大型海藻对有害赤潮微藻克生效应的实验生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着沿海水域富营养化的加剧,赤潮在世界范围内的沿海频繁爆发,已成为一种严重的海洋灾害。自上世纪90年代以来,我国赤潮的发生呈现出“大范围、高频率、多种类、快节奏”的特点,并有连年增加的态势,这对原本已经非常严峻的近岸水域生态环境和沿岸水产业的可持续发展造成了极大的威胁。采用切实有效的赤潮防治措施是赤潮研究的重要内容之一。许多学者提出了一些有效的方法,包括物理法(絮凝法,如粘土)、化学法(药剂法,如硫酸酮)和生物防治法(微生物,如细菌、病毒)等治理有害藻华。虽然这些方法在短期内可能有效,但实际应用的尚少,但总体来说,物理和化学法都是治标不治本,只能暂时杀死或除掉水体中的赤潮生物(甚至其它生物),并不能为水体中的营养物质提供一个输出渠道,因此也就无法防止赤潮的再次发生。鉴于添加外来物质可能对海洋生态系统产生可知或不可预见的影响,利用海洋环境中的生态因子进行赤潮的防控已经越来越引起人们的重视,在这种情况下,如果能找到一种既能抑制赤潮微藻生长又能吸收水体中营养盐的经济型水生生物,达到治标治本,应是最为理想的赤潮防治途径。其中利用大型海藻与微藻间的相互作用来预防或控制赤潮是一个新的研究方向。
     本文研究三种代表性的大型海藻孔石莼(Ulva pertusa) (绿藻)、小珊瑚藻(Corallina pilulifera) (红藻)和鼠尾藻(Sargassum thunbergii) (褐藻)对三种赤潮微藻赤潮异弯藻(Heterosigma akashiwo)、亚历山大藻(Alexandrium tamarense )和中肋骨条藻(Skeletonema costatum)的克生作用,并初步提取、分离和鉴定了小珊瑚藻和鼠尾藻组织内抑制有害赤潮微藻生长的克生物质,探讨了小珊瑚藻和鼠尾藻对有害赤潮微藻克生作用的化学物质本质,为利用沿海区域的各种大型海藻来治理赤潮生物提供了科学依据。主要实验结果如下:
     1.三种大型海藻对三种有害赤潮微藻克生效应的比较研究
     通过排除营养盐、光照和pH等因素的影响,利用共培养系统研究了大型海藻孔石莼、小珊瑚藻和鼠尾藻的新鲜组织、干粉末、水溶性组织抽提液及培养水过滤液对三种有害赤潮微藻赤潮异弯藻、亚历山大藻及中肋骨条藻生长的作用,共存的实验结果表明,三种大型海藻的新鲜组织和干粉末对三种有害赤潮微藻的生长均有强烈的抑制作用,在较高的浓度下还能完全杀死赤潮异弯藻细胞和中肋骨条藻细胞,证明了三种大型海藻对三种有害赤潮微藻具有克生效应,并且大型海藻对有害赤潮微藻的克生效应具有普遍性。各个浓度孔石莼、小珊瑚藻和鼠尾藻水溶性抽提液对三种有害赤潮微藻的生长皆有抑制作用,抑制作用随浓度的升高而加强,这表明大型海藻组织中具有抑制有害赤潮微藻生长的克生物质,这进一步证明克生物质的存在是三种大型海藻对三种有害赤潮微藻产生克生效应的主要方式之一。三种有害赤潮微藻在一次性三种大藻培养水过滤液添加方式下生长没有受到显著抑制,而在半连续孔石莼及鼠尾藻培养水添加方式下其生长均受到了显著抑制,表明这三种大型海藻新鲜组织能够向环境中释放克生物质来抑制有害赤潮微藻的生长,同时也说明了大型海藻所分泌的克生物质容易降解。三种大型海藻新鲜组织对赤潮异弯藻和中肋骨条藻的克生效应由强到弱依次为:孔石莼>小珊瑚藻>鼠尾藻、对亚历山大藻的克生效应为鼠尾藻>孔石莼>小珊瑚藻;三种大型海藻干粉末对赤潮异弯藻的克生效应由强到弱依次为:鼠尾藻>孔石莼>小珊瑚藻,对中肋骨条藻和亚历山大藻的克生效应为:孔石莼>小珊瑚藻>鼠尾藻,表明大型海藻对有害赤潮微藻的克生效应具种的差异性。
     2.小珊瑚藻和鼠尾藻组织提取物对赤潮异弯藻和亚历山大藻的生长抑制作用
     以小珊瑚藻和鼠尾藻为大型海藻的代表,以赤潮异弯藻和亚历山大藻为目标微藻,研究了不同浓度的小珊瑚藻和鼠尾藻组织蒸馏水及4种具有不同极性的有机溶剂(极性从高到低:甲醇>丙酮>乙醚>氯仿)提取物对两种有害赤潮微藻的生长抑制作用。两种大型海藻组织甲醇提取物在5种提取物中具有最高的生长抑制活性。在相对较高浓度的此种提取物作用下,两种有害赤潮微藻均完全死亡。较高浓度的小珊瑚藻和鼠尾藻组织蒸馏水提取物对两种有害赤潮微藻的生长具有显著的抑制作用,但是在最高浓度下也不能使这两种有害赤潮微藻完全死亡。另外三种有机溶剂的提取物对两种有害赤潮微藻的生长无明显的影响。结果表明,小珊瑚藻和鼠尾藻组织中含有对赤潮异弯藻和亚历山大藻的生长有抑制作用的活性物质,且这些物质具有相对较高的极性。对两种大型海藻的甲醇提取物进行了液液萃取,然后将其分离为石油醚相、乙酸乙酯相、正丁醇相和蒸馏水相。并用这4相对两种有害赤潮微藻进行克生物质的生物活性检测,结果表明石油醚相和乙酸乙酯相具有较强的杀藻活性,脂肪酸可能为小珊瑚藻和鼠尾藻组织内克生物质的主要成分。
     3.小珊瑚藻和鼠尾藻组织内克生物质的鉴定
     通过对小珊瑚藻和鼠尾藻的石油醚相和乙酸乙酯相进行气相色谱——质谱(GC/MS)联用分析,并核对标准图谱和有关参考文献,鉴定出了12种脂肪酸,其中不饱和脂肪酸占大部分。对小珊瑚藻的鉴定中得出,其中饱和脂肪酸占20.81%,而不饱和脂肪酸成分占65.45%,对鼠尾藻的鉴定中得出,饱和脂肪酸占18.82%,而不饱和脂肪酸成分占58.62%。纯化合物对赤潮异弯藻和亚历山大藻的活性检测结果表明,9,12,15-十八碳三烯酸、6,9,12,15-十八碳四烯酸、5Z,8Z,11Z,14Z-二十碳四烯酸、5Z,11Z,14Z,17Z-二十碳四烯酸和5Z,8Z,11Z,14Z,17Z-二十碳五烯酸具有很强的杀藻活性。
     小珊瑚藻和鼠尾藻组织中含有多种不饱和脂肪酸,其中一些不饱和脂肪酸对赤潮异弯藻和亚历山大藻具有强烈的杀藻效果,而且不饱和程度越高其克生效果越明显。这就表明不饱和脂肪酸可能是小珊瑚藻和鼠尾藻组织内抑制赤潮异弯藻和亚历山大藻生长的克生物质中的重要组成成分之一。
     4.温度、盐度、光照、pH值对小珊瑚藻克制赤潮异弯藻及鼠尾藻克制亚历山大藻效果和两种有害赤潮微藻生长的影响
     本实验共设置了4个环境因子:温度(T)、盐度(S)、光照(L)和pH值(P)。每两个不同的因子之间分别设计双因子实验,共6个处理组合,即温度和盐度、温度和光照、温度和pH值、光照和pH值及盐度和光照,以检验这4个因子对小珊瑚藻克制赤潮异弯藻和鼠尾藻克制亚历山大藻效果及对两种赤潮微藻生长的影响,得出了赤潮异弯藻和亚历山大藻的生长率及大藻克制有害赤潮微藻生长的抑制率,并且检验这4个因子两两之间是否存在交互作用。每个因子分别设置4个处理水平,即:温度(15、20、25和30°C)、盐度(10、20、30和40)、光照(20、100、200和400μmol m~(-2)s~(-1))和pH值(5.5、7、8.5、10)。实验结果表明,温度、盐度、光照和pH值这四个环境因子均能显著影响赤潮异弯藻和亚历山大藻的生长,并且能显著影响小珊瑚藻克制赤潮异弯藻以及鼠尾藻克制亚历山大藻的效果。小珊瑚藻克制赤潮异弯藻以及鼠尾藻克制亚历山大藻的最高抑制效果不是发生在有害赤潮微藻单养时的最适条件,而是发生在环境因子胁迫时,较低的温度(15°C)、较低的盐度(10)、较高的光照强度(400μmol m~(-2)s~(-1))和高pH值(10)均能增强小珊瑚藻克制赤潮异弯藻以及鼠尾藻克制亚历山大藻的效果。
Severe outbreaks of harmful algal blooms (hereafter, HABs) cause serious problems with regard to effective utilization of water resources such as fisheries and water-supply reservoirs, moreover, about 2000 cases of human poisoning resulting from algal toxin are reported every year. Because of the severe economic and public health problems caused by harmful microalgae, many studies about the blooms of harmful microalgae have been conducted. Some promising methods have been developed including the use of yellow losses to sediment red tide organisms, chemical agents such as copper sulfate, hydrogen peroxide, and some biological controls in the form of viruses or bacteria. Although these methods seem effective in some short-term experiments, they may have potentially dangerous environmental consequences; therefore there are very limited investigations of a direct and specific control of marine harmful algal blooms with few environmental side-effects.
