(2):1-3.
    [22]Lohani V K,Loganathan G V. An early warning system for drought management using the Palmer drought index[J]. Journal of the American Water Resources Association,1997,33(6): 1375-1386.
    [23]Paulo A A, Ferreira E, Coelho C, et al. Drought class transition analysis through Markov and Loglinear models, an approach to early warning[J]. Agricultural Water Management,2005,77 (13):59-81.
    [24]孙才志,林学钰.降水预测的模糊权马尔可夫模型及应用[J].系统工程学报,2003,18(4):8-13.
    [25]李海萍,彭望录,赵济.近百年中国四季降水量异常的空间分布特征[J].北京师范大学学报,1995,31(4):449-552.
    [26]朱晓华,杨秀春.水旱灾害时间序列的分形研究方法[J].安徽农业科学,2000,28(1):35-36,38.
    [27]唐亦工,郝松枝.关中地区旱涝灾害演变的时间序列分形研究[J].西北大学学报,2001,31(3):259-262.
    [28]李析男,毕宏伟,胡彩虹.基于马尔可夫链的旱涝预测应用研究[J].气象与环境科学,2007,30(4):20-23.
    [29]刘冀.径流分类预报方法及其应用研究[D].大连:大连理工大学,2008.
    [30]徐冬梅,赵晓慎.中长期水文预报方法研究综述[J].水利科技与经济,2010,16(1):1-7.
    [31]陈守煜.模糊水文学[J].大连理工大学学报,1988,1:93-97.
    [32]陈守煜.模糊水文学与水资源系统模糊优化原理[M].大连:大连理工大学出版社,1990.
    [33]朱永英.水库中长期径流预报及兴利调度方式研究[D].大连:大连理工大学,2008.
    [34]李敏.可变模糊近似推理方法在径流中长期预报中的应用[J].水电能源科学.2010,2:16-18.
    [35]王富强,霍风霖.中长期水文预报方法研究综述[J].人民黄河,2010,32(3):25-28.
    [36]Karunanithi N, Grenney W, Whitley D, et al. NeuralNetworks for River Flow Prediction [J]. Journal ofComputing in Civil Engineering,1994,8(2):201-221.
    [37]Nilsson P, Uvo C B, Berndtsson Monthly runoff simulation:Comparing and Combining Conceptual and Neural Network Models[J]. Journal of Hydrology,2006,4:109-120.
    [38]Sohail A, Watanabe K. Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data[J]. Water Resources Management,2008,22(1):1-22.
    [39]Hsu K, Gupta H V, Sorroshian S. Artificial neural network modeling of the rainfall-runoff process[J]. Water Resource Research,1995,10:2517-2530.
    [40]罗莹,金龙,王业宏.旱涝灾害的门限神经网络预报模型[J].灾害学,2003,16(3):1-5.
    [41]王艳姣,张鹰.RBF神经网络的汛期旱涝预报方法研究[J].热带气象学报,2005,21(1):100-106.
    [42]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1992.
    [43]冯平,杨鹏,李润苗.枯水期径流量的中长期预报模式[J].水利水电技术,1992,2:6-9.
    [44]杨建伟.灰色理论在干旱预测中的应用[J].水文,2009,2:50-51,92.
    [45]吴红斌,林炳东.灰色理论在干旱预测中的应用[J].中国西部科技,2005,2:30-32.
    [46]Asaad Y. Shamseldin, Kieran M 0. Methods for combining the outputs of different rainfall-runoff models[J]. Journal of Hydrology,1997,19:203-229.
    [47]Huang W, Xu B, Chan-Hilton A. Forecasting flows in Apalachicola River using neural networks[J].Hydrological Processes,2004,13:2545-2564.
    [48]Lewin, J. A simple soil water simulation model for assessing the irrigation requirements of wheat[J]. Agricaltural Resource,1972,22(4):201-213.
    [49]Mahmood, R., K. G. Hubbard. An analysis of simulated long-term soil moisture data for three land uses under contrasting hydro climatic conditions in the northern great plains[J].Journal of Hydrometeorology,2004,5:160-179.
    [50]康绍忠.旱地土壤水分动态预报方法的初步研究[J].中国农业气象,1987,2:38-41.
    [51]卢玉邦.土壤水分预报模型的研究[J].土壤学报,1989,26(1):51-56.
    [52]姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报,1989,(9):32-38.
    [53]李明生,刘震.土层水量平衡模型在土壤墒情预报中的应用[J].东北水利水电,2005,1:49-56.
    [54]周良臣,康绍忠,贾云茂.BP神经网络方法在土壤墒情预测中的应用[J].干旱地区农业研究,2005,23(5):98-102.
