表面引发聚合Fe_3O_4/P(MAA-co-NVP)磁性复合微球的制备、表征与药物释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物工程和生物医学相关领域研究的发展,磁性高分子微球作为一种新型功能材料,越来越受到人们的关注。探索磁性高分子微球的智能化、功能化以及将这些微球应用于靶向给药、细胞分离、细胞标记、临床诊断、生物传感和固定化酶等领域是磁性高分子微球研究的热点。磁性高分子微球制备方法很多,比如溶胀法、包埋法、单体聚合法,而单体聚合法又包括悬浮聚合法、乳液聚合法、分散聚合法等,但这些聚合方法都有不尽如人意的地方,一个重要的原因就是无机磁性粒子与有机高分子的结合多是通过氢键以及物理或化学吸附的方式实现的,这种吸附方式容易发生脱附,使两者结合得并不牢固,所以人们在探索新的方法来解决这个问题。本文围绕功能性磁性高分子微球的制备、表征及应用做了两方面的研究工作。第一,采用表面引发自由基分散聚合方法设计并制备了核-壳结构的Fe304/P(MAA-co-NVP)交联磁性复合微球;第二,研究了Fe304/P(MAA-co-NVP)交联磁性复合微球的pH响应性、环境稳定性及咖啡因的药物缓释行为。
     1采用化学共沉淀法制备了Fe3O4纳米粒子,然后将Fe3O4表面包一层硅烷偶联剂APTES,使Fe3O4表面氨基化,接着通过Fe3O4表面氨基与4,4’-二环己基甲烷二异氰酸酯(H12MDI)的异氰酸酯键NCO之间发生分子间氢转移反应将H12MDI连接到Fe3O4表面,使Fe3O4表面带有异氰酸酯键NCO,之后利用Fe3O4表面异氰酸酯键NCO与双官能偶氮引发剂2,2'-偶氮[2-甲基-N-(2-羟乙基)丙酰胺(AMNHP)的羟基之间发生分子间氢转移反应将偶氮引发剂AMNHP接到Fe304表面,这样我们就制备了表面带引发剂的Fe3O4。然后采用表面引发自由基聚合法,以甲基丙烯酸和N-乙烯吡咯烷酮为聚合单体制备了核-壳结构的Fe3O4/P(MAA-co-NVP)交联磁性复合微球。通过DSC定量分析接到Fe304表面偶氮引发剂AMNHP的含量。红外光谱(FT-IR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线衍射(XRD)表明P(MAA-co-NVP)成功地包在了Fe3O4纳米粒子表面。通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)我们能够看到Fe3O4是球形,平均粒径12nm左右,团聚现象比较严重。Fe304/P(MAA-co-NVP)交联磁性微球呈现明显的核-壳结构特征,分散性较好。热分析(TGA)表明Fe3O4/P(MAA-co-NVP)交联磁性微球有很好的热稳定性,作为核的Fe3O4与作为壳的P(MAA-co-NVP)之间存在着较强的相互作用,它们之间存在化学键。振动样品磁强计(VSM)分析证明,制备的Fe3O4/P(MAA-co-NVP)交联磁性微球具有超顺磁性。
     2用激光粒度分析仪测定Fe3O4/P(MAA-co-NVP)交联磁性微球在不同pH溶液里粒径的变化,分析Fe3O4/P(MAA-co-NVP)交联磁性微球的pH响应性,结果表明,磁性微球有良好的磁响应性。以咖啡因为模拟药物进行的药物释放行为的研究表明,咖啡因在pH=7.4的缓冲溶液中的释放速率较快,约在8小时达到平衡;而在pH=1.4的缓冲溶液中的释放速率较慢,达到平衡需要更长的时间。Fe3O4/P(MAA-co-NVP)交联磁性微球的这种卓越的性能表明其可以应用于对胃有刺激且需要在肠道中吸收的药物,微球在体液中可以保持相结构和磁靶向稳定性。释放动力学表明,药物释放受共聚物的伸展平衡及Fickian扩散定律控制。以上研究表明,Fe3O4/P(MAA-co-NVP)交联磁性微球是一种合适的药物控制释放的载体。
With development of the bio-engineering and biomedical research as well as some related fields, magnetic polymer microspheres as a new functional materials, have attracted more attention. The exploration for intelligentization, functionalization and applications of these microspheresin drug delivery, cell separation, cell markers, clinical diagnosis, biological sensing and the immobilized enzyme has been the hot research subject of magnetic polymer microspheres. Many studies have described methods to prepare the microspheres containing inorganic magnetic nanoparticles such as swelling method, embedding method, monomer polymerization. The monomer polymerization approaches also include suspension polymerization, emulsion polymerization, dispersion polymerization, etc. However, these polymerization methods do not come up to expectations to some extent, One important reason of which is that inorganic magnetic particles combine with organic polymer by the hydrogen bonds and/or other physical or chemical absorption mostly. which is apt to desorption, leading to unstable combination. People are exploring new ways to solve this problem. This study contains two areas focusing on preparation, construction and characterization, application of functional magnetic polymer microspheres. First, we design and construct a magnetic composite microsphere consisting of Fe3O4 nanoparticles chemical-covalently encapsulated with poly(methacrylic acid-co-N-vinyl pyrrolidone) (P(MAA-co-NVP)) cross-linked copolymers by a surface-initiated radical dispersion polymerization route. Second, we study pH responsiveness, environmental stability, magnetic rheological and caffeine drug release behavior of the Fe3O4/P(MAA-co-NVP) cross-linked magnetic composite microspheres.
