掺铒光纤激光自混合散斑与正交偏振散斑的传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光自混合散斑干涉将传统的散斑与激光自混合干涉相结合,是指激光照射到粗糙物体表面的光返回激光腔内,与腔内光混合干涉,形成散斑外光学反馈效应。通过分析由激光器和被测物表面构成的外谐振腔产生的自混合散斑信号,可以确定物体的状态。另外,在研究正交偏振散斑干涉的过程中,引入了参考光和信号光。信号光携带外界信息后返回激光器,再与参考光混合干涉。通过探测混合后的正交散斑信号,可以得到一些方向的信息。相对于传统的散斑干涉,光纤激光传感光路结构更简单紧凑、易调节;它是近年来发展起来的一种新型的散斑测量技术,且有望发展成为新一代有源传感技术,和现在正发展的物联网时代接轨。
     本文首先以掺铒光纤激光器为研究对象,将环形掺铒光纤激光自混合散斑系统应用在液体表面速度传感,且从理论上推导了自混合散斑信号调制激光输出的表达式。
     其次,在粗糙物体运动方向判断方面,构建了正交偏振散斑传感模型,理论上探讨了该模型中的正交散斑信号,并用MATLAB进行数值模拟,得到正交偏振散斑相位变化与物体运动方向的关系。将该系统全光纤化,构建了环形掺铒光纤激光正交偏振散斑传感实验模型。
     最后,搭建了两套实验系统。运用其中一套,我们研究了液体表面速度传感;在不同速度等级下采集自混合散斑信号得到数据;然后用三种方法对数据进行处理,得到液体表面运动速度与处理结果的线性关系,在此基础上分析了它们的测量精度和可靠性。在第一套系统中加入偏振控制元件,从而能够控制信号光和参考光的偏振态,得到第二套实验系统。偏振分量探测器探测正交散斑信号,分析和探究了正交散斑信号相位和物体运动方向的关系。
Laser self-mixing speckle interference combines the traditional speckle with the self-mixing interference, refers to light emitted from a laser reflected or scattered by the external roughness object surface and coupled into the laser cavity, mixed with the light in the cavity, forming the effect of optical feedback. Analyzing the self-mixing speckle signal produced in the cavity of the laser, one can determine the state of the object. In addition, reference and signal beams are introduced in the process of orthogonal polarization speckle interference research. The outside information detected by signal beam is taken back to the laser and mixed with the reference beam. Then direction information about object can be obtained by analyzing the mixed orthogonally polarized signals. Fiber laser sensor is a new speckle measurement technology developed in recent years, whose optical structure is simpler, more compact, and easier to adjust, comparing with the traditional speckle interference. It is expected to develop to be a new generation of active sensing technology, and gear to the developing era of internet of things.
     First of all, this paper focuses on erbium-doped fiber laser for study, analysis ring erbium-doped fiber laser self-mixing speckle sensor system applied to liquid surface speed sensing. Expression of self-mixing speckle modulation laser output is deduced.
     Secondly, for the rough object direction sensor, an orthogonally polarized speckle sensor model is constructed. Orthogonal speckle signal in this system is theoretically studied and numerically simulated using MATLAB. Relationship between orthogonal polarization speckle phase and object direction is proposed. Ring erbium-doped fiber laser orthogonal polarization speckle sensor model is constituted by being introduced to all-fiber system.
     Finally, set up two experiment systems. One is about liquid speed sensor. The self-mixing speckle signals in different speed levels are collected, and linear relationship between the liquid velocity and processing result is obtained by three signals processing methods. The reliability and accuracy of different methods are compared. Required polarization degree signal beam and reference beam can be obtained in another system by adding polarization control components on first system. Signal and reference beams are mixed and return to the laser cavity, then laser sequential amplify. Orthogonal polarization speckle signal is detected by polarization components detector. Orthogonal polarization speckle signal phase and object moving direction is analyzed.
引文
[1]杨国光.近代光学测试技术[M].浙江大学出版社,2001.
    [2]金国潘.激光测量学[M].科学技术出版社,1990.
    [3]陈家壁,苏显愉.光学信息技术原理及应用[M].高等教育出版社,2004.
    [4]Emmanuel Desurvire, Jary Simpon. Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers[J].IEEE.Lightwave technology,1989,7(5):835-845.
    [5]C. Barnard, P. Myslinski, and J. Chrostowski. Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers [J]. IEEE J. Quantum Electronics,1994,30(8):1817-1830.
    [6]郭晓东,乔学光,贾振安,王小凤.掺铒光纤激光器的研究与进展[J].激光与光电子学进展,2003,40(12):27-31.
    [7]S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi. Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode [J]. Appl. Opt,1986,25(9):1417-1419
    [8]Edson T Shimizu. "Directional discrimination in the self-mixing type laser Doppler velocimeter," Appl. Opt.,1987,26(2):4541-4544.
