南瓜果实营养物质积累及相关酶变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南瓜在我国种植范围之广不亚于任何一种蔬菜作物,它具有很高的营养价值和较高的医疗保健作用,在改善饮食习惯和膳食结构方面起到了重要的作用。但我国南瓜品质相对较差,经济效益不高。随着我国经济国际化进程的加快,南瓜消费市场将面临国际化的竞争,提高南瓜果实品质的任务已十分迫切。同时随着人们生活水平的提高和对健康的重视,消费者对南瓜品质的要求也越来越高。而糖分、淀粉和β-胡萝卜素的含量是南瓜品质构成的重要指标。尤其含糖量不仅影响果实的甜度和着色,还是合成有机酸、维生素和类胡萝卜素等营养成分的基础原料。因此研究南瓜糖分积累机理对改善果实品质具有重要意义。
     本研究通过3个不同基因型南瓜果实发育过程中糖分的积累及其代谢酶变化动态模式的比较,研究不同基因型南瓜果实糖分及淀粉积累差异的内在机理,初步明确了南瓜可溶性糖及淀粉的积累模式和可溶性糖及淀粉代谢相关酶在南瓜品质形成中的作用。结果如下:
     通过对3个不同基因型南瓜的研究发现,“红香栗”果实发育的不同阶段积累营养成分不同,前期主要积累可溶性糖,后期是淀粉的积累阶段。“黄狼”主要在后期积累可溶性糖,淀粉在“黄狼”的整个生长过程都在不断的积累。“蜜本”南瓜在生长的前期主要为淀粉积累阶段,后期为糖分积累阶段。甜度指数以果糖×2+葡萄糖×1+蔗糖×1.45+五碳糖×1.52计算,可知收获时“蜜本”的甜度指数最高,为184.21,“黄狼”的甜度指数为153.84,“红香栗”甜度指数为115.90。果糖对“红香栗”、“黄狼”、“蜜本”果实的甜度指数的贡献分别为54.2%、42.0%和42.8%。就本试验而言,果糖含量水平是引起品种间甜度差异的主要因素;“红香栗”为淀粉积累型南瓜。
     β-胡萝卜素在3个品种中的累积差别非常大。含量变化都以逐渐增加为主要趋势,但增加幅度以“红香栗”最大,尤其5~6周的增加量为整个生长过程β-胡萝卜素积累总量的70%。“黄狼”在整个生长过程中变化比较缓慢,β-胡萝卜素积累量在3个品种中也最低。“蜜本”β-胡萝卜素为阶段积累型,分别在果实迅速膨大期和成熟前积累。由此可知“红香栗”为高β-胡萝卜素品种。
     南瓜授粉之后,果肉中主要的可溶性糖为葡萄糖和果糖,在蔗糖积累之前一直是果肉中主要的可溶性糖。“黄狼”和“蜜本”在生长发育过程中各糖分含量相差不多,积累趋势也相似,几乎同步积累。蔗糖的积累均出现在中后期,高蔗糖积累型的“蜜本”在生长的后期积累蔗糖速度快,并且在成熟时有更高的蔗糖含量。“红香栗”在整个生长过程中一直具有高的淀粉积累速度,明显优越于另外两个品种。
     果实发育前期,蔗糖分解酶类的活性明显大于蔗糖合成酶类,蔗糖代谢相关酶的净活性为较高的负值。因此光合产物进入果实后大多被分解、利用和消耗,蔗糖的积累较缓慢。果实发育中后期,蔗糖代谢相关酶分解酶类活性低于合成酶类活性,故果实中蔗糖的含量迅速增加。果实成熟时蔗糖分解酶类活性与合成酶类活性趋于平衡。本试验结果表明:净活性为负值时只有少量蔗糖积累;净活性为正值后才有蔗糖的积累。
     “红香栗”蔗糖的积累与SPS和SS活性的升高表现出正相关。随着SPS和SS活性的不断升高蔗糖含量增加。在3个品种中“红香栗”积累蔗糖最低。“黄狼”和“蜜本”在果实发育的前期均有较高的转化酶活性,这导致果肉中含有高浓度的己糖,这些己糖是组织快速生长的碳源,并且高浓度的己糖在果实生长初期对维持细胞内高的渗透压,保证充足的水分吸收具有重要的意义。“黄狼”和“蜜本”蔗糖的积累在生长的中期与SPS和SS活性的升高有关,后期蔗糖含量的升高与酸性转化酶活性的下降表现出极大的相关性。
     淀粉积累型南瓜“红香栗”淀粉的积累与淀粉磷酸化酶活性关系不大,与蔗糖合成酶活性的变化呈正相关。“蜜本”淀粉积累的初期也表现出与“红香栗”同样的淀粉积累模式。“黄狼”果实后期淀粉的快速积累与淀粉磷酸化酶活性的迅速升高有关。
     因此我们认为,果实发育后期SPS和SS活性的升高及果实发育后期转化酶活性的降低共同促成了果实中蔗糖的积累。蔗糖合成酶对淀粉积累型果实淀粉的积累起重要作用,淀粉磷酸化酶促成了非淀粉积累型果实中淀粉的积累。
Pumpkin was planted not less than any other vegetable crops in our country. Its nutrition value and medical healthe function are very high. And playing an important action at improving people’s bite and sup habit, even at changing our meal configuration. However, the poor quality of pumpkin fruits give rise to a great reduction in the economic benefit. With the development of economic internationalization, the market of pumpkin will face competition internationalization. So it is very urgent to improve the quality of pumpkin fruits. With the increasing living standard and the regarding of the health,there is a large demand for higher quality pumpkin fruits. sugar, starch andβ-Carotene contents are mainly guide line of the quality of pumpkin fruits,especially the contents of sugar. Because it affects the tastes and color of fruit and serve as a precursor as well for synthesis of organic acid, vitamin and carotenoids. Therefore, it is very imperative to study the mechanism of sugar accumulation for the ultimate goal of improving the quality of pumpkin.