     To look for HABs control agents that are efficient and benign to the environment, many scientists show a growing interest for growth inhibition of HAB species by allelopathic substances released by other aquatic organisms. Macroalgae and microalgae were known to have an antagonistic relationship in both natural and experimental aquatic ecosystems.
     The present studies deal with the allelopathic effects of three macroalgae Ulva pertusa (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on three red tide microalgae Heterosigama akashiwo, Alexandrium tamarense and Skeletonema costatum, and isolation and characterization of these allelochemicals. The three main objectives of these studies were to provide proof of the allelopathic effects of three macroalgae on these three microalgae, to gain an insight into the chemical interactions between macroalgae and microalgae in coastal areas, and to present evidence for the feasibility of using many macroalgae to control the growth of red tide microalgae. Results show that:
     1. Comparative studies on the allelopathic effects of three macroalgae on three microalgae
     We conducted laboratory experiments under stable environmental conditions, precluding the nutrient, pH, light conditions and effects of bacteria in order to investigate the allelopathic effects of fresh tissue, dry powder and aqueous extracts of three macroalga U. pertusa, C. pilulifera and S. thunbergii on the growth of microalgae H. akashiwo, A. tamarense and S. costatum were evaluated using coexistence culture systems in which concentrations of three macroalga were varied. The effects of macroalga culture medium filtrate on three microalgae were also investigated. The results coexistence assay showed that the growth of the three microalgae was strongly inhibited by using fresh tissues and dry powder; this indicated that there are the allelopathic effects of three macroalgae on three microalgae. Aqueous extracts of various concentrations of three macroalga can inhibit the growth of three microalgae and indicated that there are allelochemicals in three macroalgae; The effects of the macroalga culture medium filtrate exhibited no apparent inhibitory effect under initial filtrate addition but show apparent inhibitory effect under semi-continuous addition, which suggested that continuous release of small quantities of rapidly degradable allelochemicals from the fresh tissue of macroalga were essential to effectively inhibit the growth of three microalgae. In our study, we also concluded that the allelopathic effects of macroalgae on red tide microalgae show universality and species-specific.
     2. Growth inhibition of H. akashiwo and A. tamarense by the extracts of C. pilulifera and S. thunbergii
     Growth inhibitory effects of different concentrations of distilled water extracts and 4 organic solvent (methanol, acetone, ether and chloroform) extracts of C. pilulifera and S. thunbergii on the two microalgae H. akashiwo and A. tamarense were investigated. Methanol extracts of the highest growth inhibitory activity on two microalgae, and they killed all the cells of two microalgae at relatively higher concentrations. Growth of the two microalgae was significantly inhibited by the distilled water extracts of two macroalgae at relatively higher concentrations while cells of the two microalgae did not die completely even at the highest concentration. The other 3 organic solvent extracts of C. pilulifera and S. thunbergii had no apparent effect on the two microalgae, which suggested that the growth inhibitory substances from the extracts of two macroalgae had relatively high polarities. The methanol extracts of the two macroalgae were partitioned to petroleum ether phase, ethyl acetate phase, butanol phase and distilled phase by liquid-liquid fractionation. The bioassays of the activity of every fraction were carried out on two microalgae, indicated that petroleum ether phase and ethyl acetate phase had strong algicidal effect on the microalgae, fatty acids are probably main allelochemicals in the tissue of macroalgae.
     3. Isolation and characterization of allelochemicals in the tissues of C. pilulifera and S. thunbergii
     The petroleum ether phase and ethyl acetate phase of the methanol extracts of C. pilulifera and S. thunbergii were analyzed by GC/MS. The results of GC/MS revealed that there were 12 fatty acids in the 2 phase, and most of them were unfatty acids. The results of bioassays demonstrated that 5 unsaturated fatty acids in the tissue of C. pilulifera and S. thunbergii had strong algicidal effect on H. akashiwo and A. tamarense, and the effective concentrations were below 7.1 mg l~(-1). The results this study demonstrated that unsaturated fatty acids in the tissue of C. pilulifera and S. thunbergii might be one of the components of the allelochemicals in the macroalgae. Taken together, it is speculated that unsaturated fatty acids in the tissue of C. pilulifera and S. thunbergii has a potential to be considered as allelochemicals for the control of several harmful algae. However, it is not clear yet whether this compound can practically be applied to open waters. So further studies on the algicidal should focus on efficacy and effects on the algal control spectrum and mode of action are needed.
     4. Influence of temperature, salinity, irradiance and pH on the effectiveness of allelopathic effects of C.pilulifera on H. akashiwo and S.thunbergii on A. tamarense and two microalgae growth
     Two-factor combinations of different levels of temperature (10, 15, 25 and 30), salinity (10, 20, 30 and 40), irradiance (20,100,200 and 400μmol m~(-2)s~(-1)) and pH (5.5, 7, 8.5 and 10) on the effectiveness of allelopathic effect of C. pilulifera on H. akashiwo or S. thunbergii on A. tamarense and growth of the two microalgae were investigated. Two-factor combinations of different levels of temperature, salinity, irradiance and pH had significant (p<0.01) influence on the mean growth rates of two microalgae, and on the microalgal growth inhibition rates by C. pilulifera or S. thunbergii. The optical growth conditions for H. akashiwo was: 25°C, 30, 100μmol m~(-2)s~(-1) and pH=8.5, and for A. tamarense was: 20~25°C, 30, 100μmol m~(-2)s~(-1) and pH=7-8.5. The effectiveness of allelopathic effects of C. pilulifera on H. akashiwo or S. thunbergii on A. tamarense was increased by low temperature (15°C), low salinity (20), high irradiance (400μmol m~(-2)s~(-1)) and high pH (10).
引文
宝月等. 1960. 陆水学杂志. 21, 124-130.
    白希尧, 白敏冬, 周晓见. 2001. 羟基药剂治理赤潮研究. 自然杂志. 24, 26-32.