    [9]S. Shinohara, H. Naito, H. Yoshida, H. Ikeda and M. Sumi. Compact. And versatile self-mixing type semiconductor laser with direction-discrimination circuit[J], IEEE Trans. Instrum. Meas., 1989,38:574-577.
    [10]T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, and M. Sumi,. Laser speckle velocimeter using self-mixing laser diode[J], IEEE Trans. Instrum. Meas.,1996,45:499-503.
    [11]S. Merlo and S. Donati. Reconstruction of displacement waveforms with asingle-channel laser-diode feedback interferometer[J], IEEE J. Q. E.,1997,33:527-531.
    [12]M. H. Koelink. Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser:theory[J], Appl. Opt.,1992,31(18):3401-3408.
    [13]X. Yang, G. Liu, J. Zhu, and S. Zhang. Design and experimental study of laser self-mixing microscopic system [J]. Guangxue Xuebao/Acta Optica Sinica,2004,24,418-422.
    [14]W. Mao, S. Zhang, L. Cui, and Y. Tan. Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser [J]. Opt Express,2006,14,182-189.
    [15]G. Liu, S. Zhang, J. Zhu, and Y. Li. Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser[J]. Opt Commun,2003,221,387-393.
    [16]G. Liu, S. Zhang, T. Xu, J. Zhu, and Y. Li. Self-mixing interference in Zeem-birefringent dual frequency laser [J]. Opt Commun,2004,241,159-166.
    [17]L. Fei, and S. Zhang. Self-mixing interference effects of orthogonally polarized dual frequency laser [J]. Opt Express,2004,12,6100-6105.
    [18]L. Fei, and S. Zhang. The discovery of nanometer fringes in laser self-mixing interference [J]. Opt Commun,2007,273,226-230.
    [19]X. Cheng, and S. Zhang. Intensity modulation of VCSELs under feedback with two reflectors and self-mixing interferometer [J]. Opt Commun,2007,272,420-424.
    [20]D. H. Zhang, Y. G. Yu, and H. Y. Ye. Measuring the dynamic performance of PZT using self-mixing interference vibrometer [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2005,16,714-717.
    [21]Y. Yu, H. Ye, and J. Yao. Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels [J]. Journal of Optics A:Pure and Applied Optics,2003,5,117-122.
    [22]Y. Yu, H. Ye, and J. Yao. Steady solution to a self-mixing interference system for measuring displacement [J]. Guangxue Xuebao/Acta Optica Sinica,2003,23,80-84.
    [23]Y. Yu, J. Yao, and H. Ye. Self-mixing interference structure with pre-feedback used for measuring displacement [J]. Guangxue Xuebao/Acta Optica Sinica,2002,22,308~-312.
    [24]Y. Yu, M. Cheng, and X. Qiang. Self-mixing interference effects in a lase diode with multiple optical feedback [J]. Guangxue Xuebao/Acta Optics Sinica,2001,21,1093 - 1098.
    [25]Ma, Y. Yang, and X. Qiang. Theoretical model on self-mixing interference in a linear frequency modulated laser diode [J]. Guangzi Xuebao/Acta Photonica Sinica,2002,31,553.
    [26]Y. Yu, X. Qiang, Z. Wei, and X. Sun. Differential displacement measurement system using laser self-mixing interference effect [J]. Guangxue Xuebao/Acta Optica Sinica,1999,19,1269-1273.
    [27]D. Guo, M. Wang, and S. Tan. Self-mixing interferometer based on sinusoidal phase modulating technique [J]. Opt Express,2005,13,1537-1543.
    [28]D. Guo, and M. Wang. Self-mixing interferometry based on a double-modulation technique for absolute distance measurement [J]. Appl Optics,2007,46,1486-1491.
    [29]D. Guo, and M. Wang. Self-mixing interferometer based on temporal-carrier phase-shifting technique for micro-displacement reconstruction [J]. Opt Commun,2008,263,91-97.
    [30]D. Guo, S. Tan, and M. Wang. Analysis of micro-displacement measurement accuracy in self-mixing interferometer based on sinusoidal phase modulating technique [J]. Guangxue Xuebao/Acta Optica Sinica,2006,26,845-850.
    [31]Lu, M. and M. Wang, et al. Self-mixing speckle interference generated in laser Diode [J]. Guangxue Xuebao/Acta Optica Sinica,2004,24 (9):1229-1236.
    [32]Lu, M. and M. Wang, et al. Measurement of flow velocity using self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica,2005,25 (2):190-194.
    [33]H. Huan, M. Wang, D. Guo, and T. Wang. Self-mixing interference effect of DFB semiconductor lasers [J]. Applied Physics B:Lasers and Optics,2004,79,325-330.
    [34]J. Zhou, and M. Wang. Effects of self-mixing interference on gain-coupled distributee-feedback lasers [J]. Opt Express,2005,13,1848-1854.
    [35]Wang, M. and M. Lu, et al. Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity [J]. Optics Communications,2006,260 (1): 242-247.