     1. We prepared Fe3O4 nanoparticles by chemical coprecipitation and then amino groups were coated on the surface of magnetite nanoparticles via surface modification of 3-amino propyltriethyloxy silane (APTES). Next,1,1-methylene bis-(4-isocyanato-cyclohexane) (H12MDI)) was attached onto the surface of the APTES-modified Fe3O4 nanoparticles through an amide bond linkage formed by a hydrogen transfer chemical reaction between amino groups of the APTES-modified Fe3O4 and isocyanate groups of the H12MDI, introducing isocyanate groups (-NCO). Subsequently,2,2'-azobis[2-methyl-N-(2-hydroxyethyl) propionamide] (AMNHP) was tailored onto the surface of the H12MDI-functionalized Fe3O4 nanoparticles through an ester bond juncture, and Fe3O4 azo initiator was obtained by the treatment of surface isocyanate groups of functionalized magnetic nanoparticles with hydroxyl groups of the AMNHP. Fe3O4/P (MAA-co-NVP) cross-linked magnetic composite microspheres with core-shell structure were prepared by a surface-initiated radical dispersion polymerization route of of methyl methacrylate and N-vinyl pyrrolidone monomer. The content of azo initiator AMNHP introducing to the surface of Fe3O4 was analysised by DSC. observations by FT-IR, SEM, TEM and XRD indicated that the P(MAA-co-NVP)copolymer has successfully covered the Fe3O4 nanoparticles. It can be observed by TEM and SEM that the Fe3O4 particles prepared are of spherical shape and an average particle diameter is about 12 nm under the experimental condition. The distribution of unimproved Fe3O4 nanoparticles assumes an aggregation state. Fe3O4/P(MAA-co-NVP) miceospheres bear an obvious core-shell structure characteristic with good distribution. Thermal analysis (TGA) showed that Fe3O4/P (MAA-co-NVP) crosslinked microspheres have good thennal stability, and there are strong interactions between Fe3O4 as core and P (MAA-co-NVP) as shell, implying chemical bonds between them. The VSM analysis testifies that Fe3O4/P(MAA-co-NVP) magnetic microspheres are superparamagnetic.
     2. We analysis pH response of Fe3O4/P(MAA-co-NVP) crosslinked microspheres by the change in particle size of Fe3O4/P(MAA-co-NVP) crosslinked microspheres at different pH solution with a laser particle size analyzer. The results show that the magnetic microspheres bear good magnetic response. The invitro controlled release examination based on caffiene as the model drug exhibited that the release rate in pH 7.4 buffer solution was faster than in pH 1.4 buffer solution, corresponding to their pH swelling. This superior performance of Fe3O4/P(MAA-co-NVP) crosslinked microspheres can be applied to the drugs which stimulate the stomach and is absorpted in the intestinal.The kinetic modeling demonstrated that the drug release is controlled by a balance between copolymer chain relaxation and Fickian diffusion process, and the proposed carrier is suitable for a magnetic targeting drug delivery system.
引文
[1]F. Gerardo. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling[J]. Solid. State. Commun.,2004,130:783-787.