    曹西华, 俞志明. 2003. 季铵盐类化合物灭杀赤潮异弯藻的实验研究. 海洋与湖沼. 34, 201-207.
    陈杰, 刘宁, 李春盛, 潘国伟. 2001. 赤潮藻类毒素的研究概况. 中国公共卫生. 17, 478-479.
    方绮军,傅昀, 程世清. 1999. 植物之间生化他感作用的研究及其应用. 云南农业大学学报. 14,206-210.
    洪爱华, 尹平河, 赵玲等. 2003. 新洁而灭对海洋原甲藻生物的杀灭和抑制. 海洋环境科学. 22, 63-67.
    和丽忠, 陈锦玉, 董宝生等. 2001. 国内植物化感作用研究概况. 云南农业科技. 1, 37-41.
    何池全, 叶居新. 1999. 石菖蒲 (Acorus tatarinowii) 克藻效应的研究. 生态学报. 19, 754-758.
    洪爱华, 尹平河, 赵玲等. 2003. 碘伏和异噻唑啉酮对球形棕囊藻赤潮生物的去除研究. 应用生态学报. 14, 1177-1180.
    胡洪营, 门玉洁, 李锋民. 2006. 植物化感作用抑制藻类生长的研究进展. 生态环境. 15, 153-157.
    黄长江, 董巧香. 2001. 1998 年春季珠江口海域大规模赤潮原因生物的形态分类和生物学特征. 海洋与湖沼. 32, 1-6.
    黄京华, 曾任森, 滕希峰,等. 2001. 植物化感作用研究动态. 佛山科学技术学院学报 (自然科学版)19, 61-65.
    黄京华, 曾任森, 黎华寿. 2002. HPLC在化学生态学和环境监测中的应用. 广西农业生物科学. 21, 284-288.
    孔繁翔. 环境生物学. 2000. 北京: 高等教育出版社. 68-94.
    李锋民, 胡洪营. 2003. 大型水生植物浸出液对藻类的化感抑制作用. 中国给水排水. 12, 18-21.
    李锋民, 胡洪营. 2004. 芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究. 环境科学. 25, 89-92.
    李桂娇, 尹华, 彭辉. 2001. 赤潮研究现状与动向. 重庆环境科学. 23, 38-41.
    李淑冰, 李惠珍, 许旭萍. 2000. 贝毒素的研究现状及产生源探究. 食品科学. 21, 39-41.
    梁想, 尹平河, 赵玲, 杨培慧, 谢隆初. 2001. 生物载体除草剂去除海洋赤潮藻. 中国环境科学. 21, 15-17.
    刘沛然, 黄先玉, 柯栋. 赤潮成因及预报方法. 海洋预报, 1999, 16, 46-51.
    刘世枚, 黎尚豪. 1991. 两种蓝藻种群间的相互作用. 植物学报. 33, 110-117.
    刘易期. 国外水处理新技术. 1996. 上海: 上海科学技术出版社. 105-108.
    缪锦来, 石红旗, 李光友, 王波, 韩丽. 2002. 赤潮灾害的发展趋势、防治技术及其研究进展. 安全与环境学报. 2, 40-44.
    聂呈荣, 曾任森, 黎华寿. 2002. 三裂叶蟛蜞菊对花生化感作用的生理生化机理. 花生学报.31, 1-5.
    潘克厚, 姜广信. 2004. 有害藻华 (HAB)的发生、生态学影响和对策. 中国海洋大报. 34, 781-786.
    齐雨藻, 张家平, 吴坤东等. 1989. 中国沿海的赤潮 —深圳湾富营养化与赤潮研究. 暨南大学学报 (赤潮研究专刊). 10-21.
    齐雨藻, 黄长江. 1997. 南海大鹏湾海洋卡盾藻赤潮发生的环境背景. 海洋与湖沼. 28, 337-342.
    邵瑞华, 董文魁, 沉骏. 2004. 二氧化氯作为水处理剂的反应机理探讨. 山西科技. 1, 29-31.
    石岩峻, 胡晗华, 马润宇, 从威, 蔡昭玲. 2004. 不同氮磷水平下微小原甲藻对营养盐的吸收 及光合特性. 过程工程学报. 4, 554-560.
    宋君. 1990. 植物间的他感作用. 生态学杂志. 9, 43-7.
    苏纪兰. 2001. 中国的赤潮研究. 中国科学院院刊. 5, 339-342.
    孙文浩, 俞子文, 邰根福等. 1990. 凤眼莲无菌培养及其克藻效应. 植物生理学报. 16, 301.
    孙文浩, 俞子文, 余叔文. 1989. 城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理. 环境科学学报. 9, 188-195.
    谭仁祥. 2003. 植物成分功能. 北京: 科学出版社. 35-63.
    汤坤贤, 袁东星, 林泗彬等. 2003. 江蓠对赤潮消亡及主要水质指标的影响. 海洋环境科学. 22, 24-27.
    王大力, 祝心如. 1996. 豚草的化感作用研究. 生态学报. 16, 13-19.
    王峰, 张琪, 蔡崇法. 2000. 生化他感物质的收集与分离. 科技进步与对策. 17, 198-199.
    卫玮, 肖雯. 2004. 藻毒素的类型、危害和防治. 生物学通报. 39, 21-23.
    吴辉. 1992. 根分泌物及其生态作用. 生态学杂志. 11, 42-47.
    徐宁, 陈菊芳, 王朝晖. 2001. 广东大亚湾藻类水华的动力学分析 П.藻类水华与营养元素的关系研究. 环境科学学报. 21, 400-404.
    颜天, 周名江, 钱培元. 2002. 赤潮异弯藻 Heterosigma akashiwo 的生长特性. 海洋与湖沼. 33, 209-214.
    杨崇仁, 杨立刚, 王锦亮. 1998. 对 allelopathy 译名的商榷. 化学生态学.1998年学术讨论会论文集. 205-207.
    杨清心. 1996. 富营养水体中沉水植物与浮游藻类相互竞争的研究. 湖泊科学. 8, 17-24.
    杨善元, 俞子文, 孙文浩, 等. 1992. 凤眼莲根系中抑藻物质分离与鉴定. 植物生理学报. 18, 399-402.
    杨宇峰, 费修鲠. 2003. 大型海藻对富营养化养殖区生物修复的研究与展望. 中国海洋大学学报. 33, 53-57.
    叶居新, 何池全, 陈少风. 1999. 石菖蒲的克藻效应. 植物生态学报. 23, 379-384.
    尹平河, 赵玲, 李坤平等. 2001. 缓释铜离子法去除海洋原甲藻赤潮生物的研究. 环境科学. 21, 12-16.
    俞志明, 宋秀贤. 1999. 粘土表面改性及对赤潮生物絮凝作用研究. 科学通报, 44, 308-311.
    俞志明, 邹景忠, 马锡年. 1993. 治理赤潮的化学方法(综述). 海洋与湖沼. 24, 314-318.
    俞子文, 孙文浩, 郭克勤. 1992. 几种高等水生植物的克藻效应. 水生生物学报. 16, 1-7.
    余叔文. 植物生理与分子生物学. 科学出版社. 1990, 210-243.
    赵玲, 尹平河, 李坤平等. 2001. 掺铜可溶玻璃微粒去除海洋原甲藻赤潮生物的研究. 20, 7-11.
    赵以军, 刘永定. 1996. 有害藻类及其微生物防治的基础—藻菌关系的研究动态. 水生生物学报. 20, 173-181.
    张宝琛等. 1993. 中国农业生产中的植物生化他感作用的考察报告. 1, 117-124.
    张珩, 刘洁生, 杨维东, 高洁, 李劲雄. 2003. 双季铵盐对两种赤潮藻去除研究. 海洋环境科学. 22, 68-71.
    张珩, 杨维东, 高洁等. 2003. 二氧化氯对球形棕囊藻的抑制和杀灭作用. 应用生态学报. 14, 1173-1176.
