山东省夏津县自来水厂BOT项目可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着夏津县经济发展以及县城规模的不断扩大,目前供水现状已经不能满足县城社会经济发展的需要,为加快夏津县经济建设步伐,保证区域经济可持续发展,拟定在县城北6km处的夏津水库旁修建净水厂一座,占地面积99.97亩。夏津水库水源为黄河水,是本工程比较理想的供水水源。
     夏津县自来水厂BOT项目主要包括取水工程、净水工程、输水工程、配水工程四个部分。根据夏津县一二期供水服务范围供水量预测及核算,夏津县拟建净水厂规模一期为5万m3/d,二期为10万m3/d。
     当地唯一满足工程规模的水源为夏津水库,其水源为黄河水。通过分析水库水质特性,确定取水工程改造方式,原水尽量取自水库表层以下约1.5m水层。净水厂在充分论证原水水质的前提下,对投药、混合、絮凝、沉淀、过滤、消毒、污泥处理工艺进行充分比选,提出水质安全性高、适合当地生产管理水平的工艺,即管式静态混合器+折板反应+平流沉淀+V型滤池+污泥处理的工艺路线,并通过化学处理的方法有效地保证出水的水质。
     综合考虑工程沿线地质、施工条件等因素以及工程对安全性、经济性的要求,本工程设计采用玻璃钢夹砂管、球墨铸铁管和PE管。参考输配水管线定线原则,根据输配水管线方案的比选,选定输配水管线的走向并根据各段管线的流量配置管径。
     本工程建成后,夏津县自来水厂BOT项目的一期供水规模为5万m3/d,供水的水质得到保证,并提高了城市供水的安全性。一期工程总投资12309万元,年制水量1825万m3,平均单位制水成本0.596元/m3。
Along with the economic development and the unceasing expansion scale of Xiajin County, the current status of water supply can’t meet the requirement of the social and economic development. In order to accelerate the economic construction speed of Xiajin County, and ensure the sustainable development of regional economy, we decide to draw up a plan of constructing water purification plant which is located in north Xiajin reservoir, covers an area of 99.97 mu. The source of Xiajin reservoir is the Yellow River water which is the ideal water source.
     The water supply BOT project in Xiajin County mainly includes four parts: the water intake engineering, the water purification engineering, the water conveyance engineering, the water distribution engineering. According to the water supply prediction and calculation of the first and second phase water plant scale, Xiajin County decide to construct water treatment plant, the first period of the proposed plant scale is 50000m3/d, the second period is 100000m3/d.
     The only source meeting the engineering scale is Xiajin reservoir, which source is the Yellow River water. Through analyzing the water characteristics of reservoirs, we can identify the transformation ways of the water intake engineering, and try to get the raw water from the reservoir below the surface to about 1.5m layer. Under the premise of sufficient argumentation of the raw water quality, the treatment processes include dosing, mixing, sedimentation, flocculation, disinfection, sludge treatment are comparsion and selection fully. Then, the water treatment plant proposed the treatment process of higher safety and more suitable for local production management, which includes the tubular static mixer, folding reaction of advection precipitating, V type filter and sludge treatment process, and ensured the effluent quality effectively by chemical treatment method.
     After considering the engineering geology along the line, construction conditions and project on security and economy, the project design adopt GRP sand pipe, ductile iron pipe and PE pipe. After reference to water conveyance and distribution pipeline alignment principle, according to the water conveyance and distribution pipeline scheme selection, we select the water conveyance and distribution pipeline direction, and distribute pipe diameter according to the section of pipeline flow.
     After the completion of the project, the first period scale of the water supply BOT project in Xiajin County is 50000m3/d, the water quality is ensured, and the city water supply safety is improved. The total investment of the first period of project is 123.09 million, manufacturing capacity is 18.25 million m3/year, the average unit cost of water production is 0.596 yuan/m3.
引文
[1]国家环保总局.2010中国环境状况公报[R].2011:4-24.