    [2]R. Fan, H. Chen, Z. Gui, et al. A new simple hydrothermal preparation of nanocrystalline magnetite[J]. Mater. Res. Bull.,2001,36:497-502.
    [3]杨华,黄可龙,刘素琴,等.水热法制备的Fe304磁流体[J].J Magn Mater Devices.,2003,34:2-6.
    [4]M. Arturo, Q. Lopez, R. Jose. Magnetic iron oxide nanopartieles synthesized via microemulsion[J]. J. Colloid. Interface. Sci.,1993,158:446-451.
    [5]成国祥,张仁柏.反相胶束微反应器的特性与Fe304纳米微粒制备[J].兵器材料科学与工程,1998,21(6):27-30.
    [6]何秋星,杨华,刘素琴,等.转相法制备高比表面积纳米Fe304磁性粉体[J].精细化工,2003,20(5):257-264.
    [7]C. B. Murray, S. Sun, W. Gaschler, et al. New aspects of nanocrystal research[J]. IBM J Res&Dev.,2004,45-47.
    [8]S. Sun, C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and theirassembly into magnetic superlatices[J]. J. Appl. Phys.,1999,85:4325-4330.
    [9]李德才.磁性液体理论及应用[M].北京:科学出版社,2003:3-8.
    [10]J. H. Wu, S. P. Ko, H. L. Liu. Sub 5nm Fe3O4 nanocrystals via coprecipitation method[J]. Colloids. Surf. A.,2008,313:268-272.
    [11]C. Y. Wang, G. M. Zhu, Z. Y. Chen, et al. The preparation of magnetite Fe3O4 and its morphology control by a novel are-electrode position method[J]. Mater. Res. Bull.,2002,1885:1-5.
    [12]陈捷,薛博.新型磁性亲和载体的制备及其对溶菌酶的吸附[J].大津人学学报,2001,34(1):103-106.
    [13]王斌,薛博,汤谷平.靶向抗肿瘤药物载体系统研究近况[J].广东药学院学报,1998,14(4):31-36.
    [14]张津辉,蒋中华.生物医学研究的有力工具-磁性微载体[J].解放军医学情报,1996,10:94-97.
    [15]任广智,李振华,何炳林.磁性高分子微球用于固定化酶的研究进展[J].离子交换与吸附,2000,16:83-87.
    [16]景晓燕,李茹民,王鹏.磁性微球及其在生化分离分析中的应用[J].分析化学,1999,27:1462-1467.
    [17]J. Ugelstad, T. Ellingsen, R. Berge, et al. Process for preparing magnetic polymer particles [P]. US Patent 4774265,1988-9-27.
    [18]谢钢,张秋禹,李铁虎.磁性高分子微球[J].高分子通报,2001,6:38-45.
    [19]T. Bahar, S. Serdar. Immobilization of glucoamylase on magnetic polystyrene particles[J]. J. Appl. Polym. Sci.,1999,72(1):69-73.
    [20]N. Yanase, H. Noguchi, H. sakura. Preparation of magnetic latex particles emulsion polymerization in the presence of a ferrofluid[J]. J. Appl. Polym. Sci., 1993,50(5):765-776.
    [21]邱广明,邱广亮.大粒径磁性高分子微球的制备[J].应用化学,1997,14(1):74-77.
    [22]K. Tokuoka, M. Senna, H. Kuno. Preparation of inorganic/polymeric composite micropheresby direct suspension polymerization[J]. J. Mater. Sci.,1986,21: 493-496.
    [23]张洪刚,陆书来,成国祥.悬浮聚合法制备磁性分子印迹聚合物微球[J].功能高分子学报,2007,3:257-261.
    [24]陈平,杜惠,刘凤岐,等.包覆超微粒的苯乙烯/丙烯酸/丙烯酸丁酯核-壳型复合共聚物的性能研究[J].高等化学学报,1998,19(1):148-151.
    [25]邱广明,章贤明.磁性聚苯乙烯微球的合成和特性[J].高分子材料科学工程,1993,2(2):38-43.
    [26]谢钢,张秋禹,罗正平,等.单分散磁性P(SA/MAA)微球的制备[J].高分子学报,2002,(3):314-315.