    [55]杨绍辉,王一鸣ARIMA模型预测土壤墒情研究[J].干旱地区农业研究,2006,24(2):114-118.
    [56]陈晓燕.BS旱情监测预测系统建设关键技术研究[D].南京:河海大学,2004.
    [57]顾颖,刘静楠,蒋丽.农业干旱预警中风险分析技术的应用研究[J].水利水电技术,2007,38(4):61-64.
    [58]张利平,陈万春,夏军等.干旱灾害成灾过程数值模拟研究[J],武汉大学学报,2003,36(4):24-27.
    [59]王春林,董永春,李春梅等.基于6IS的广东干旱逐日动态模拟与评估[J].华南农业大学学报,2006,27(2):20-24.
    [60]郑飞ENSO集合预报研究[D].北京:中国科学院,2007.
    [61]陈晓燕.BS旱情监测预测系统建设关键技术研究[D].南京:河海大学,2004.
    [62]Watsonet C.Two-teperrature Methdod for Measuring Emissivity[J]. Remoet Sensing of Enviornment,1992,42:117-121.
    [63]Felix N. Glogal Drought Watch from Space:Derivation of atmospheric procedures for Landsat MSS with Partieular rerefernce to ubran data[J]. Remote Sensing of Environment, 1997,78:621-636.
    [64]K. C.Sinha.Ray. Role of Dorught Earlydy worning Sysetms for Sustainable Agricultural Research in India[J]. http://www. dorught. unl. edu/Pubs/html.
    [65]Karl Monnik. Role of Dorught Early warning Systems in South Arfiea's Evolving Dorught Policy [C/OL]. http://www. drought. unl. edu./pubs/html.
    [66]肖乾广,陈维英.用NOAA/AVHRR资料监测土壤湿度[J].遥感信息,1999,1:22-25.
    [67]居为民,孙涵.气象卫星遥感在干旱监测中的应用[J].灾害学,1996,11(4):25-29.
    [68]郭铌,雷建勤.用NOAA卫星可见光和红外资料估算甘肃省东部农田区士壤湿度[J].应用气象学报,1997,8(2):212-218.
    [69]申广荣,田国良.作物缺水指数监测旱情方法研究[J].干旱地区农业研究,1998,16(1):123-128.
    [70]王鹏新,龚建雅,李小文等.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展.2003,18(4):527-533.
    [71]王密侠,胡彦华,熊运章.陕西省作物旱情预报系统的研究[J].西北水资源与水工程,1996,2:52-56.
    [72]王玉玺,田武文,杨文峰等.陕西省旱涝季度、年度预报和集成预报方法[J].高原气象,1998,17(4):427-436.
    [73]刘良明.基于EOS MODIS数据遥感干旱预警模型研究[D].武汉:武汉大学.2004.
    [74]Committee of the International Decade for Natural Disaster Reduction. Final Report of the International Decade for Natural Disaster Reduction (C/OL).http: //www. idndr.org/stcrep. html.1999.
    [75]陈晓楠.农业干旱风险分析及对策[D].保定:华北水利水电学院,2005.
    [76]梁红梅.雷州半岛农业旱灾脆弱性研究[D].广州:广州大学,2006.
    [77]曾艳丽等:农业干旱风险评价技术应用初探[J].水文,2008,28(4):9-11,56.
    [78]刘兰芳.衡阳市农业水旱灾害风险评价与风险管理研究[D].长沙:湖南农业大学,2007.
    [79]White, G. F. Natural Hazards:Loclal, National, Global [M]. New York:Oxford University Press, 1974.
    [80]Blaikie P T, Cannon I.Davis, et al. At Risk:Natural Hazards,People's Vulnerability and Disasters[M]. London:Routledge Press,1994.
    [81]Kenji Jinno. Risk Assessment of a Water Supply System During Drought [J]. Water Resources Development,1995,11(2):185-204.
    [82]Betty.Identifying and Mapping Community Vulnerability [J].The Journal of Disaster Studies,Policy and Management,1999,23(1):1-18.
    [83]商彦蕊,史培军.人为因素在农业旱灾形成过程中所起作用的探讨[J].自然灾害学报,1998,7(4):35-43.
    [84]任鲁川.自然灾害综合区划的基本类别及定量方法[J].自然灾害学报,1999,8(4):41-48.
    [85]霍治国,李世奎,王素艳,等.主要农业气象灾害风险评估技术及其应用研究[J].2003,18(6):692-702.
    [86]王静爱,商彦蕊,苏筠,等.中国农业旱灾承灾体脆弱性诊断与区域可持续发展[J].北京师范大学学报,2005,3:130-137.
    [87]桑国庆.区域干旱风险管理研究[D].济南:山东大学,2006.