    张正斌, 刘春颖, 邢磊等. 利用化学因子预报赤潮的可行性探讨. 中国海洋大学学报. 2003, 32, 257-263.
    张永山, 吴玉霖, 邹景忠. 2002. 胶州湾浮动弯角藻赤潮生消过程. 海洋与湖沼. 33, 55-61.
    周名江, 朱明远, 张经. 2001. 中国赤潮的发生趋势和研究进展. 生命科学. 13, 54-59.
    周名江, 朱明远 2006. “我国近海有害赤潮发生的生态学、海洋学机制及预测防治” 研究进展. 地球科学进展. 673-679.
    周玉航, 潘建明, 叶瑛. 2001. 细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用. 台湾海峡, 20, 340-345.
    朱从举, 齐雨藻, 郭昌弼. 1994. 铁、氮、磷、维生素 B1和 B12对海洋原甲藻的生长效应. 海洋与 湖沼. 25, 168-172.
    朱小冰, 向军俭. 2002. 赤潮毒素检测研究进展. 暨南大学学报(自然科学版). 23, 110-115.
    庄源益, 赵凡, 戴树桂,等. 1995. 高等水生植物对藻类生长的克制效应. 环境科学进展. 6, 44-49.
    曾江宁, 曾淦宁, 黄卫艮, 郑平, 周青松, 陈全震, 高爱根. 2004. 赤潮影响因素研究进展. 东海海洋. 22, 40-47.
    Aki, Sinkkonen., 2003. model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant and oil.250, 315-322.
    Alitta, G., et al.,1991. J. Chem. Ecol. 17, 2223-2334.
    An, M., Johnson, I .R., Lovett, J. V., 2002. Mathematical modelling of residue allelopathy: the effects of intrinsic and extrinsic factors. Plant and Soil.246, 11-22.
    Anderson, D. M., 1997. Turning back the harmful red tide. Nature. 388, 513-514.
    Anderson, D.M., Anderson, P., Bricelj, V.M, et al. 2001.Mornitoring and management strategies for harmful algal blooms in coastal waters. APEC 201-MR-01. 1, Asia Pacific Economic Proagram, Singapore, and Intergovernmental Oceanographic Commission Technical Series No. 59, Paris.
    Ball, A. S., Williams, M., Vincent, D., et al. 2001. Algal growth control by a barley straw extract. Bioresource Technology. 77, 177-181.
    Balke, N.E., 1985. Effects of allelochemicals on mineral uptake and associated physiological processes. In: Thompon A C, ed. The Chemistry of Allelopathy, Series 268. Washington D C:ACS Symposimm. 161-177.
    Bratbak, G., Egge, J. K., Heldal, M., 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophycease) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39-48.
    Bzaivamakenga, R.R., Simard, R.R., Leroux, G.D., 1994. Effects of benzonic and cinnamic on growth, mineral composition and chlorophyll content of soybean. Chem Ecol. 20, 821-835.
    Cannell, R.J.P., Kellam, S.J., Owsianka, A.M., Walker, J.M., 1987. Microalgae and cyanobacteria as a source of glucosidase inhibitors. J. Gen. Microbiol. 133, 1701-1705.
    Cannell, R.J.P., Kellam, S.J., Owsianka, A.M., Walker, J.M., 1988. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta MED. 54, 10-14.
    Carnucgaek, W.W., 1992. Cyanobacteria secondary metabolites-the cyanotoxins. J.Appl.Bacterio. 72, 445-459.
    Cho, J.Y., Jin, H.J., Lim, H.J., Whyte, J.N.C., Hong, Y.K., 1999. Growth activation of the microalga Isochrysis galbana by the queous extract of the seaweed Monostroma nitidum. J. Appl. Phycol. 10, 561-567.
    Choi, H., Kim, P., Lee, W., Yun, S., 1998. Removal efficiency of Cochlodinium polykrikoides by yellow loess. J. Korea. Fish. Soe. 31, 109-113.
    Colwell, F. S., Speidel, H. K., 1985. Diffusion through a double-sided plate: development of a method to study algae-bacterium interactions. Appl. Environm. Microbiol. 50, 1357-1360.
    Cottrell, M. T., Suttle, C. A., 1995. Dynamics of a lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40, 730-739.
    Daft, M.J., Sterwart, W. D. P., 1975. Ecological studies on algal-lysing bacteria in fresh waters. Freshwat. Biol. 5, 577-596.
    de Nys, R., Coll, J.C., Price, I. R., 1991. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocroral Sinularia cruciata (Alcyonacea). Mar. Biol. 108, 315-320.
    Everall, N. C., Less, D. R.. 1997. The identification and significance of chemical released decomposing barley straw during reservoiralgal control. Water. Res. 31, 614-620.
    Farines, V., Bai, S., Albet, J., 2000. Ozone mass transfer and decom position in a fixed bed reator. Proceeding of the fundamental and engineering concepts for ozone reactor design. Toulouse, France. Fitzgerald, G. P., 1969. Some factors in the competition of antagonism among bacteria, algae and aquatic weeds. Journal of Phycology. 5, 351-359.
    Fletcher, R.L., 1975. Heteroantagonism observed in mixed algal cultures. Nature 253, 534-535.
    Fong, P., Donohoe, R.M., Zedler, J.B., 1993. Competition with macroalgae and benthic cyanobacterial mats limits phytoplankton abundance in experimental microcosms. J. Exp. Mar. Biol. Ecol. 100, 97-102.
    Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature. 399, 541-548.
    Furuki, M., Kobayashi, m., 1990. Interaction between Chattonella and bacteria and prevention of this red tide, EMECS“90”, 23, 189-193.
    Gallacher, S., Smith, E.A., 1999. Bacteria and Paralytic Shellfish Toxin. 150, 245-255.
    Gleason, F.K., 1990. The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracillis, Strain Z. FEMS Microbiol. Lett. 68, 77-81.
    Graneli, F., Persson, H., Edler, I., 1986. Connection between trace metals, chelators and red tide blooms in the Laholm Bay, SE Kattegat- an experimental approach. Marine Environmental Research. 18, 61-78.
    Greca, M. D., Ferrara, M., Fiorentino, A, et al. 1998. Antialgalcompounds from Zantedeschiaaethiopica. Phytochemistry, 49, 1299-1304.
    Gregory, J. Doucette., 1995. Interactions between bacteria and harmful algae: a review. Natural toxins. 3, 65-74.
    Gross. E.M., Meyer, H., Schilling, G., 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry. 41, 133-138.
    Gross, E.M., Wolk, C.P., Juttner, F., 1991. Fischerellin, a new allelochemicals from the freshwater cyanobacterium Fischerella muscicola. J. Phycol. 27, 686-692.
    Gross, E.M., 1999. Allelopathy in benthic and littoral areas: Case studies on allelochemicals from benthic cyanobacterial and submerged macrophtes, inPrinciples and Practices in Plant Ecology: Allelochemical Interactions, Inderjit, Dakshini, K.M.M., and Foy, C.L., Eds., CRC Press, Boca Raton, pp.179-199.
    Gross, E.M., Sutfeld, R., 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. Acta Horticul. 381, 710-716.
    Gross, E.M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313-339.
    Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia. 32, 79-99.
    Harrison, P.G., Durance, C.D., 1985. Reduction in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina. Mar. Biol. 90, 117-120.
    Hasler, A. D., Jones, E., 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecol. 30, 359-364.
    Hodgkiss, T.J., Ho, K. C., 1997. Are changes in N: P ratios in coastal waters the key to increase red tide bloom? Hydrogiologa. 352, 141-147.
    Hogetsu, K., Okanishi, R., Sugawara, H., 1960. Studies on the antagonistic between phytoplankton and rooted aquatic plants. Jap. J. Limnol. 21,124-130.