    [27]P. A. Dresco, V. S. Zaitsev, R. J. Gambino. Preparation and properties of magnetite nanoparticles [J]. Langmuir,1999,15:1945-1969.
    [28]V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov. Physical and chemical properties of magnetite and magnetite polymer nanoparticles and their colloidal dispersions [J]. J. Colloid. Interface. Sci.,1999,212:49-61.
    [29]邱广明,高晓松,杨春雁,等.Fe3O4/P(St-AA)核-壳复合微球的制备和表征[J].应用化学,1996,13:6-9.
    [30]李孝红,孙宗华.磁性高分子微球的合成研究-带醛基磁性高分子微球的合成及表征[J].离子交换与吸附,1996,12:486-492.
    [31]丁小斌,孙宗华,万国祥,等.热敏性高分子包裹的磁性微球的性质及表征 [J].高分子学报,1998,10(5):628-631.
    [32]李欣,李朝心,何炳林.磁性珠状纤维素制备工艺研究[J].离子交换与吸附,1997,13(5):378-384.
    [33]邱广亮,邱广明,李咏兰,等.纳米级磁性微粒的制备及固化纤维素酶的研究[J].药物生物技术,2001,8(4):197-199.
    [34]C. Menage, V. Cabuil. Synthesis of magnetic liposomes [J]. J. Colloid. Interface. Sci.,1995,169:251-253.
    [35]M. Stefan. Methods and materials for high gradientmagnetic separation of biological materials. WO Patent 90/07380,1990:1.
    [36]J. J. Chalmers, Y. Zhao, M. Nakamura, et al. Instrument to determine the magnetophoretic mobility of labeled biological cells and paramagnetic particles [J]. J. Mag. Magn. Mater.,1999,194:231-241.
    [37]罗正平,张秋禹,吴昊,等.微米级PSt, P(St/MAA)磁性高分子微球的合成[J].功能高分子学报,2002,6:147-150.
    [38]R. S. Molday, S. P. Yen, A. Rembaum. Application of magnetic microspheres in labeling and separation of cells[J]. Nature,1977,268:437-438.
    [39]Briscoe. Local Prevention of trombosis in animal arteries by means of magnetic targeting of as Pirin-loaded red cells[J]. J. lmmunnol.,1997, (159):3247-3251.
    [40]P. Friedl, P. B. Noble, K. S. Zaekner. T lymphocyte loeomotion in a three-Dimensional eollagen matrix. ExPression and function of cell adhesion moleeules[J]. J. lmmunnol.,1995,154(10):4973-4985.
    [41]C. H. Poynton, C. L. Reading. Affinity ligand coated mangetic colloids for selective cell separation[P]. US 4920061,1990-04-24.
    [42]E. F. Ullman, K. Nuriht, V. E. Ghazaorssian, L. Weng, Partiele separation and assay methods using mangetie Partieles[P]. EP 0230768,1986-12-19.
    [43]S. K. Jones, J. G. Winter. Experimental examination of atagreted hyperthermia system using in ductively heated ferromagnetic microspheres in rabbit kidney [J]. Phys. Med. Biol.,2001,46:385-398.
    [44]A. S. Lubbe, C. Begreman, H. Riess. Clinical experiences with magnetic dragtagreting, A Phase I study with 4 epidoxorubicin in14 patients with advancedSolid tumors [J].Cancer. Res.,1996,56:4686-4693.
    [45]张阳德,龚连生.阿霉素白蛋白磁纳米粒在正常肝脏的靶向性.中国现代学杂志,2001,11:4-7.
    [46]张阳德,王荣兵,龚连生,等.半乳糖化白蛋白磁性阿霉素纳米粒在家兔体内的药物动力学研究[J].中国医学工程,2004,12(3):4-8.
    [47]U. O. Hafeli, Magnetically modulated the rapeutic systems[J]. Int. J. Pharm., 2004,277:19-24.
    [48]M. Y. Ariea, H. Yavuz, S. Patir, A. Denizli. Immobilization of glucoamylase onto spacer-arm attached magnetic Poly(mehtylmehtaeyrlate) microspheres: characterization and application to a continuous flow reaetor[J]. J. Mol. Catal. B: Enzym.,2000,11:127-138.
    [49]邱广明,孙宗华.磁性高分子微球共价结合中性蛋白酶.生物医学工程杂志,1995,12(3):209-213.