    [88]于景元,涂元季.从定性到定量综合集成方法—案例研究[J].系统工程理论与实践,2002,22(5):1-7.
    [89]汪应洛.系统工程理论方法及应用[M].北京:高等教育出版社,1994.
    [90]王素艳,游超,何潇.2006年四川盆地旱情及其对农业的影响评估[J].中国农业气象.2008,29(1):115-118.
    [91]车少静,李春强,,申双和.基于SPI的近41年(1965-2005)河北省旱涝时空特征分析[J].中国农业气象,2010,31(1):137-143.
    [92]吴贤云,丁一汇,王琪等.近40年长江中游地区旱涝特点分析[J].应用气象学报,2006,17(1):19-28.
    [93]T. L. Saaty. The Analytic Hierarchy Process,McGraw Hill[M].Inc.,1980.
    [94]Saaty TL著.许树柏等译.层次分析法——在资源分配、管理和冲突分析中的应用[M].北京:煤炭工业出版社,1988.
    [95]倪深海,顾颖.中国农业干旱脆弱性分区研究[J].水科学进展,2005,16(5):705-709.
    [96]张伟兵,朱云枫.区域场次特大旱灾评价指标体系与方法探讨[J].中国水利水电科学研究院学报,2008,6(2):111-117,123.
    [97]金菊良,魏一鸣.改进的层次分析法及其在自然灾害风险识别中的应用[J].自然灾害学报,2002,11(2):20-23.
    [98]陈来安,陆军令.系统工程原理与应用[M].北京:学术期刊出版社,1988.
    [99]汪应洛.系统工程[M].北京:机械工业出版社,2001.
    [100]梁红梅.雷州半岛农业旱灾脆弱性研究[D].广州:广州大学,2006.
    [101]秦冰.模糊综合评价法在城市旱情评价中的应用[J].水利规划与设计,2007,2:25-28.
    [102]樊运晓,罗云.区域承灾体脆弱性综合评价指标权重的确定[J].灾害学.2001.16(1):85-87.
    [103]周飞.区域干旱评价指标体系及抗旱对策研究[D].济南:山东大学.2005.
    [104]冯平,钟翔,张波.基于人工神经网络的干旱程度评估方法[J].系统工程理论与实践,2000,3:141-144.
    [105]陈育峰.我国旱涝空间型的马尔科夫概型分析[J].自然灾害学报,1995,4(2):66-72.
    [106]刘晓宁,贾中华.模糊综合评价在关中灌区干旱评价中的应用[J].水资源与水工程学报,2005,16(2):62-65,68.
    [107]王艳玲.区域干旱模糊综合评价研究[D].济南:山东大学,2007.
    [108]黄志英,梁彦庆,冯忠江.河北省环境旱化的气候分析[J].干旱区研究,2003,20(4):326-329.
    [109]朱炳瑗,谢金南,邓振镛.西北干旱指标研究的综合评述[J].甘肃气象,1998,16(1):35-37.
    [110]张存杰,王宝灵.西北地区旱涝指标的研究[J].高原气象,1998,17(4):381-389.
    [111]孙安健,高波.华北平原地区地区夏季严重旱涝特征诊断分析[J].大气科学,2000,24(3):393-402.
    [112]袁文平,周广胜.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报,2004,28(4):523-529.
    [113]鞠笑生,邹旭恺,等.气候旱涝指标方法及其分析[J].自然灾害学报,1998,7(3):51-57.
    [114]Palmer W C. Meteorological drought US [J]. Weather Bureau Research Paper,1965,3:45-58.
    [115]安顺清,邢久星.修正的帕默尔干旱指数及其应用[J].气象,1985,11(12):17-19.
    [116]安顺清,邢久星.帕默尔旱度模式的修正[J].气象科学研究院院刊,1986,1(1):75-81.
    [117]McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales. in Proceedings of the Eighth Conference on Applied Climatology[J].1993,5: 179-184.
    [118]孙荣强.旱情评定与灾情指标之探讨[J].自然灾害学报,1994,3:49-55.
    [119]李玉中,程延年,安顺清.北方地区干旱规律及抗旱综合技术[M].北京:中国农业科学技术出版社,2002.
    [120]GB/T20481-2006《气象干旱等级》
    [121]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [122]刘实,张少卿.吉林省夏季降水的气候越变及其规律及干旱预测[J].气象,1991,17(11):3-7.
    [123]Wang J, Miao D Q. Analysis on attribute reduction strategies of rough set[J]. Journal of Computer Science and Technology,1998,13(2):189-192.
    [124]陶雪,梅刘自伟.基于粗集—神经网络的暴雨预报[J].微计算机信息,2006,11:296-298.