    Honjo, Tsuneo., 1987. Growth potential of CHattonella marina (Raphidophyceae) collected in Golasho Bay, Central Japan. Bull. Plankton. Soc. Japan. 34, 119-124.
    Hwang, D. F., Lu, Y. H., 2000. Influence of environmental and nutritional factors on growth, toxicity and toxin profile of dinoflagellate Alexandrium minutum. Toxicon. 38, 1491-1503.
    Ikawa, M., Sasner, J.J., Haney, J.F., 1997. Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significant of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia. 356, 143-148.
    Imai, I., Ishida, Y., Sakaguchi, K., Hata, Y., 1995. Algicidal marine bacteria isolated from northern Hiroshima bay, Japan. Fish. Sci. 61, 628-636.
    Inderjit, Leslie A Weston. 2000. Are laboratory bioassays for allelopathy suitable for prediction of field responses? Journal of Chemical Ecology. 26, 2 111-2 118.
    Inderjit, Ragan., M, Callaway., 2003. Experimental designs for the study of allelopathy. Plant and Soil. 256, 1-11.
    Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., Hong, Y.K., 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12, 37-43.
    Jin, Q., Dong, Sh. L., 2003. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexanadrium tamarense. J. Exp. Mar. Biol. Ecol. 293, 41-45.
    Jin, Q., Dong, Sh. L., Wang, Ch. Y., 2005. Allelopathic growth inhibition of Prorocentrum micans (Dinophyte) by Ulva pertusa and Ulva linze (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31-37.
    John, E.H., Flynn, K. J., 1999. Amino acid uptake by the toxic dinoflagellate Alexandrium fundyense. Marine Biology. 133, 11-19.
    Jose. S., Gillespie, A. R., Pallardy, S. G., 2004. Interspecific interactions in temperate agroforestry. Agroforestry Systems,61, 237-255.
    Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakuria, T., Hara, Y., Chihara, M., 1988. An allelopathic fatty acid from the brown alga Aladosiphon okaamuranus. Phytochemistry. 27, 731-735.
    Keating, K.I., 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science. 196, 885-887.
    Konig, G.M., Wright, D, Linden., 1999. Plocamium hamatum and its monoterpenes: chemical and biological investigation of the tropical marine red alga. Phytochemistry. 52, 1047-1053.
    Korner, S., Nicklisch, A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38, 862-871.
    Kumar H. D., 1964. Streptomycin and penicillin-induced inhibition of growth and pigment production in blue-green algae and production of strains of Anacystis hidulans resistant to these antibiotics. Experim. Bot. 15, 232-250.
    Legrand, C., Rengefors, K., Fistarol, G.O., Graneli, E., 2003. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia. 42, 406-419.
    Lehtim, kiJ., Moisander, P., Sivonen, K., et al., 1997. Growth, nitrogen-fixation and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbial. 63, 1647-1656.
    Leu, E., Krieger-Liszkay, A., Goussias, C., Gross, E. M., 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum L. inhibit photosystem II. Plant Physiol. 130, 2011-2018.
    Marshall, S. M., Orr, A. P., 1949. Further experiments on the fertilization of a sea loch (Loch Craiglin). Mar. Biol. Assoc. UK. 27, 360-379.
    Martin, D. F., Doig, M. T., Stackhouse, C. B., 1973. Biocontrol of the Florida red tide organism, Gymnodinium breve, through predator organisms. Environ. Lett. 10, 115-119.
    Mason, C. P., Edwards, K. P., Carlson, R. E., Pignatello, J., Gleason, F. K., Wood, J. M., 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science. 215, 400-402.
    M. An., I, R. Johnson., J, V. Lovett., 2002. Mathematical modelling of residue allelopathy: the effects of intrinsic and extrinsic factors. Plant and Soil. 246, 11-22.
    Mclachlan, J., Craigie, J. S., 1964. Algal inhibition by yellow ultraviolet absorbing substances from Fucus vesiculosus. Canad. J. Bot. 42, 287-292.
    Nakai, S., Inoue, Y., Hosomi, M., Murakami, A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water. Sci. Technol. 39, 47-53.
    Nakai, S., Inoue, Y., Hosomi, M., Murakami, A., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water. Res. 34, 3026-3032.
    Nan, C.R., Zhang, H.Z., Zhao, G. Q., 2004. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. 52, 259-268.
    Ohsawa, N., Ogata, Y., Okada, N., Itoh, N., 2001. Physiological function of bromoperoxidase in the red tide marine alga, Corallina pilulifera: production of bromoform as an allelochemicals and the simultaneous elimination of hydrogen peroxide. Phytochemistry. 58, 683-692.
    Papke, U., Gross, E. M., Francke, W., 1997. Isolation, identification and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret.) Tetrahedron Lett. 38, 379-382.
    Polia, M. A., Musserb, S. M., Dickeye, R. W., Paul, P., Eilers, P. P., Hallb, S., 2000. Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida. Toxicon. 38, 981- 993.
    Pratt, D. M., Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol. Oceanogr. 11, 447-455.
    Proctor, L. M., Fuhrman, J. A., 1990. Viral mortality of marine bacteria and cyanobacteria. Nature. 343, 60-62.
    Rice, E. L., 1984. Allelopathy 2nd Ed. Academic Press, Orlande. 139-233.
    Rice, E.L., 1974. Allelopathy. New York:Academic Press, 166-179.
    Sfriso, A., Pavoni, B., Marcomini, A., 1989. Macroalgae and phytoplankton standing crops in the central Venice lagoon: primary production and nutrient balance. Sci. Total. Environ. 80, 139-159.
    Shilo, M., 1970. Lysis of blue-green algae by myxobacter. Bacteriol. 140, 453-461.
    Shirota, A., 1989a. Red tide problem and contermeasures (1). International Journal of Aquaculture and Fisheries Technology. 1, 195-223.
    Shirota, A., 1989b. Red tide problem and contermeasures (2). International Journal of Aquaculture and Fisheries Technology. 1, 195-293.
    Smayda, T. J., 2002. Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful algae. 1, 95-112.
    Smith, G.D., Doan, N. T., 1999. Cyanobacterial metabolites with bioactivity against photosynthesis in cayanobacteria, algae and higher plants. J. Appl. Phycol. 11, 337-344.
    Sun, X. X., Choi, J. K., Kim, E. K., 2004. A preliminary study on the mechanismof harmful algal bloom mitigation by use of sophorolipid treatment.Journal of Experimental Marine Biology and Ecology. 304, 35-49.
    Suzuki, M., Wakana, I., Denboh, T., Tatewaki, M., 1996. An allelopathic polyunsaturated fatty acid from red algae. Phtochemistry 43, 63-65.
    Suzuki, Y., Takabayashi, T., Kawaguchi, T., 1998. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe(Phaeophyta). J. Exp. Mar. Biol. Ecol. 225, 69-77.
    Szezepanski, A. J., 1977. Allelopathy as a means of biological control of water weeds. Aquatic Botany. 3, 193-197.
    Tang, D.L., Dana, R. Kester., I-Hsun, Ni., et al., 2003. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful algae. 89-99.
    Taylor, F. J. R., 1968. Parasitism of the toxin producing dinoflagellate Gonyaulax catenella by the endoparasitic dinoflagellate Amoebophrya ceratii. Fish. Board. Can. 25, 2241-2245.
    Tiffany, L. Weir., Harsh, Pal. Bais., Jorge, M. Vivanco., 2003. Intraspecific and interspecific interactions mediated by a phytotoxin, -catechin, secretedby the roots of Centaurea maculosa. Journal of Chemical Ecology, 29, 2 397-2 412.
    Van Aller, R.T., et al. 1985. The chemical of allelopathy American chemical society. Washington D. C. 137-386.
    Van Donk, E., Gularl, R. D., Ledema, A., Meulemans, J., 1993. Macroophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia. 251, 19-26.