    [50]邱广亮,张艳茹.磁性载体用于酶固定化方面的研究.内蒙古师范大学学报,1998,27(2):129-133.
    [51]B. Zuzana, S. Mareela, et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and Poly(HEMA-co-EDMA) and magnetic Poly(HEMA-co-EDMA) microspheres[J]. J. Chromatogr. B,2002,770,25-34.
    [52]B. Rittieh, A. SPanova, Y. Ohlashennyy, J. Lenefld, f. Rudol, H. Daniel, M. Benes..Charaeterization of deoxyribonuclease 1 immobilizedOn magnetic hydroPhilic Polymer Particles[J]. J. Chromatogr. B:Analytical Technologies in the Biomedical and Life Seiences,2002,774(1):25-31.
    [53]V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions[J]. J. Colloid. Interface Sci.,1999,212:49-57.
    [54]S. E. David, B. Erdem, R. A. Hunsicker, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation[J]. J. Am. Chem. Soc.,2001,17(5):2664-2669.
    [55]V. G. Belikov, A. G. Kuregyan, G. K. Ismailova. Standardization of magnetite[J]. Pharm. Chem. J.,2002,36(6):333-336.
    [56]T. Hiroki, T. Akio, M. Kenya, et al. Surface hydroxyl site densities on metal oxides as ameasure for the ion-exchange capacity[J]. J. Colloid. Interface. Sci., 1999,209:225-231.
    [57]T. Hiroki, M. Kenya, T. Akio, et al. Mechanism of hydroxylation of metal oxide surfaces[J]. J. Colloid. Interface. Sci.,2001,243:202-207.
    [58]Z. X. Sun, F. W. Su, W. Forling, et al. Surface characteristics of magnetite in aqueous suspension[J]. J. Colloid. Interface. Sci.,1998,197:151-159.
    [59]J. Deng, C. Hea, Y. Peng, J. Wang, X. Long, P. Li, and S. C. A. Chan. Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure[J]. Synth. Met.,2003,139:295-301.
    [60]Y. L. Luo, L. H. Fan, G. L. Gao, Y. S. Chen, X. H. Shao. Fe3O4/PANI/P(MAA-co-NVP) multilayer composite microspheres with electric and magnetic features:Assembly and characterization [J]. J. Nanosci. Nanotechnol.,2009,9 (6):1-14.
    [61]S. Rana. A. Gallo. R. S. Srivastava. R. D. K. Misra. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery:Functionalization, conjugation and drug release kinetics[J]. Acta. Biomater.,2007,3:233-242.
    [62]S.Ghosh. Novel poly (ethylene glycol) embedded polyamidoamine side chain dendritic polyurethane architecture:Synthesis and preliminary studies on the cytotoxicity and interaction with tryptophan molecule[J].Biomacromolecules, 2004,5:1602-1605.
    [63]P. Ravichandran, K. L. Shantha, K. P. Rao, Preparation swelling characteristics and evaluation of hydrogels for stomach specific drug delivery[J]. Int. J. Pharm., 1997,154:89-94.
    [64]J. F. Yaung, T. K. Kwei. pH-sensitive hydrogels based on polyvinylpyrrolidone-polyacrylic acid (PVP-AA) semiinterpenetrating networks (semi-ipn):swelling and controlled release[J]. J. Appl. Polym. Sci.,1998,69:921-930.
    [65]D. M. Devine, C. L. Higginbotham. The synthesis of a physically crosslinked NVP based hydrogel[J]. Polymer,2003,44:7851-7860.
    [66]P. Bures, N. A. Peppas. Molecular dynamics of pH-sensitive hydrogels based on poly(acrylic acid)[J]. ACS. Polym. Mater. Sci. Eng.,2000,83:506-507.
    [67]J. Y. Lee, P. C. Painter, M. M. Coleman. Hydrogen bonding in polymer blends.3. Blends involving polymers containing methacrylic acid and ether groups [J]. Macromolecules,1988,21:346-354.
    [68]J. Y. Lee, P. C. Painter, M. M. Coleman. Hydrogen bonding in polymer blends.4. Blends involving polymers containing methacrylic acid and vinylpyridine groups[J]. Macromolecules,1988,21:954-960.
    [69]A. Moshaveriniaa, N. Roohpourb, S. Ansarib, M. Moshaveriniac, S. Schrickera, J. A.Darrd, I. U. Rehmanb. Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC)[J]. Dent. Mater.,2009, in press.