    [2]程伟.给水厂净水工艺的发展及工艺比较[J].沿海企业与科技,2005(9):63-64.
    [3]Rehan Sadiq,Manuel J,Rodriguez.Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence:a review[J].The Science of the Total Environment,2004,321(1/3):21-46.
    [4]张欣璐,余春江.粉末活性炭强化絮凝联用应急处理震后微污染源水[J].科技信息,2009(1):440-442.
    [5]孙勇威,赵文军,熊云.高锰酸钾氧化助凝在给水处理中的应用研究[J].黑龙江水专学报,2007,34(2):109-111.
    [6]Zhang Hongwei,Tan Xin,Chen Cunfang.Resarch on Optimal Operation of Water-Production System[J].Transactions of Tianjin University,1999,5(2):215- 218.
    [7]黄正杰,张玉先,缪丽英,等.活化硅酸助凝剂在给水处理中的应用研究[J].给水排水,2009,35(增):63-68.
    [8]刘秉涛,徐越群,安新.壳聚糖在给水絮凝处理中的助凝作用[J].河南大学学报(自然科学版),2008,38(1):45-48.
    [9]Gil C,Patrick W,Matthew M.Enhanced Coagulation:its effect on NOM removal and chemical costs[J].JAWWA,1995,87(1):78-89.
    [10]Robert C Cheng,Stuart W Krasner,James F Green,et al.Enhanced Coagulation:a Preliminary Evaluation[J],JAWWA,1995,87(2):91-103.
    [11] Keith E Dennett,A Amirtharajah,Thomas F Moran,et al.Coagulation:its Effect on Organic Matter[J].JAWWA,1996,88(4):29-142.
    [12]Stuart W Krasner,Gary Amy.Jar-test Evaluations of Enhanced Coagulation[J], JAWWA,1995,87(10):93-107.
    [13]Philip C Singer,M ASCE.Control of disinfection by-products in drinking water[J]. Joural Enviromental Engineering,1994,120(4):51.
    [14]姜瑞雪,王龙,张丽.强化混凝在微污染水源水处理中的应用[J].水资源保护, 2006,22(5):68-70.
    [15]Liang Sun,Yates Richard S,Davis Dean V.Treatability of MTBE-contaminated Groundwater By Ozone And Peroxone[J].JAWWA,2001,93(6):110-120.
    [16] Juan L Acero,Stefan B Haderlein,Torsten C Schmidt,et al.MTBE Oxidation by Conventional Ozonation and the Combination Ozone/Hydrogen Peroxide:? Efficiency of the Processes and Bromate Formation[J].Environment Science &Techno1ogy,200l,35(21):4252-4259
    [17]C Ventresque,G Bablon & A Jadas-Hecart.Ozone:A Means of Sitmulating Biological Activated Carbon Reactors[J].Ozone Scienee & Engineering. 1990, 13(1):91-107.
    [18]黄晓东,齐玉玲,乔铁军,等.常规净水工艺的浊度控制技术研究[J].供水技术,2007,1(1):19-23.
    [19]Tsuji K,Watanuki T,Kondo F,et al.Stability of microcystins from cyanobact- eria-IV.Effect of chlorination on decomposition[J].Toxicon,1997,35(7):1033- 1041.
    [20]马华,王振江,贾柏樱,等.预氯化处理高藻原水的特性分析[J].供水技术,2007,1(4):23-26.
    [21]王绍文,姜安玺,孙喆.混凝动力学的涡旋理论探讨(上)[J].中国给水排水,1991, 7(1):4-7.
    [22]王绍文,姜安玺,孙喆.混凝动力学的涡旋理论探讨(下)[J].中国给水排水,1991, 7(4):8-11.
    [23]王锐,潘学辉,张喜峰.絮凝方式对净水厂排泥特性的影响[J].科技传播,2011, (7):103,88.