    Villarino, M.L., 1995. Evidence of in situ diel vertical migration of a red-tide microplankton species in Rla de Bigo (NW Spain). Marine Biology. 123, 607-617.
    Wang, Y., Yu, Z.M., Song, X.X., Zhang, S.D., 2006. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research. 56, 17-26.
    Wink, M., Latz-bruning, B., 1995. Allelopathic properities of alkaloids and other natural produces. In: Inderjit, ed. Allelopathy: Organisms, processes and applications, Series 582. Washington D C:A C S Symp. 117-126.
    Wink, M., Schmeller, T., Latz-bruning, B., 1998. Modes of action of allelochemicals alkaloida: Interaction with neuroreceptors DNA and other molecular targets. Chem Ecol. 24, 1881-1937.
    Anderson, D.M., 1997. Turning back the harmful red tide. Nature. 388, 513-514.
    Chen, C.Y., Durbin, E.G., 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol. Prog. Ser. 100, 83-94.
    Fitzgerald, G. P., 1969. Some factors in the competitors antagonism among bacteria, algae, and aqueous weeds. Journal of Phycology. 5, 351-359.
    Gallaway, R.M., 1995. Postive interactions among plant. Botanical Review. 1995, 61: 306-349.
    Garry, R.. T., Hearing, P., Cosper, E. M., 1998. Characterization of a lytic virus infectiousto the bloom-forming microalga Aureococcus aophageffereus (Pelagophyceae). J. Phycol. 34, 616-621.
    Gross, E.M., 1999. Allelopathy in benthis and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes[A]. In : Inderjit D, Dakshini K M M, Foy C L. Principles and practices in plant ecology: Allelochemical interactions [C]. CRC, Boca Raton: 179-199.
    Guillard, R. L., Ryther, J. H., 1962 Studies on marine planktonic diatoms: I. Cyclotella nana (Hustedt) and Detomtla confervaceae (Cleve). Can. J. Microbiol. 8, 229-239.
    Guo, Y., 1994. Studies on Heterosigma akashiwo (Hada) Hada in the Dalian Bight, liaoning, China. Oceanol. Limnol. Sin. 25, 211-215.
    Hager, S.W., Gordon, L. I., Park, P.K., 1968. A practical manual for the use of Technicon Autoanalyzer in seawater nutrient analysis. A finial report to B.C.F., Contract 14-17-0001-1759.
    Han, M.S., Jeon, J.K., Kim, Y.O., 1992. Occurrence of dinoflagellate Alexandrium tamarense, a causative organisms of paralytic shellfish poisoning in Chinhae Bay, Korea. J. Plankton Res. 14, 1581-1592.
    Horner, R.A., Garrison, D. L., Plumley, F.G., 1997. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanoga. 42, 1076-1088.
    Imai, I., Ishida, Y., Sakaguchi, K., Hata, Y., 1995. Algicidal marine bacteria isolated from northern Hiroshima bay, Japan. Fish. Sci. 61, 628-636.
    Inderjit, D., Weiner,J. 2001. Plant allelochemicals interference or soil chemical ecology?. Perspectives in Plant Ecology Evolution and Systematics. 4, 3-12.
    Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12, 37-43.
    Jin, Q., Dong, Sh.L., 2003. Compratitive studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexanadrium tamarense. J. Exp. Mar. Ecol. Biol. 293, 41-45.
    Jones, M.N., 1984. Nitrate reduction by shaking with cadmium, alternative to cadmium. Water Research. 18, 643-646.
    Keating, K. I., 1977. Allelopathic influence on blue-green bloom sequence in a eutophic lake. Science. 196, 885-887.
    Kim, C. S., Lee, S. G., Lee, C. K., Kim, H. G., Jung, J., 1998. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J. Plankton. Res. 21, 2105-2115.
    Kodama, M., Sato, S., Sakamoto, S., Ogata, T., 1996. Occurrence of tetrodotoxin in Alexandrium tamarense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon. 34, 1101-1105. Molisch, H., 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer Verlag, Jena, Germany. pp: 106.
    Na, G., Choi, W., Chun, Y., 1996. A study on red tide control with loess suspension. Kor. J. Aquacult. 9, 239-245.
    Nakai, S., Inoue, Y., Hosomi, M., Murakami, A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water. Sci. Technol. 39, 47-53.
    Provasoli, L., 1968. Media and prospects for the cultivation of marine algae. In: Wtanable, A.,Hattore, A.( Eds.), Cultures and Collections of Algae. Proc. US and Japan Conference, Hakone. Japanese Society of Plant Physiology, Hakone, pp: 63-67.
    Qi, Y., Zhang, Z., Hong, Y., Lu, S., Zhu, C., Li, Y., 1993. Occurrence of red tides on the coasts of China Sea. Toxic Phytoplankton Blooms Sea. 3, 43-46.
    Qi, Y., Qian, F., 1994. Taxonomic studies on red tide causative dinoflagellates in Dapeng Bay, South China Sea. Oceanol. Limnol. Sin. 25, 206-211.
    Sanna, S., Giovana, O., Edna, G., 2004. Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85-101.
    Sharp, J. H., Underhill, P. A., Hughers,D., 1979 Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J. Phycol. 15, 353-362.
    Steidinger, K.A., 1983 A re-evaluation of toxic dino flagellates biology and ecology. Prog. Phycol. Res. 2,147-188.
    Sun, X., Song, X., Zhang, B., Yu, Z., 1999. A study on the coagulation of clay-MMH system with red tide organisms. Mar. Sci. 13, 46-49.
    Tournay, F.J.R., 1987. Harmful phytoplankton blooms and aquaculture in British Columbia. The Problems of Toxic Dinoflagellate Blooms in Aquculture. 54-55.
    Uchida T, Toda S, Matsuyama Y. 1999. Interactions between the red dinoflagellates Heterocapsa circularisquama and Gymnodunium mikimoto in laboratory culture. J. Exp. Mar. Biol. Eco. 241,285-299.
    Van Donk, E., van de Bund,W.J., 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplandton communities: allelopathy versus other mechanisms. Aqua. Bot. 72, 261-274.
    王悠, 俞志明, 宋秀贤, 张善东. 2006. 共培养体系中石莼和江蓠对赤潮异弯藻生长的影响. 环境科学. 27, 245-253.
    吴玉霖, 周成旭, 张永. 2001. 烟台四十里湾海域红色裸甲藻赤潮发展过程及其成因. 海洋与湖沼. 32, 159-167.
    颜 天, 周名江, 钱培元. 2002. 赤潮异弯藻 Heterosigma akashiwo 的 生长特性. 海洋与湖沼. 33, 209-214.
    Anderson, D.M., 1997. Turning back the harmful red tide. Nature. 388, 513-514.
    Garry, R.. T., Hearing, P., Cosper, E. M., 1998. Characterization of a lytic virus infectiousto the bloom-forming microalga Aureococcus aophageffereus (Pelagophyceae). J. Phycol. 34, 616-621.
    Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates In: Smith, W.L., Chanley, M.H.(Eds.), Culture of Marine Animals. Plenum Press, New York, pp.26-60.
    Han, M.S., Jeon, J.K., Kim, Y.O., 1992. Occurrence of dinoflagellate Alexandrium tamarense, a causative organisms of paralytic shellfish poisoning in Chinhae Bay, Korea. J. Plankton Res. 14, 1581-1592.
    Hernandez, I., Peralta, G., Perez-Llorens, J.L., Vergara, J.J., 1997. Biomass and dynamics of growth of Ulva species in Palmones River estuary. J. Phycol. 33, 764-772.
    Horner, R.A., Garrison, D. L., Plumley, F.G., 1997. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanoga. 42, 1076-1088.
    Imai, I., Ishida, Y., Sakaguchi, K., Hata, Y., 1995. Algicidal marine bacteria isolated from northern Hiroshima bay, Japan. Fish. Sci. 61, 628-636.
    Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., Hong, Y.K., 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12, 37-43.