     Three pumpkin varieties were used as research materials. The genotypic difference in sugar-accumulating patterns and its related sucrose metabolizing enzymes were systemically analyzed for elucidating the physiological aspects that are possibly responsible for the difference. The main results were as follows:
     By comparing three pumpkin genotypes, the result showed that the contents of the nutrition elements increasing were different at different growth stage with the“hongxiangli”fruits growing. At early stage dissolubility sugar was the main accumulation. Evening is the stage of accumulation of starch.“huanglang”accumulate total sugar main at evening. Starch accumulate through the developing fruit of“huanglang”. Starch was the main accumulation at early stage of the developing fruit of“miben”. Evening is the accumulation stage of sugar. According to Fructose×2+Glucose×1+Sucrose×1.45+Pentose×1.52, the sweetness index of“miben”was the highest at maturity. The sweetness index of“miben”was 184.21 and the sweetness index of“huanglang”was 153.84. meanwhile it was 115.90 in“hongxiangli”. The contribution ration of fructose to sweetness index were 54.2% and 42.0% in“hongxiangli”and“huanglang”, meanwhile it was 42.8% in“miben”. These findings suggested that the fructose level was the main determinant of sweetness in different genotypic pumpkin. Pumpkin of“hongxiangli”mainly accumulated starch.
     Cumulation ofβ-Carotene were varied in three pumpkin varieties. But all of their current were increase mainly, the biggest increse extent is“hongxiangli”in the there varieties, especially during 5~6 weeks, at this stage the accumulation ofβ-Carotene count for 70℅ in this developmental stage, while the cumulation of“huanglang”was slowly in this developmental stage, and was the lowest. It depends on the developmental stage ofβ-Carotene cumulation in“miben”, it continue increased at early stage, during 6~7 weeks its change was not evidently and retained at 11.0 mg/100 g·FW, even reduce more or less, but it rised at 17.7 mg/100 g·FW sharply. So we knowed that“hongxiangli”was a variety ofβ-Carotene accumulation.
     After pollination, glucose and fructose were the predominant soluble sugars detected in flesh of pumpkin before sucrose accumulation.“miben”and“huanglang”had no apparent differences in contents and had very similar accumulating patterns. The accumulation of sucrose occurred in mid-stages and latter-stages of fruit development. The genotype with high sucrose“miben”pumpkin accumulation had much intensive and faster sucrose accumulation with much higher sucrose content at maturity.“hongxiangli”had much intensive and faster starch accumulation, and was superior in starch accumulation.