    [125]严华生,杨素雨,万云霞,等.近百年高低层大气环流的演变特征及其与中国降水变化的关系[J].云南大学学报,2005,27(5):397-403.
    [126]施能,朱乾根.北半球大气环流特征量的长期趋势及年代际变化[J].南京气象学院学报,1996,19(3):283-289.
    [127]http://ncc. cma. gov. cn
    [128]侯利娟,王国胤等.粗集理论中的离散化问题[J].计算机科学,2000,27(12):89-94.
    [129]贺跃,郑建军,朱蕾.一种基于熵的连续属性离散化算法[J].计算机应用,2005,25(3):632-638,651.
    [130]桑妍丽.基于粗集的近似分布约简与决策规则获取[D].太原:山西大学,2005.
    [131]李伟生,易哲.基于遗传算法的粗集属性约简算法[J].微电子学与计算机,2010,27(3):71-74.
    [132]熊建秋,李祚泳,邹长武.基于粗集理论的地下水水质指标属性约简[J].水科学进展,2005,16(4):494-499.
    [133]王艳姣,张鹰,邓自旺.RBF神经网络的汛期旱涝预报方法研究[J].热带气象学报,2005,21(1):100-106.
    [134]Pawlak Z. Rough sets:theoretical aspects of reasoning about data[M]. Dordrecht:Kluwer Academic Publishers,1991.
    [135]王国胤Rough集理论与知识获取[M].西安:西安交通大学出版社,2001.
    [136]尚松浩,雷志栋,杨诗秀.冬小麦田间墒情预报的经验模型[J],农业工程学报,2000,16(5):31-33.
    [137]张胜平,杨罗.山东省墒情规律分析及实用墒情预报方案编制的探讨[J].水文,1996,3:24-31.
    [138]侯琼,郝文俊.内蒙古地区玉米农田土壤墒情动态预测模式[J].干旱地区农业研究,2000,18(4):50-56.
    [139]蒋洪庚,夏自强,陈海芳,等.概念性土壤墒情模型在霍泉灌区的应用研究[J].水文,1999,6:12-16.
    [140]吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996,2:1-10.
    [141]康绍忠,刘晓明,张国瑜.作物覆盖条件下田间水健谈运移的模拟研究[J],水利学报,1993,3:11-17.
    [142]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究,2003,21(4):117-120, 125.
    [143]王本德,周惠成,王国利,等.水库汛限水位动态控制理论与方法及其应用[M].北京:中国水利水电出版社,2006.
    [144]Beven K J降雨径流模拟[M].马骏,刘晓伟,王庆斋,等译.北京:中国水利水电出版社,2006.
    [145]戚晓明,陆桂华,吴志勇,等.水文多尺度仿真在雨量站网密度研究中的应用[J].水利水电技术,2008,39(5):1-3,9.
    [146]张静,王本德.基于相关分析的雨量站选择及洪水预报方法[J].水文,2007,27(3):31-34.
    [147]Weather Online Asia Ltd. Global Forecating System[EB/OL],2006.
    [148]庞志国.干旱遥感监测模型研究及墒情预报探索——以黑龙江省为例[D].北京:中国水利水电科学研究院,2003.
    [149]唐国磊.考虑径流预报及其不确定性的水电站水库调度研究[D].大连:大连理工大学,2008.
    [150]www. t7online. com
    [151]Mole, F J, Remson. Extraction term models of soil moisture use by transpiring Plants[J]. Water Resource,1970,6:1346-1356.
    [152]裴步祥.蒸发和蒸散的测定与计算[M].北京:气象出版社,1989.
    [153]严武,程振源,李海东.风险统计与决策分析[M].北京:经济管理出版社,1999.
    [154]陶建平.长江中游平原农业洪涝灾害风险管理研究[D].武汉:华中农业大学,2003.
    [155]杨帅英.干旱灾害风险评估方法研究与应用[D].北京:北京师范大学,2004.
    [156]陆晓楠.农业干旱风险分析及对策[D].郑州:华北水利水电学院,2005.
    [157]金菊良.魏一鸣等,洪水灾害风险管理的理论框架探讨[J],水利水电技术,2002,9:25-43.
    [158]张继权.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [159]桑谈云.重庆市旱灾及其经济损失[D].重庆:西南师范大学,2004.
    [160]陈守煜.水资源与防洪系统可变模糊集理论与方法[M].大连:大连理工出版社,2005.
    [161]赵文双,商彦蕊,黄定华.农业旱灾风险分析研究进展[J].水科学与工程技术,2007,6:1-5.
    [162]顾颖,倪深海,王会容.中国农业抗旱能力综合评价[J].水科学进展.2005,16(5):700-704.
    [163]曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700