模拟气候变暖对麦蚜避热行为及其在植物上分布影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫是作物生态系统中重要的组成部分,对作物的生长有重要的影响。尽管气候变暖对昆虫有显著影响,但昆虫在长期进化过程中具备了较强的适应能力以应对栖息环境的变化。行为策略在昆虫应对气候变暖中有重要作用。昆虫行为的改变不仅影响其个体发育、繁殖和分布,还直接关系到昆虫种群的发展。深入研究温度变化对昆虫行为及其导致的生态学后果的影响对了解气候变暖下昆虫种群和作物产量的发展趋势有重要的理论和实际意义。本文通过模拟蚜虫在自然界中所处微环境温度时间和空间的变化特征,研究了气候变暖导致的温度升高对两种小麦蚜虫——麦长管蚜Sitobion avenae和禾谷缢管蚜Rhopalosiphum padi避热行为的影响。通过开展气候变暖对麦蚜在其寄主植物上分布影响的田间模拟试验,分析了温度升高与麦蚜在小麦植株上分布的关系。所得主要结论如下:
     1.明确了温度预适应对麦蚜爬行热逃逸温度的影响。温度升高,高温持续时间增加,以及未来日间持续高温的情景均使两种麦蚜的爬行热逃逸温度降低。
     2.明确了温度预适应和饥饿对麦蚜跌落热逃逸温度的影响。较高的温度32°C或超过24h的持续36°C高温预适应后麦长管蚜的跌落温度显著降低,表明经历高温的蚜虫更容易跌落,其在温度逐渐升高过程中的跌落行为可能是一种体温调节行为。蚜虫在同时面临高温和饥饿两种胁迫时存在一种权衡。但蚜虫的耐饥饿能力较差,其通过能量获得调节对高温跌落行为反应的能力十分有限。
     3.明确了温度升高对麦蚜在小麦植株上分布的影响。旗叶上的两种麦蚜在叶片正面分布的比例随生长季温度的升高而逐渐减小。在未加热的处理下,麦蚜混合种群在叶片正面和反面数量分布的比例相差不大,而在加热处理下,分布在小麦叶片上的麦蚜混合种群在叶片正面分布的比例降低。安阳、北京和临汾三地的小麦蚜虫混合种群在小麦穗部分布的比例在气温较高的年份有所降低。与未加热处理相比,加热处理下小麦植株的株高和旗叶长均较小,小麦的千粒重和亩产量有所降低。
     本文所得结果意味着在未来气候变暖下蚜虫的避热行为必将增多,而蚜虫采取避热行为时在短时间内无法获得能量,因此将加重对个体发育和种群增长的不利影响。本研究所得结果有助于了解气候变暖下小麦蚜虫在麦类作物上的分布和转移规律,对生产实际中麦蚜种群调查的田间抽样和防治有重要的理论指导意义。
Insects are of significant importance to be a part of crop ecosystems. They have a major impact oncrop growth and yield. Climate warming has been known to have a significant effect on insects.However, in the long-term process of evolution, insects have owned strong ability to adapt to thechanging habitats. Behavioral strategies have been proved to play an important role in insects’responses to buffer the pressure arisen by climate warming. Changes in insect behaviors not only impacton their individual growth, reproduction and habitat selection, but also affect on their populationdevelopment. Therefore, the changes in insect behaviors caused by ongoing climate warming and theirecological consequences should be more concerned. Walking and dropping are the main behaviors ofaphids in nature. By simulating the temporal and spatial changes in temperatures within the aphids’microhabitats and defining two parameters to describe the aphids’ heat-escape behaviors by walking ordropping, the effect of simulated warming on heat-escape behaviors of the cereal aphids were studied.The distribution of two aphid species, i.e. Sitobion avenae and Rhopalosiphum padi, within wheat plantinfluenced by temperature change was analyzed. And the relationships between warming and aphids’microhabitat selection were studied. The main results were showed as follows:
     (1) Temperature acclimation has significant effects on cereal aphids’ crawling behavior, i.e.heat-escape temperatures. Temperature rise, high-temperature duration increase and simulatedcontinuous hot in future decreased the values of heat-escape temperatures for both species. These resultssuggest that climate warming will make the aphids spend much more time and resources to avoidpotential heat injuries to enhance their survival opportunities.
