采空区漏风规律及瓦斯运移规律模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着浅部煤炭资源的持续开发,矿井开采强度不断增大,工作面瓦斯涌出超限己成为了制约煤矿安全生产的瓶颈。工作面瓦斯涌出的主要来源是采空区瓦斯涌出,所以要治理工作面瓦斯涌出超限就有必要先搞清楚瓦斯在采空区内的浓度分布和运移规律。瓦斯在采空区运移的主要驱动力是漏风,漏风又是采空区上隅角瓦斯浓度超限和遗煤自燃的直接原因。在停风和无其他驱动力下,瓦斯运移依靠采空区内的瓦斯涌出源项驱赶空气向压力边界上流动,形成渗流场,强度由瓦斯涌出源项强度而定,通常比较微弱,瓦斯涌出也十分缓慢,故本文不考虑在此驱动力情况下的瓦斯运移规律。本文主要研究没有瓦斯抽采(以U型通风为例)、仅有瓦斯尾巷排放即U+L型通风系统、高位钻孔组和瓦斯尾巷同时抽排所形成的三种风流场下的采空区漏风规律以及漏风作用下的瓦斯运移规律。
     本文首先分析了覆岩层结构,瓦斯涌出源和影响瓦斯涌出因素等瓦斯运移的外部环境,通过多孔介质基础理论系统总结了采空区瓦斯运移特征和采空区瓦斯流动基本规律。又以相似理论为基础探讨了建立相似模拟试验模型所要遵循的相似定理,相似条件和相似准则。
     本文用瓦斯流动理论和相似理论作为基础,以沙曲矿14025工作面实际尺寸为原型建立了相似模拟试验模型。以理论分析和试验研究相结合的方法,通过能位测定、示踪技术等手段分别对只有通风一种驱动力,只有瓦斯尾排放以及高位钻孔组和瓦斯尾巷同时抽排等多种驱动力下的情况进行相似模拟,根据在相似采空区模型内测得的风压和自燃三带划分的指标风速分析出风流在采空区内的源汇类型、流向以及指标风速距工作面距离变化的趋势,从而总结出漏风规律。通过对三种不同驱动力下瓦斯浓度的进行测定,用折线图绘出沿采空区走向和倾向瓦斯浓度趋势,总结出瓦斯浓度分布规律和运移规律,并且比较了同一通风系统增大压差以及不同通风系统增大压差对瓦斯浓度分布的影响。
     通过对比分析发现瓦斯浓度曲线随着三种不同驱动力变化有向采空区深部移动的趋势,高位钻孔组和瓦斯尾巷同时抽排对上隅角瓦斯的治理效果最好,但仍然有一定局限性。通过对三种不同驱动力下采空区漏风规律和瓦斯浓度分布及运移规律的研究为生产实际中采空区自燃三带和上隅角瓦斯治理提供了依据。
With the continuous development of the shallow coal resources and mine mining strength increasing,, working face gas emission overrun has become the bottleneck; of restricting safety production in coal mine. The main source of gas emission from working face is goaf gas emission, so it is necessary to know concentration distribution and migration rule in the goaf before to manage working face gas emission overrun. The main driving force of gas migration in the goaf is air leak, which is the immediate reason for the upper corner gas concentration overrun in the goaf and the left coal self-igniting. Under the condition of blowing-out and no other driving force, gas migration is dependent on gas emission source term driving air to flow to the pressure boundary, forming percolation field, the intensity of which is decided by the intensity of gas emission source term, which is relatively feeble in general, and gas discharge is also completely slow, so this paper takes no account of the delivery law of methane under this circumstance of this driving force. This paper mainly studies on Air leakage law in the goaf and Gas migration rule under no gas extraction such as U ventilation system and tail roadway drainage gas and high position bores with tail roadway drainage gas.
     This paper first analyzes gas migration external environment including the structure of overlying strata and Gas emission source and influence factors of the gas emission, and systematically summarizes gas migration characteristics and the basic law of gas flow in the goaf by means of theory in porous media, and taking the similarity theory to analyze the simulation test model to flow similitude theorem and condition of similarity and similitude criterion.