    Jin, Q., Dong, Sh.L., 2003. Compratitive studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexanadrium tamarense. J. Exp. Mar. Ecol. Biol. 293, 41-45.
    Jin, Q., Dong, Sh. L., Wang, Ch. Y., 2005. Allelopathic growth inhibition of Prorocentrum micans (Dinophyte) by Ulva pertusa and Ulva linze (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31-37.
    Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakuria, T., Hara, Y., Chihara, M., 1988. An allelopathic fatty acid from the brown alga Aladosiphon okaamuranus. Phytochemistry. 27, 731-735.
    Kim, C. S., Lee, S. G., Lee, C. K., Kim, H. G., Jung, J., 1998. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J. Plankton. Res. 21, 2105-2115.
    Kodama, M., Sato, S., Sakamoto, S., Ogata, T., 1996. Occurrence of tetrodotoxin in Alexandrium tamarense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon. 34, 1101-1105.
    Korner, S., Nicklisch, A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38, 862-871.
    Na, G., Choi, W., Chun, Y., 1996. A study on red tide control with loess suspension. Kor. J. Aquacult. 9,239-245.
    Nakai, S., Inoue, Y., Hosomi, M., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water. Res. 34, 3026-3032.
    Nelson, T.A., Lee, D., Smith, B.C., Prins, R., 2003. Are “green tide” harmful algal blooms? Allelopathic properties of extracts from Ulva fenestrata and Ulvaria obscura. J. Phycol. 39, 874-879.
    Qi, Y., Zhang, Z., Hong, Y., Lu, S., Zhu, C., Li, Y., 1993. Occurrence of red tides on the coasts of China Sea. Toxic Phytoplankton Blooms Sea. 3, 43-46.
    Steidinger, K. A., 1983. A re-evaluation of toxic dino flagellates biology and ecology. Prog. Phycol. Res. 2,147-188.
    Sukenik, A., Eshkol, R., Livne, A., Hadas, O., Rom, M., Tchernov, D., Vardi, A., Kaplan, A., 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol. Oceanogr. 47, 1656-1663.
    Sun, X., Song, X., Zhang, B., Yu, Z., 1999. A study on the coagulation of clay-MMH system with red tide organisms. Mar. Sci. 13, 46-49.
    Suzuki, M., Wakana, I., Denboh, T., Tatewaki, M., 1996. An allelopathic polyunsaturated fatty acid from red algae. Phtochemistry 43, 63-65.
    Suzuki, Y., Takabayashi, T., Kawaguchi, T., 1998. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J. Exp. Mar. Biol. Ecol. 225, 69-77.
    Taylor, R., 1999. The green tide threat in the UK-a brief overview with particular reference to Langstone harbour, south coast of England and the Ythan estuary, east coast of Scotland. Bot. J. Scotl.51, 195-295.
    Tournay, B., 1999. Toxic crisis hits French products. Fish. Farm. Int.26,12.
    Van Alstyne, K.L., Wolfe, G.V., Freidenburg, T.L., Neill, A., Hicken, C., 2001. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213, 53-65.
    Wang, R. J., Xiao, H., Zhang, P.Y., Qu, L., Cai, H. J., Tang, X.X., 2006. Comparative Studies on the Allelopathic Effects of Ulva Pertusa Kjellml, Corallina pilulifera Postl Et Ruprl and Surgassum thunbergii MertlO Kuntze on Skeletonema costatum (Grev.)Cleve. Journal of Integrative Plant Biology 48(12), 683-691.
    Akakabe, Y., Matsui, K., Kajiwara, T., 1999. Enantioselective α-Hydroperoxylation of long-chain fatty acids with crude enzyme of marine green alga Ulva pertusa. Tetrahedron Letter. 40, 1137-1140.
    Anderson, D.M., Anderson, P., Bricelj, V.M, et al. 2001.Mornitoring and management strategies for harmful algal blooms in coastal waters. APEC 201-MR-01. 1, Asia Pacific Economic Proagram, Singapore, and Intergovernmental Oceanographic Commission Technical Series No. 59, Paris.
    Duke, S.O., Dayan, F.E., Romagni, J.G., Rimando, A.M., 2000. Natural products as sources of herbicides: current status and future trends. Weed Res. 40, 99-111.
    Duke, S.O., Scheffler, B.E., Dayan, F.E., 2001. Allelopathic as herbicides, in Physiological Aspects of Allelopathy, Reigosa, M.J., and Bonjoch, N.P., Eds., First European OECD Allelopathy Symposium, Vigo, Spain, pp.47-59.
    Garry, R.. T., Hearing, P., Cosper, E. M., 1998. Characterization of a lytic virus infectiousto the bloom-forming microalga Aureococcus aophageffereus (Pelagophyceae). J. Phycol. 34, 616-621. Gross. E.M., Meyer, H., Schilling, G., 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry. 41, 133-138.
    Gross, E.M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313-339.
    Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates In: Smith, W.L., Chanley, M.H.(Eds.), Culture of Marine Animals. Plenum Press, New York, pp.26-60.
    Guo, Y., 1994. Studies on Heterosigma akashiwo (Hada) Hada in the Dalian Bight, liaoning, China. Oceanol. Limnol. Sin. 25, 211-215.
    Horner, R.A., Garrison, D. L., Plumley, F.G., 1997. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanoga. 42, 1076-1088.
    Imai, I., Ishida, Y., Sakaguchi, K., Hata, Y., 1995. Algicidal marine bacteria isolated from northern Hiroshima bay, Japan. Fish. Sci. 61, 628-636.
    Ikawa, M., Sasner, J.J., Haney, J.F., 1996. Inhibition of Chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa. Hydrobiologia. 331, 167-170.
    Ikawa, M., Sasner, J.J., Haney, J.F., 1997. Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significant of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia. 356, 143-148.
    Ikawa, M., Sasner, J.J., Haney, J.F., 2001. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia. 443, 19-22.
    Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., Hong, Y.K., 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12, 37-43.
    Jin, Q., Dong, Sh. L., 2003. Compratitive studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexanadrium tamarense. J. Exp. Mar. Ecol. Biol. 293, 41-45.
    Jin, Q., Dong, Sh. L., Wang, Ch. Y., 2005. Allelopathic growth inhibition of Prorocentrum micans (Dinophyte) by Ulva pertusa and Ulva linze (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31-37.
    Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakuria, T., Hara, Y., Chihara, M., 1988. An allelopathic fatty acid from the brown alga Aladosiphon okaamuranus. Phytochemistry. 27,731-735.
    Kim, C. S., Lee, S. G., Lee, C. K., Kim, H. G., Jung, J., 1998. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J. Plankton. Res. 21, 2105-2115.
    Legrand, C., Rengefors, K., Fistarol, G.O., Graneli, E., 2003. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia. 42, 406-419.
    Methta, J., Maxim, C., Friendlander, M., 1992. Fatty acid distribution among some red algal macrophytes. Journal of Phycology. 28, 299-304.
    Na, G., Choi, W., Chun, Y., 1996. A study on red tide control with loess suspension. Kor. J. Aquacult. 9,239-245.
    Nakai, S., Inoue, Y., Hosomi, M., Murakami, A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water. Sci. Technol. 39, 47-53.
    Nakai, S., Inoue, Y., Hosomi, M., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water. Res. 34, 3026-3032.
    Nan, C.R., Zhang, H.Z., Zhao, G.Q., 2004. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research. 52, 259-268. Nelson, T.A., Lee, D., Smith, B.C., Prins, R., 2003. Are “green tide” harmful algal blooms? Allelopathic properties of extracts from Ulva fenestrata and Ulvaria obscura. J. Phycol. 39, 874-879.
    Ohsawa, N., Ogata, Y., Okada, N., Itoh, N., 2001. Physiological function of bromoperoxidase in the red tide marine alga, Corallina pilulifera: production of bromoform as an allelochemicals and the simultaneous elimination of hydrogen peroxide. Phytochemistry. 58, 683-692.