    [24]郑智勇.浅谈城市污水深度处理工艺—混合、絮凝、沉淀工艺的选择[J].科技创新导报,2011,(11):139.
    [25]汪义强,陈超.水力絮凝池发展与展望[J].净水技术,2005,24(1):36-39.
    [26]汪广丰.竖流折板絮凝工艺的设计与运行[J].中国给水排水,1999,15(8):29-31.
    [27]杨竞.澄清池的研究及发展[J].江西化工,2010,(3)21-23.
    [28]杨惠银,柳春芳,唐朝春.滤池在给水处理中的发展及应用[J].江西广播电视大学学报,2006,30(2):77-80.
    [29]上海市政工程设计研究院.给水排水设计手册第3册城镇给水第二版[M].北京:中国建筑工业出版社,2004.
    [30]吴计华,马刚.翻板型滤池[J].给水排水,1999,25(12):21-24.
    [31]曹勇锋,张朝升.V型滤池常用滤砂在给水处理中各参数的对比试验[J].广东化工,2008,35(181):89-92.
    [32]燕峒胜.折板絮凝斜管沉淀池+V型滤池工艺在耿井水厂技改工程中的应用[J].青岛理工大学学报,2011,32(2):88-90.
    [33]梁燕.浅谈铁路给水中的消毒方式选择[J].铁道建筑技术,2010(z2):215-217.
    [34]周献东.浅谈给水处理消毒技术[J].西南给排水,2005,27(3):20-22.
    [35]陶琳.给水所利用二氧化氯消毒的探讨[J].科技信息, 2010(04):371.
    [36]刘兆民,展宗城.氯胺消毒在给水中的应用[J].西北民族大学学报(自然科学版),2006,27(3):28-31.
    [37]尹相兰,卢贞玲.浅谈给水处理消毒技术应用与发展[J].科技信息,2011 (15):466.
    [38]向平,蒋绍阶.给水厂排泥水处理回用的若干问题①[J],重庆建筑大学学报,2004, 26(4):70-72.
    [39]A Elfstrom Broo, B Berghult,T Hedberg.Drinking Water Distribution-the Effect of Natural Organic Matter(NOM) on the Corrosion of Iron and Copper[J].Wat Sci & Tech.1999,40(9):17-24.
    [40]周康群,刘晖,孙彦富等.一株源于污泥浓缩池厌氧除磷菌的分离、鉴定及特性研究[J].环境科学研究,2008,21(4):38-42.
    [41]杨奎.大型污水处理厂污泥处理的改进设计[J].中国给水排水,2006, 22(4):56-58.
    [42]胡允良,Laure Galvez,Jean-Claude Bloke等.污泥浓缩池上清液的有机物分子量分布[J].中国给水排水,1999,15(3):11-14.
    [43]高月华,张晋夫.给水厂排泥水处理脱水方式探讨[J].科技传播,2011(43):91.
    [44]郭海洋,刘岩.谈给水管材的合理选用[J].科技论坛,2008(24):2.
    [45]曲炳良.给水管材性能分析及其选择[J].科技论坛,2009(28):19.
    [46]马悠怡.市政给水管材在小城镇中的应用[J].水资源与水工程学报,2009, 20(1):96-98,103.
    [47]卢云晓,钱东.加氯模糊控制方法介绍[J].给水排水,2010,36(增):428-432.
    [48]李玉仙,给水处理工艺的系统集成与优化[D].西安:西安建筑科技大学, 2007.
    [49]鲍宝珠,王宏,夏芳等.郑州市自来水冬季出现腥味的原因及预防对策[J].中国公共卫生,1994,10(3):113-114.
    [50]付昆明,李冬,朱兆亮等.呼延水厂低温低浊水的絮凝试验研究[J].中国给水排水,2008,24(11):39-46.
    [51]亓华,田顺,谢恩亮.微生物絮凝剂B-16用于给水处理的试验研究[J].供水技术, 2008,2(3):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700