     The paper with theory of gas flow and theory of similarity as a foundation established similar simulation test model which is based on the shaqu mine14025working face of actual size. The paper with method of theoretical analysis and experimental, makes analog simulation by means of pressure energy measuring and tracer technique under under no gas extraction such as U ventilation system and tail roadway drainage gas and high position bores with tail roadway drainage gas. In a similar model according to measuring wind pressure and wind speed, the paper analyses the source and sink types of air flow and flow direction and tendency of distance which is apart from working face, and sums up the air leakage rule. The paper summed up the gas concentration distribution and migration rule through measuring the gas concentration under three different driving force, drawing broken line graph for tendency of gas concentration along toward and along the tendency, Compared the influence of gas concentration distribution under the same ventilation system different pressure and different ventilation system and pressure.
     By comparison and analysis, the author finds that the gas concentration curve tends to migrate to deep goaf with the transformation of three different driving force, the harnessing effect on the upper corner gas is the best when high-order borehole group and gas tail roadway conduct pump drainage at the same time, however, this method is still having some limitations. Through studying the air leakage law of goaf, as well as the concentration distribution and the displacement and movement law of gas under three different driving force, so as to provide justification for gas control on spontaneous combustion "three zones" of the goaf and the upper corner in the production practice.
引文
[1]胡英俊.综放工作面采空区风流场分析研究[D].西安:西安科技大学2008.
    [2]郭嗣踪.不规则介质采场气体渗流问题的模糊数值解研究[J].科学技术与工程,2004,4(2):99-104.
    [3]刘剑.三维有限元法解算采场瓦斯浓度分布[z].阜新矿业学院学报,1990,9(3):47-52.
    [4]章梦涛等编著.煤岩流体力学[M].北京:科学出版社,1995
    [5]丁广骧,程远平.采场风流参数计算数学模型和数值计算方法[J].中国矿业大学学报,1990,(4).28-35
    [6]丁广骧,王岱.二维采空区非线性渗流问题和解法[J].湖南科技大学学报(自然科学版),1990,(2).125-129
    [7]J.贝尔著,李竞生等译:《多孔介质流体动力学》,中国建筑工业出版社,1983,8
    [8]齐庆杰,黄伯轩.用计算机模拟法判断采空区自然发火位置[J].矿业安全与环保,1997,(5).7-9
    [9]蒋曙光,张人伟.综放采场流场数学模型及数值计算[J].煤炭学报,1998,(3)258-261.
    [10]郭嗣踪.不规则介质采场气体渗流问题的模糊数值解研究[1].科学技术与工程,2004,4(2):99-104.
    [11]陈长华,郭嗣综.非均匀孔隙介质工作面气体稳定渗流的模糊解研究[J].煤炭学报,2002,27(5):488-494.
    [12]郭嗣琼.采场模糊渗流定解问题的可表示性[s].辽宁工程技术大学学报,2003,22(1):127-130.
    [13]杜礼明,杨运良.采空区三维非稳定流场的数学模型及热力风压的计算[J].焦作工学院学报,1999,18(3):169-172.
    [14]张瑞林,杨运良,马哲伦,等.自燃采空区风流场、温度场及热力风压场的计算机模拟[J].焦作工学院学报,1998,17(4):253-25
    [15]丁广骤,邸志乾,马维绪.二维采空区非线性渗流流函数方程及有限元解法[J].煤炭学报,1993,18(2):19-24.
    [16]王省身,陈全.综放采场自然发火规律研究[z].东北煤炭技术,1995,5:33-38.
    [17]丁广骤,杨胜强,张吉禄.采场复杂流场的流体动力相似与模化问题[J].中国矿业大学学报,1995,24(1):47-51.
    [18]丁广骧,柏发松.采空区混合气体运动基本方程及其有限元解法[J].中国矿业大学学报,1996,25(3):21-26.
    [19]崔凯,张东海,杨胜强.采空区遗煤自燃带确定及风流场数值模拟[J].山东科技大学学报,2002,21(4):88-92.
    [20]丁广骧.矿井大气与瓦斯三维流动[M].徐州:中国矿业大学出版社,1996.66.
    [21]邢玉忠,郭勇义,吴世跃.采空区紊流漏风相关系数的研究[J].煤炭学报,2001,(5).525-528.
    [22]孔海陵.煤层变形与瓦斯运移耦合系统动力学研究[D].:2009
    [23]周世宁.煤层瓦斯运动理论分析[J].中国矿业大学学报,1957,(1).
    [24]周世宁.试论抽排开采煤层本层煤体中瓦斯的途径[J]中国矿业大学学报,1959,(3).
    [25]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [26]孙培德.煤层瓦斯流动理论及其应用[A].中国煤炭学会1988年学术年会论文集[C]北京:煤炭工业出版社,1988.