    [70]F. Gasparrini, D. Misiti, R. Rompietti, C. Villani. New hybrid polymeric liquid chromatography chiral stationary phase prepared by surface-initiated polymerization[J].J. Chromatography. A,2005.,1064:25-38.
    [71]J. Parvole, J. P. Montfort, L. Billon. Formation of inorganic/organic nanocomposites by nitroxide-mediated polymerization in bulk using a bimolecular system[J]. Macromol. Chem. Phys.,2004,205:1369-1378.
    [72]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,2003,85-88.
    [73]Z. Q. Hu, M. Tao, Z. C. Zhang, "Gradient" polymer prepared by complex-radical terpolymerization of styrene, maleic anhydride, and N-vinyl pyrrolidone via gamma ray irradiation by use of a RAFT method 2. Used in dispersion polymerization of styrene as a stabilizer [J]. Colloid. Surf. A:Physicochem. Eng. Aspects.,2007,302:307-311.
    [74]M. S. Cho, S. T. Lim, I. B. Jang, H. J. Choi, M. S. Jhon. Encapsulation of spherical iron-particle with PMMA and its magnetorheological particles [J]. IEEE Trans Magn.,2004,40:3036-3038.
    [75]Y. Wu, J. Gao, W. Yang, C. Wang, S. Fu. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres[J]. Polymer,2006,47: 5287-5294.
    [76]X. Li, H. Yang, W. Fu, C. Wu, S. Liu, H. Zhu, X. Pang, Preparation of low-density superparamagnetic microspheres by coating glass microballoons with magnetite nanoparticles[J]. Mater. Sci. Eng. B.,2006,135:38-43.
    [77]J. S. Choi, B. J. Park, M. S. Cho, H. J. Choi. Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions [J]. J. Magn. Magn. Mater.,2006,304:374-376.
    [78]F. Guo, Q. Zhang, B. Zhang, H. Zhang, L. zhang.. Preparation and characterization of magnetic composite microspheres using a free radical polymerization system consisting of DPE[J]. Polymer,2009,50:1887-1984.
    [79]S. Yang, H. Liu, H. Huang, Z. Zhang. Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure[J]. J. Colloid. Interface. Sci.,2009,338: 584-590.
    [80]Z. Qian, Z. Zhang, Y. Chen. A novel preparation of surface-modified paramagnetic magnetite/polystyrene nanocomposite microspheres by radiation-induced miniemulsion polymerization[J]. J. Colloid. Interface. Sci., 2008,327:354-361.
    [81]C. C. Yang. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC[J]. J. Membr. Sci.,2007,288: 51-60.
    [82]M. J. Syu, Y. M. Nian, Y. S. Chang, X. Z. Lin, S. C. Shiesh, T. C. Chou. Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate)[J]. J. Chromatogr. A.,2006,1122: 54-62.
    [83]J. H. Park, M. A. Lee, B. J. Park, H. J. Choi. Preparation and electrophoretic response of poly(methyl methacrylate-co-methacrylic acid) coated TiO2 nanoparticles for electronic paper application[J]. Curr. Appl. Phys.,2007,7: 349-351.
    [84]M. Eid. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation[J]. Nucl. Instrum. Methods. Phys. Res. Sect. B.,2008,266:5020-5026.
    [85]L. A. Whitea, S. Jonsonb, C. E. Hoylea, L. J. Mathiasa. Synthesis of 3-alkylated-l-vinyl-2-pyrrolidones and preliminary kinetic studies of their photopolymerizations[J]. Polymer,1999,40:6597-6605.
    [86]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988,434-436.
    [87]宁青菊,谈国强,史永胜.无机材料物理性能[M].北京:化学工业出版社,2006,231-242.
    [88]G. T. Rado, H. Suhl. Magnetism[M]. New York and London:Academic Press, 1963,272-298.
    [89]A. E. Berkowitz, E. Kneller. Magnetism and metallurgy[M]. New York and London:Academic Press,1969,393-409.
    [90]A. Nicholas, D. Burke, D. Harald, H. Stover. Magnetic nanocomposites:. preparation and characterization of polymer-coated iron nanoparticles[J].Chem. Mater.,2002,14:4752-4761.