    [36]J. Zhou, M. Wang, and D. Han. Experiment observation of self-mixing interference in distributed feedback laser [J]. Opt Express,2006,14,5301-5306.
    [37]左秀婷,韩道福,马力.环形光纤激光器自混合散斑信号频谱性能的数值模拟[J].南昌大学 学报(理科版),2009,33(5):472-475.
    [38]Daofu Han, Xiuting Zuo, Li Ma, Numerical simulation and experimental study of self-mixing speckle generated in an erbium-doped fiber ring laser. Proc. of SPIE[J],2009,7514-75140Q.
    [39]韩道福,俞进,马力,戚小平.环形掺铒光纤激光器自混合散斑及动态目标距离[J],激光与光电子学进展,2010,020601(47),1-5.
    [40]张书练.正交偏振激光原理[M],清华大学出版社,2005.
    [41]丁迎春,张书练.正交偏振He2-Ne激光自混合干涉的实验研究[J],激光光电子,2005,16(7):837-840.
    [42]贺虎成,杨玲珍,王云才.偏振控制C波段波长可调谐掺饵光纤激光器[J].中国激光,2006,33(12):1597-1600.
    [43]E.J. Greer,D.J. Lewis, W.M. Macauley.Polarisation dependent gain in erbiumdoped fiber amplifiers[J].IEEE.Electronics letters,30(1),1994:46-47.
    [44]Paul Wysocki,Vincent Mazurczyk. Polarization dependent gain in Erbium-Doped fiber amplifiers::Computer model and approximate formulas[J]. IEEE.Lightwave technology, 14(4),1996:572-584.
    [45]中常民,徐文成等.单偏振控制器环形腔光纤激光器实验研究[J].光学学报,2007,27(11)2003-2007.
    [46]冯杰,徐文成,叶辉等.偏振控制锁模光谱边带偏移量的计算及实验验证[J].中国激光,2008,35(9):1333-1337.
    [47]赵莉,方捻等.半导体环形激光器输出状态分析与分类[J].光子学报,2009,38(10):2449-2456.
    [48]付似愚,韩道福,马力.激光自混合多普勒测速法[J].南昌大学学报(理科版),2007,31(3):264-267.
    [49]Barnard C, Myslinski P, Chrostowski J, et al. Analytical Model for Rare-Doped Fiber Amplifiers and Lasers [J]. IEEE J.Q.E,1994,30(8):1817-1830.
    [50]Peter D. Dragic. Analytical Model for Injection-Seeded Erbium-Doped Fiber Ring Lasers [J]. IEEE Photon. Technol. Lett,2005,17(8):1629-1631.
    [51]Han Daofu, Wang Ming, Zhou Junping. Self-mixing Speckle in an Erbium-Doped Fiber Ring Laser and It's Application to Velocity Sensing [J]. IEEE Photon. Technol. Lett,2007,19(18): 1398-1400.
    [52]Ogilvy J. A.. Theory of wave scattering from random rough surfaces [M]. Adam Hilger, New York,1991.
    [53]S, ahin Kaya Ozdemir, Sotetsu Takamiya, Satoshi Ito, Shigenobu Shinohara,Hirofumi Yoshida. Self-Mixing Laser Speckle Velocimeter for Blood Flow Measurement[J].IEEE, Transactions on instrumentation and measurement,2000,49(5):1029-1034.
    [54]陶海敏,庄其仁,连重炎,林建文.激光M-Z干涉仪的光功率分配特性与应用[J].应用激光,2007,27(5):418-420.
    [55]廖延彪.偏振光学[M].科学出版社,2003.
    [56]廖延彪.光纤光学[M].科学出版社,2008.
    [57]D.O. Hogenboom, CA. DiMarzio. Quadrature detection of a Doppler signal[J]. Appl. Opt, 1998,37 (13):2569-2572.
    [58]N.Nelson,,J.P.Sharpe. Polarization based,direction sensitive speckle interferometer[J]. Optics Communications,1999,172:5-8.
    [59]E. I. Thorsos. The validity of the Kirchoff approximation for rough surface scattering using a Gaussian roughness spectrum [J]. Acoust. Soc. Am.,1988,83(1):78-92.
    [60]A. K. Fung, M. F. Chen. Numerical simulation of scattering from simple and composite random surfaces [J]. Opt. Am. A,1985,2(12):2274-2284.
    [61]Graciela G.Romero, Elvio E.Alanis. Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assent of paint drying [J].Opt. Eng,2000,39(6):1652-1658.
    [62]周莉莉,赵学增,郑俊丽.基于散斑强度相关函数的表面粗糙度测量方法[J].光电工程,2004,31(7):51-53.
    [63]程传福,元东平,刘德丽,滕树云.高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析[J].物理学报,1999,48(09);1635-1643.
    [64]郑阿奇.Matlab使用教程[M].电子工业出版社,2007.
    [65]陈亚勇Matlab信号处理详解[M].人民邮电出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700