    [27]SunPeide. Coal gas dynamics and its applications[J]. Scientia Geologica Sinica.,1994,3(1):66-72.
    [28]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [29]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [30]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [31]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [32]L. N. Germanovich. Deformation of Nature Coals. [J]Soviet Mining Science,1983, (5):377-381
    [33]杨其蜜,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [34]杨其蜜.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全,1987,2:9-16.
    [35]郭勇义,吴世跃,煤粒瓦斯扩散规律及扩散系数测定方法的研究[J].山西矿业学院 学报,1997,(1):16-19.
    [36]郭勇义,吴世跃.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报,1998,29(2):138-142.
    [37]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992
    [38]吴世跃.煤层瓦斯扩散与渗流规律的初步探讨[J].山西矿业学院学报,1994,12(3):259-263.
    [39]段三明,聂百胜.煤层瓦斯扩散-渗流规律的初步研究[J].太原理工大学学报,1998(4):15-17.
    [40]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M).北京:煤炭工业出版社,1 999.
    [41]Somerton W. H. Effect of stress on permeability of coal[J]. Int. J.Rock Meck.Mecb.Min. Sci.&Geomech. Abstr.,1975,12(2):151-158.
    [42]J. R.E.Enever, A. Henning. The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implication with Respect to Coalbed Methane Exploration and Reservoir Modeling. Proceedings of the 1997 International Coalbed Methane Symposium,1997:13-22.
    [43]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):67-72.
    [44]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1):21-28.
    [45]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,17(2):87-93.
    [46]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [47]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-9.
    [48]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,(3).
    [49]周晓军,马心校.穿层钻孔周围煤体次生应力变形及瓦斯流动规律的研究[J].重庆大学学报(自然科学版),1995,(5).
    [50]ZhaoY S, HuY Q, Wei JP, Yang D. The experimental approach to effeetive stress law of coal mass by effect of methane. Trans Portin Porous Media,2003, 53:235~244.
    [51]章梦涛,潘一山,粱冰.煤岩流体力学[M].北京科学出版社,1995.
    [52]梁冰,章梦涛,王泳嘉.煤和瓦斯突出的固流祸合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [53]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [54]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [55]梁冰,章梦涛.可压缩瓦斯气体在煤层中渗流规律的数值模拟[C].中国北方岩石力学与工程应用学术会议论文集.北京:科学出版社,1991.
    [56]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):36-39.
    [57]梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(2):32-35.
    [58]LOMIZE G M. Flow in fracture rocks[M]. Moscow.Gesenergoizdat,1951
    [59]林韵梅.实验岩石力学模拟研究[M].北京:煤炭工业出版社,1984.
    [60]蒋曙光,王省身.综放采场流场及瓦斯运移三维模型试验[J].中国矿业大学学报,1995,24(4):85-90.
    [61]秦跃平,朱建芳,陈永权等.综放开采采空区瓦斯运移规律的模拟试验研究[J]煤炭科学技术,2003,31(11):13-]6.
    [62]陈长华,王真,.采空区自然发火位置相似模拟模型[J].辽宁工程技术大学学报(自然科学版),2009,(S2).1-3
    [63]王真.采空区发火位置数值模拟及相似材料模拟研究[D].:2009.
    [64]芦倩.综采面“U+L”两进一回通风系统采场瓦斯运移规律模拟研究[D].:2010.
    [65]李霞.“一进两回”工作面通风系统瓦斯运移规律研究[D].:2010.
    [66]张运增.综采面采空区瓦斯浓度分布及运移规律试验研究[D].:2011.
    [67]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [68]钱鸣高,刘听成.矿山压力及其控制(修订本).北京,煤炭工业出版社,1991,79-134
    [69]钱鸣高,何富连等.再论采场矿山压力理论.中国矿业大学学报.1994,3.1-9
    [70]陈炎光,钱鸣高.中国煤矿采场围岩控制.徐州:中国矿业大学出版社,1994
    [71]李冀祺,流体力学基础.[M]北京:科学出版社,4-8,1983
    [72]徐挺,相似方法及其应用.[M]北京:北京机械工业出版社,16-20,1995
    [73]袁文忠,相似理论与静力学模型试验.[M]成都:西南交通大学出版社,7-15,1998
    [74]沈自求译,相似理论[M]北京:科学出版社,22-38,1995
    [75]屠兴模型实验的基本理论与方法[M]西安:西北工业大学出版社,9-12,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700