    Phillipson, B.E., Rothrock, D. W., Connor, W.E. 1985. Reduction of plasma lipids, liporoteins and aproteins by dietary fish oils in patients with hypertriglyceridemia N. Eng J Med. 312, 1210-1216.
    Qi, Y., Zhang, Z., Hong, Y., Lu, S., Zhu, C., Li, Y., 1993. Occurrence of red tides on the coasts of China Sea. Toxic Phytoplankton Blooms Sea. 3, 43-46.
    Qi, Y., Qian, F., 1994. Taxonomic studies on red tide causative dinoflagellates in Dapeng Bay, South China Sea. Oceanol. Limnol. Sin. 25,206-211.
    Rice, E.L., 1984. Allelopathy. Academic Press, Orlando, Florida. Schrader, K.K., 2003. Natural algicides for the control of cyanobacterial-related off-flavor in catfish aquaculture. ACS. Symp. Ser. 848, 195-208.
    Steidinger, K. A., 1983. A re-evaluation of toxic dino flagellates biology and ecology. Prog. Phycol. Res. 2,147-188.
    Sun, X., Song, X., Zhang, B., Yu, Z., 1999. A study on the coagulation of clay-MMH system with red tide organisms. Mar. Sci. 13, 46-49.
    Suzuki, Y., Takabayashi, T., Kawaguchi, T.,1998. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe(Phaeophyta). J. Exp. Mar. Biol. Ecol. 225, 69-77.
    Suzuki, M., Wakana, I., Denboh, T., Tatewaki, M., 1996. An allelopathic polyunsaturated fatty acid from red algae. Phtochemistry 43, 63-65.
    Urakaze, M., Hamazaki, T., Soda, Y., 1986. Infusion of emulsified trieicosapentaenoyl2glycerol into rabbits2 The effect on platelet ag2gregation, polymorphonuclear leukocyte adhesion, and fatty acid composition in plasma and platelet phospholipids1 Thromb Res. 44, 673-682.
    Wang, Y., Yu, Z.M., Song, X.X., Zhang, S.D., 2006. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research. 56, 17-26.
    Watson, S., Janzen, L., 2002. Algal polyunsaturated fatty acid: food, pheromones and foul odour. J. Phucol. 38, 37-37.
    李宪璀, 范晓, 韩丽君, 严小军, 娄清香. 2002. 中国黄、渤海常见大型海藻的脂肪酸组成. 33, 215-223.
    Anderson, D.M., Anderson, P., Bricelj, V.M, et al. 2001.Mornitoring and management strategies for harmful algal blooms in coastal waters. APEC 201-MR-01. 1, Asia Pacific Economic Proagram, Singapore, and Intergovernmental Oceanographic Commission Technical Series No. 59, Paris.
    Chang, F.H., Anderson, C., Boustead, N.C., 1990. First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cagereared salmon in Big Glory Bay, New Zealand. N.Z.J. Mar. Freshw. 24, 461-469.
    Farjalla, V.F., Anesio, A.M., Bertilsson, S., Graneli, W., 2001. Photochemical reactivity of aquatic macrophyte leachates: abiotic transformations and bacterial responses. Aquat. Microbial Ecol. 24, 187-195.
    Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates In: Smith, W.L., Chanley, M.H.(Eds.), Culture of Marine Animals. Plenum Press, New York, pp.26-60.
    Gopal, B., Goel, U., 1993. Competition and allelopathy in aquatic plant communities. Bot.Rev.59, 155-210.
    Gross, E.M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313-339.
    Gross. E.M., Meyer, H., Schilling, G., 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry. 41, 133-138.
    Honjo, T., 1993. Overview of bloom dynamics and physiological ecology of Heterosigma akashiwo. In: Smayda TJ, Shimizu Yed. Toxic phytoplankton blooms in the sea. Amsterdam: Elsevier Scientific, 33-41.
    Inderjit, Dakshini, K.M.M., 1995. On laboratory bioassys in allelopathy. Bot. Rev. 61, 28-44.
    Issa, A.A., 1999. Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environ. Toxicol. Pharmacol. 8, 33-37.
    Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., Hong, Y.K., 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12, 37-43.
    Jin, Q., Dong, Sh.L., 2003. Compratitive studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexanadrium tamarense. J. Exp. Mar. Ecol. Biol. 293, 41-45.
    Jin, Q., Dong, Sh. L., Wang, Ch. Y., 2005. Allelopathic growth inhibition of Prorocentrum micans (Dinophyte) by Ulva pertusa and Ulva linze (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31-37.
    Keating, K. I., 1977. Allelopathic influence on blue-green bloom sequence in a eutophic lake. Science. 196, 885-887.
    Korner, S. Nicklish, A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38, 862-871.
    Molisch, H., 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer Verlag, Jena, Germany. pp 106.
    Murphy, T. P., et al., 1976. Science. 192, 900.
    Nakai, S., Inoue, Y., Hosomi, M., Murakami, A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water. Sci. Technol. 39, 47-53.
    Nakai, S., Inoue, Y., Hosomi, M., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water. Res. 34, 3026-3032.
    Nelson, T.A., Lee, D., Smith, B.C., Prins, R., 2003. Are “green tide” harmful algal blooms? Allelopathic properties of extracts from Ulva fenestrata and Ulvaria obscura. J. Phycol. 39, 874-879.
    Ono, K., Khan, S., Onoue, Y., 2000. Effects of temperature and light intensity on the growth and toxicity of Heterosigma akashiwo (Raphidophyceae). Aquac. Res. 31, 427-433.
    Ray, S., Bagchi, S.N., 2001. Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol. 149, 455-460.
    Rice, E.L., 1984. Allelopathy. Academic Press, Orlando, Florida
    Schlegel, I., Doan, N.T., de Chazal, N., Smith, G.D., Smith, G.D., 1998. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacterial. J. Appl. Phycol. 10, 471-479.
    Schmidt, L.E., Hansen, P.J., 2001. Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216, 67-81. Sun, X., Song, X., Zhang, B., Yu, Z., 1999. A study on the coagulation of clay-MMH system with red tide organisms. Mar. Sci. 13, 46-49.
    Suzuki, Y., Takabayashi, T., Kawaguchi, T., 1998. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe(Phaeophyta). J. Exp. Mar. Biol. Ecol. 225,69-77.
    Szczepanski, A.J., 1977. Allelopathy as a means of biological control of water weeds. Aquat. Bot. 3, 193-197.
    Taylor, R., Fletcher, R.L., Raven, J.A., 2001. Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot. Mar.44, 327-336.
    Van Donk, E., van de Bund,W.J., 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplandton communities: allelopathy versus other mechanisms. Aqua. Bot. 72, 261-274.
    Wang, Y., Yu, Z.M., Song, X.X., Zhang, S.D., 2006. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research. 56, 17-26.
    Wang, R. J., Xiao, H., Zhang, P.Y., Qu, L., Cai, H. J., Tang, X.X., 2006. Comparative Studies on the Allelopathic Effects of Ulva Pertusa Kjellml, Corallina pilulifera Postl Et Ruprl and Surgassum thunbergii MertlO Kuntze on Skeletonema costatum (Grev.) Cleve. Journal of Integrative Plant Biology. 48, 683-691.
    郭玉洁. 1994. 大连湾赤潮生物—赤潮异弯藻. 海洋与湖沼. 25, 211-216.
    刘世枚, 黎尚豪. 1991. 两种蓝藻种群间的相互作用. 植物学报. 33, 110-117.
    孙文浩, 俞子文, 余叔文, 1989. 城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理. 环境科学学报 9, 188-195.
    颜天, 周名江, 钱培元. 2002. 赤潮异弯藻 Heterosigma akashiwo 的生长特性. 海洋与湖沼. 33, 209-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700