     In early stage of fruit development, the sucrose cleavage enzymes behaved much higher activities than sucrose synthetic enzymes. The net activities between synthesis and cleavage had higher negative value. The photosynthetic substances translocated were decomposed, consumed and utilized, and the rate for sucrose accumulation was slower. In late developmental stage, the sucrose was quickly accumulated as a result of the sucrose cleavage enzymes behaved lower activities than sucrose synthetic enzymes at this stage, and they got balance till mature. In the present investigation, there was no or synthesis very low sucrose accumulation when the net activities was negative. After net activities was changed to positive, sucrose accumulation was enhanced.
     Sucrose accumulation coincided with the sucrose phosphate synthase activity and sucrose synthase activity in“hongxiangli”pumpkin. Sucrose accumulation increased with the hoist of sucrose phosphate synthase activity and sucrose synthase. There was higher invertase activities in early developing fruits in“miben”and“huanglang”, which gave rise to higher hexose contents in flesh. Hexose was the carbon source for vigorous growing tissues. Moreover, high hexose level was essential to maintain high osmotic pressure in cell and ensure sufficient water imbibition in early stage. At mid-stages, sucrose accumulation coincided with the hoist of sucrose phosphate synthase activity and sucrose synthase activity in“huanglang”and“miben”pumpkin. A reduction in acid invertase, would be a prerequisite for sucrose accumulation at latter-stages.
     The genotype with high starch“hongxiangli”accumulation had no relationship with starch phosphorylase, and coincided with the sucrose synthase activity.“miben”starch accumulation had the similar starch-accumulating patterns with“hongxiangli”at early stage. In latter developmental stage of“huanglang”, the starch was quickly accumulated as a result of the hoist of starch phosphorylase at this stage.
     According to our study, we thought that the sucrose accumulation in fruit due to both the high sucrose phosphate synthase and sucrose synthase activity and low invertase activity. Sucrose synthase acted an important role at starch accumulation in high-starch accumulation fruit, starch phosphorylase caused starch accumulation in low-starch accumulation fruit.
引文
1.褚盼盼,向长萍.中国南瓜营养品质的变化规律和相关性[J].中国蔬菜,2007,12:15-19
    2.常尚连.西瓜糖代谢及甜瓜酸性转化酶反义基因的西瓜遗传转化[D].泰安:山东农业大学,2006
    3.陈智民,王修梅.南瓜粉降血糖,降血压作用的人体研究[J].江西中医药,1994,25(2):50-50
    4.范文秀,李新峥.南瓜营养成分分析及功能特性的研究[J].广东微量元素科学,2005,12(2):38-41
    5.范文秀,李新峥.南瓜多糖的测定及南瓜多糖与口感性状相关性的研究[J].光谱实验室,2007,24(4):629-631
    6.冯利波,吴林科,买买提·托合提苏莱曼.贮藏期间马铃薯几个主要加工品质指标的变化[J].中国马铃薯,2006,20(2),88-90
    7.高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006:105-108
    8.宫春波,于翠芳,张永翠.功能性甜味剂-木糖醇的性质及其应用研究[J].中国食品添加剂,2003,5:83-86
    9.敬大江,谢洗龙,刘洁,等.南瓜中天然β-胡萝卜素的提取研究[J].山西食品工业,2003,1:2-2,17
    10.孔庆胜,王彦英.南瓜多糖的分离,纯化及其降血脂作用[J].中国生化药物杂志,2000,21(3):130-132
    11.李新峥,范文秀,刘振威,等.南瓜果实生长发育过程中主要营养成分的变化[J].华北农学报,2006,21(3):57-60
    12.李志凌.甜瓜果实糖分积累与蔗糖代谢相关酶变化规律的基因型差异研究[D].杭州:浙江大学,2003
    13.林德佩,华启衡,房超.印度南瓜及其杂种一代[J].长江蔬菜,1997,10:30-33
    14.林德佩.南瓜植物的起源和分类[J].中国西瓜甜瓜,2000,1:36-38
    15.刘玲,金同铭.反相高效液相色谱法对不同品种胡萝卜中的β-胡萝卜素含量的测定[J].华北农学报,1997,12(3):120-124