    [91]S. Santra, R. Tapec, N. Theodoropoubu. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:the effect of nonionic Surfactants[J].Langmuir,2001,17:2900-2906.
    [92]Y. Wu, J. Gao, W. Yang, C. Wang, S. Fu. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres[J]. Polymer,2006, 47:5287-5294.
    [93]C. H. Zhang, Y. L. Luo, Y. S. Chen, Q. B. Wei, L. H. Fan. Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels[J]. J. Biomater. Sci:Polym. Ed.,2009,20 (7-8):1119-1135.
    [94]S. Chen, M. Liu, S. Jin, Y Chen. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network[J]. J. Appl. Polym. Sci.,2005, 98(4):1720-1726.
    [95]G. T. Chao, H. X. Deng, Q Huang, W. J. Jia, W. X. Huang, Y. C. Gu, H. P. Tan, L. Y. Fan, C. B. Liu, A. L. Huang, K Lei, C. Y. Gong, M. J. Tu, Z. Y. Qian. Preparation and characterization of pH sensitive semi-interpenetrating network hydrogel based on methacrylic acid, bovine serum albumin (BSA), and PEG[J]. J. Polym. Res.,2006,13:349-355.
    [96]V. Ravaine, C. Ancla, B. Catargi. Chemically controlled closed-loop insulin delivery[J]. J. Control. Release.,2008,132:2-11.
    [97]S. Sajeesh, C. P. Sharma. Novel pH responsive polymethacrylic acid chitosan-polyethylene glycol nanoparticles for oral peptide delivery [J]. J. Biomed. Mater. Res. B.,2006,76B:298-305.
    [98]R. Zhang, M. Tang, A. Bowyer, R. Eisenthal, J. Hubble. A Novel pH-and Ionic-strength-sensitive Carboxy Methyl Dextran Hydrogel[J]. Biomaterials, 2005,26(22):4677-4683.
    [99]D. X. Xiao, Z. Z. Xian, S. X. Cheng, R. X. Zhuo, J. F. Kennedy. A Strategy to Introduce the pH Sensitivity to Temperature Sensitive PNIPAAm Hydrogels without Weakening the Thermosensitivity [J]. Carbohydr. Polym.,2007,68(3): 416-423.
    [100]J. Zhang. Preparation of intelligent hydrogels and their stimulative responsibility [J]. J Xinyang. Norm. Coll.,1998,11(2):191-195.
    [101]J. Liu, S. Lin, L. Li, E. Liu, Release of theophylline from polymer blend hydrogels[J]. Int. J. Pharm.,2005,298 (1):117-125.
    [102]P. Gupta, K Vermani, S Garg. Hydrogels:from controlled release to pH-responsive drug delivery[J]. Drug. Discovery. Today,2002,7 (10):569-579.
    [103]T. Coviello, M. Grassi, G. Rambone, F. Alhaique. A crosslinked system from Scleroglucan derivative:preparation and characterization[J]. Biomaterials,2001, 22(13):1899-1909.
    [104]J. Ricka, T. Tznaka. Swelling of ionic gels:quantitative performance of the Donnan theory [J]. Macromolecules,1984,17(12):2916-2921.
    [105]W. C. Huang, S. H. Hu, K. H. Liu, S. Y. Chen, D. M. Liu. A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs[J]. J. Control Release., doi:10.1016/j.jconrel.2009.07.002.
    [106]S. H. Hu, T. Y. Liu, D. M. Liu, S. Y. Chen. Nano-ferrosponges for controlled drug release[J]. J. Control. Release.,2007,121:181-189.
    [107]Q. Tian. Hydrophobically modified gels and studies on hydrophobic association in gels[J]. Shanghai:Shanghai Jiaotong University; 2002.
    [108]L. Serra, J. Domenech, N. A. Peppas. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethyleneglycol) hydrogels[J]. Biomaterials,2006,27:5440-5451.
    [109]T. Higuchi. Mechanism of sustained-action medication:theoretical analysis of rate of release of solid drugs dispersed in soled matrices[J]. J. Pharm. Sci.,1963, 52:1145-1148.
    [110]P. L. Ritger, N. A. Peppas. A simple equation for description of solute release: Fickian and non-Fickian release from non-swellable devices in form of stabs, sphere, cylinders or discs[J]. J. Control. Release.,1987,5:23-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700