    16.刘兴满,陶俊,梁国华.枇杷β-胡萝卜素羟化酶基因片段的克隆和序列分析[J].扬州大学学报,2006,4:101-103
    17.刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究[J].园艺学报,2003,30(4): 457-459
    18.吕英民,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):258-265
    19.齐红岩,李天来,张洁,等.番茄果实发育过程中糖的变化与相关酶活性的关系[J].园艺学报,2006,33(2):294-299
    20.钱琼秋,刘慧英,朱祝军.嫁接西瓜果实发育过程中蔗糖代谢及相关酶调控的研究[J].浙江大学学报(农业与生命科学版),2004,30(3):185-289
    21.唐云明,黎南,陈定福.甘薯蔗糖酶的分离纯化及部分性质[J].植物生理学报,1996,22: 45-50
    22.万国福,车振明,王燕,等.南瓜果胶的提取方法[J].食品研究与开发,2005,26(4):57-58
    23.王萍,赵清岩,王若菁,等.籽用南瓜成熟过程中主要营养成分的变化[J].园艺学报,2001,28(1):47-51
    24.王萍,赵清岩.南瓜的营养成分药用价值及开发利用[J].长江蔬菜,1998,7:1-3
    25.王贵元,夏仁学,张红艳,等.红肉脐橙果肉中番茄红素和β-胡萝卜素含量的变化及外源ABA对其含量的影响[J].中国农业科学,2004,37(12):1986-1989
    26.王红秀,涂小杨,杜仁明,等.南瓜栽培技术[J].现代园艺,2007,12:20-21
    27.王永章,张大鹏.‘红富士’苹果果实蔗糖代谢与酸性转化酶和蔗糖合酶关系的研究[J].园艺学报,2001,28(3):259-261
    28.吴素玲,孙晓明,金敬宏.南瓜品质资源的分析测试[J].中国野生植物资源,2002,21(2):53-54
    29.吴增茹,金同铭.用高效液相色谱法测定不同品种南瓜中的β-胡萝卜素的含量[J].华北农学报,1998,13(3):141-144
    30.谢虹,梁建生,陈云,等.高等植物中蔗糖降解酶及其基因表达与调控[J].生命科学研究,2006,7(2):123-127
    31.薛应龙.植物生理学实验手册[M].上海:上海科学技术出版社,1985:135-138
    32.杨德.试验设计与分析[M].北京:中国农业出版社,2002:54-80
    33.杨鹏鸣,李桂荣,李孝伟,等.南瓜主要营养品质性状的变异及相关性研究[J].中国农学通报,2006,22(2):285-288
    34.于喜艳.甜瓜果实蔗糖磷酸合成酶基因cDNA片段的克隆及表达分析[D].泰安:山东农业大学,2003
    35.张芳,蒋作明,章恩明.南瓜的功能特性及其在食品工业中的应用[J].食品工业科技,2000,21(6):62-64
    36.张建农,满艳萍.南瓜果实营养成分测定与分析[J].甘肃农业大学学报,1999,34: 300-302
    37.张龙翔,张庭芳,李令媛,等.生化实验方法和技术[M].北京:高等教育出版社,1982
    38.张明方,蒋有条,余抗.甜瓜不同变种果实发育过程中的糖分转化与酶活性变化[J].浙江农业学报,1998,10(6):310-312
    39.赵智中,张上隆,徐昌杰,等.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报,2001,28(2):112-118
    40.郑诗超,屠大伟,宋来庆.南瓜淀粉的性质研究[J].粮油加工与食品机械,2003,24(3):50-59
    41.朱秀灵,车振明,唐洁,等.几种β-胡萝卜素测定方法比较研究[J].食品研究与开发,2004,25(5):126-128
    42.左耀明,叶士伶,万小兰,等.南瓜多糖的提取、分析和降血糖试验研究[J].食品科学,2001,22(12):56-58
    43.木糖价格趋势.资讯纵横[J].食品工业科技,2005,11:45-45
    44. Arai M, Mori H, Imaseki H. Roles of sucrose-metabolizing enzymes in growth of seedlings-Purification of acid invertase from growing hypocotyls of mung bean seedlings[J]. Plant Cell Physiol, 1991,32:1291-1298
    45. Arai M, Mori H. Imaseki H. Cloning and sequence of cDNAs for an intracellular acid invertase from etiolated hypocotyls of mung bean and expression of the gene during growth of seeding[J]. Plant Cell Physiol, 1992,33:245-252
    46. Atkinson R G, Perry J, Matsui T etal. A stress-, pathogenesis-, and allergen-related cDNA in apple fruit is also ripening-related[J]. New Zealand J Crop Hort Sci, 1996, 24:103-107
    47. Bachelier C, Granam J, Manoir J du etal. Integration of an invertase gene to control sucrose metabolism in strawberry cultivars[J]. Acta Horticul, 1997, 439:161-163
    48. Chengappa S, Guilleroux M, Phillips W. Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit[J]. Plant Mol Biol,1999 40:213-221
    49. Codt D, Roitsch T.The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots[J]. Plant Physiol Biochem,2006,44:656-659
    50. Daoust M A, Yelle S, Quoc B N. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit[J]. Plant Cell, 1999, 11:2407-2418
    51. Dali N, Michaud D, Yelle S. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits[J]. Plant Physiol, 1992, 99:434-438
    52. Darnel R L, Cano-Medrano R, Koch K E, et al. Differences in sucrose metabolism relative to accumulation of bird-deterrent sucrose levels in fruit of wild and domestic Vaccinium species[J]. Physiol Plant, 1994, 92:336-342
    53. Estruch J J, Beltran J P. Changes in invertase activities precede ovary growth induced by gibberellic acid in Pisum sativum[J]. Physiol Plant.1991, 81:319-326
    54. Gao Z, Petreikov M, Zamski E et al. Carbohydrate metabolism during early fruit development of sweet melon(Cucumis melo)[J]. Physiol Plant,1999, 106:1-8
    55. Gao Z F, Sahi M, Lips S H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato(Lycopersicon esculentum L.) as affected by salinity[J]. Plant Sci,1998,135:149-159
    56. Harada S, Fukuta S, Tanaka H, et al. Genetic analysis of the trait of sucrose accumulation in tomato fruit using molecular marker[J]. Breed Sci,1995, 45:429-434
    57. Hesse H, Sonnewald U, Willmitzer L. Cloning and expression analysis of sucrose phosphate synthase from sugar beet (Beta vulgaris L.) [J]. Mol Gen Genet, 1995, 247:515-520
    58. Hesse H, Willmitzer L. Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L.) [J]. Plant Mol Biol,1996,30:863-872
    59. Hubbard N L, Pharr D M, Huber S C. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species[J]. Physiol Plant, 1991, 82:191-196
    60. Hubbard N L. Hubbard S C, Pharr D M. Sucrose phosphate synthase and acid invertase as determinates of sucrose concentration in developing musk melon (Cucumis melo L.)fruits[J]. Plant Physiology,1989,91:1527-1534.
    61. Huber S C, Huber J L. Role and regulation sucrose phosphate synthase in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:431-445
    62. Iwona Ciereszko, Agata Zambrzycka, Anna Rychter. Sucrose hydrolysis in bean roots (Phaseolus vulgaris L.)under phosphate deficiency[J]. Plant Sci, 1998, 133:139-144
    63. Kazawa A T, Okamoto K. Biosynthesis and metalbolism of sucrose[J]. J Biochem Plant,1980,3:199-220
    64. Klaan E M, Hall B, Bennett A B. Antisense acid invertase (TIVI) gene alters soluble sugar composition and size in transgenic tomato fruit[J]. Plant physiology,1996,112:1321-1330
    65. Klann E M, Chetelat R T, Bennett A B. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit[J]. Plant Physiol,1993,103:863-870
    66. Klein R R, Crafts Brandner S J, Salvucci M E. Cloning and developmental expression of the sucrose phosphate synthase gene from spinach[J]. Planta,1993,190:498-510
    67. Komatsu A, Takanokura Y, Moriguchi T et al. Cloning and molecular of cDNA encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.)[J]. Mol Gen Genet, 1996, 252:346-351
    68. Komatsu A, Takanokura Y, Moriguchi T et al. Differential expression of three sucrosephosphate synthase isoforms during accumulation in citrus fruit (Citrus unshiu Marc)[J]. Plant Sci, 1999,140:169-178
    69. Krishnan H B, Pueppke S G. Cherry fruit invertase: partial purification,characterization and activity during fruit development[J]. J Plant Physiol,1990,135:662-666
    70. Lester G E, Arias L S, Lim M G. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation[J]. J Amer Soc Hort Sci, 2001,126:33-36
    71. Lingle S E, Dunlap J R. Sucrose metabolism in netted muskmelon fruit during development[J]. Plant Physiol,1987,84:386-389
    72. Lingle S E, Dyer J M. Cloning and expression of sucrose synthase-1 cDNA from sugarcane[J]. J Plant Physiol,2001,158:129-131
    73. Lingle S E. Sugar metabolism during growth and development in sugarcane internodes.Crop Sci,1999,39:480-486
    74. Masakazu Endo, Nakagawa H, Ogura N et al. Size and Levels of mRNA for acid invertase in ripe tomato fruit[J]. Plant Cell Physiol,1990,31:655-659
    75. McCollum T G, Huber D J, Cantliffe D J. Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development [J]. J Amer Soc Hort Sci,1988,113:399-403
    76. Miron D, Schaffer A A. Sucrose phosphate synthase,sucrose synthase,and invertase activities in developing fruit of Lycopersicon esculentum Mill,and the sucrose accumulation Lycopersicon hirsutum Hub.and Bonpl[J]. Plant Physiol,1991,95:623-627
    77. Ohyama A, Ito H, Sato T. Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit[J]. Plant Cell Physilogy,1995,36:369-376
    78. Ranwala A P, Lwanami S S, Masuda H. Acid and neutral invertase in the mesocarp of developing musk melon(Cucumis melo L.cv Prince) fruit[J]. Plant Physiol,1991,96:881-886
    79. Robinson N L, Hewnt J D, Bennett A B. Sink metabolism in tomato fruit Developmental changes in carbohydrate metaboLizing enzymes[J]. Plant Physiol,1988,87:727-730
    80. Roitsch T, Tanner W. Cell wall invertase:bridging the gap[J]. Bot Acta,1996,109:93-96
    81. Schaffer A A, Aloni B, Fogelman E. Sucrose metabolism and accumulation in developing fruit of cucumis[J]. Phytochem,1987,26:1883-1887
    82. Schmalstig J G, Hitz W Z. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves[J]. Plant Physiol,1987,85:407-412
    83. Sebkova V, Unger C, Hardegger M, et al. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota[J]. Plant Physiol,1995,108:75-83
    84. Stommel J R, Simon P W. Multiple forms of invertase from Daucus carota cell cultures[J].Phytochem,1990,29:2087-2089
    85. Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning[J]. Trends in Plant Sci,1999,4:401-407
    86. Sugiharto B, Sakakibara H,Sumadi et al. Differential expression of two genes for sucrose phosphate synthase in sugarcane: molecular cloning of the cDNAs and comparative analysis of gene expression[J]. Plant Cell Physiol,1997,38:961-965
    87. Tanase K, Yamaki S. Purification and characterization of two sucrose synthase isoforms froms from japanese pear fruit[J]. Plant Cell Physiol,2000,41:408-414
    88. Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning[J]. Plant Cell,1999,11:177-189
    89. Valdez Alarcon J J, Ferrando M, Salerno G, et al. Characterization of a rice sucrose phosphate synthase-encoding gene[J]. Gene,1996,170:217-222
    90. Vizzotto G, Pinton R, Varanini Z, et al. Sucrose accumulation in developing peach fruit[J]. Physiol Plant,1996,96:225-230
    91. Worrell A C, Bruneau J M, Summerfelt K. Expression of a maize sucrose phosphate synthase in tomato leaf carbohydrate partitioning[J]. Plant Cell,1991,3:1121-1130
    92. Yasuyoshi H, Li X X, Yutaka O. Sucrose accumulation and related metabolizing enzyme activities in seeded and induced parthenocarpic muskmelons[J]. J Amer Soc Hort Sci,2001,126:676-680
    93. Yelle S, Hewitt J D, Robinson N L, et al. Sink metabolism in tomato fruit-Analysis of carbohydrate assimilation in a wild species[J]. Plant Physiol,1998,87:737-740
    94. Zhang Z Q. Regulation of Photosynthetic Carbon Partitioning Between Sucrose and Starch in Plant Leaves[J]. Plant Physiology Communications,1989,(6):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700