     (2) Temperature acclimation has significant effects on cereal aphids’ dropping behavior, i.e.drop-off temperatures. The aphids' behavioral responses to temperature increase showed that DOTwas much higher than start-moving temperature whereas significantly lower than knockdowntemperature, implies that dropping off is a behavioral thermoregulation to avoid heat stress in thecontext of ambient temperature increase. Long-term (12h) starved aphids had much higher DOT thanno/short-term (6h) starved aphids, indicating a trade-off between behavioral thermoregulation andenergy acquisition in the aphids. Higher acclimation temperature (32°C) and longer extremehigh-temperature (36°C) duration (more than24h) significantly lowered the aphids' DOT, suggests thatthe aphids are likely to avoid heat stress by dropping off host plant when they are exposed to hightemperatures. Climate warming may increase the aphids' dropping opportunities and consequently affectthe aphids' individual development and population growth.
     (3) Temperature rise has great impact on distribution of the aphids on wheat plant. As thedaily temperature of wheat growing season increased, the proportion of both species distributed on thesurface of flag leaf of wheat plant was gradually reduced whereas the proportion of on leaf back wasgradually increased. Under unheated treatment, the percentage that cereal aphids distributed on leafsurface and leaf back differed less. Compared with that under unheated treatment, the proportion ofcereal aphid distributed on leaf surface reduced whereas that distributed on leaf back increased underheated treatment. The proportion of cereal aphid distributed on wheat spike reduced in the three testlocations in2011whereas that distributed on wheat leaf increased, compared with that in2010. Underheated treatment, plant height and length of flag leaf were lower and main stem increased, relative tothat under unheated treatment. Grain weight and yield per mu decreased under heated treatment.
     These results suggest that climate warming will make the aphids spend much more time and resources to avoid potential heat injuries to enhance their survival opportunities. Climate warming mayincrease the aphids' heat-escape opportunities and consequently affect the aphids' individualdevelopment and population growth. Results of this study provided us with valuable information on theeffects of climate warming on aphids’ dispersal and distribution within their microhabitats. The resultsare of great significance to field sampling and pest management.
引文
1.陈瑜,马春森.2010.气候变暖对昆虫影响研究进展.生态学报,30:2159-2172.
    2.刘向东,张孝羲,赵娜珊,等.2000.棉蚜对棉花生育期及温度条件的生态适应性.南京农业大学学报,23:29-32.
    3.马春森,马罡,杜尧等.2005.连续温度梯度下昆虫趋温性的研究现状与展望.生态学报,25:3390-3397.
    4.马罡,马春森.2007a.禾谷缢管蚜对温度梯度的行为反应.植物保护学报,34:624-630.
    5.马罡,马春森.2007b.三种麦蚜在温度梯度中活动行为的临界高温.生态学报,27:2449-2459.
    6.毛树春,宋美珍,张朝军,等.1997.黄淮海棉区棉麦两熟光能流与物质流研究III麦棉共生期复合群体作物层温度分布与总积温.棉花学报,9:183-192.
    7. Bale JS, Masters GJ, Hodkinson ID, et al.2002. Herbivory in global climate change research:direct effects of rising temperature on insect herbivores. Global Change Biology,8:1-16.
    8. Bale, J.S., Hayward, S.A.L.,2010. Insect overwintering in a changing climate. The Journal ofExperimental Biology213,980–994.
    9. Barton, B.T., Schmitz, O.J.,2009. Experimental warming transforms multiple predator effects in agrassland food web. Ecology Letters12,1317–1325.
    10. Blumstein, D.T.,1996. Assessment and decision making in animals: a mechanistic modelunderlying behavioral flexibility can prevent ambiguity. Oikos77,569–576.
    11. Braendle, C., Weisser, W.W.,2001. Variation in escape behavior of red and green clones in the peaaphid. Journal of Insect Behavior14,497–509.
    12. Brodsky, L.M., Barlow, C.A.,1986. Escape responses of the pea aphid, Acyrthosiphon pisum(Harris)(Homoptera: Aphididae): influence of predator type and temperature. Canadian Journal ofZoology64,937–939.
    13. Casey, T.M.,1981. Behavioral mechanisms of thermoregulation. Insect Thermoregulation (ed. byB. Heinrich), pp.79-114. Wiley, New York.
    14. Calosi, P., Bilton, D.T., Spicer, J.I.,2008. Thermal tolerance, acclimatory capacity andvulnerability to global climate change. Biology Letters4,99–102.
    15. Chapperon, C., Seuront, L.,2011. Behavioral thermoregulation in a tropical gastropod: links toclimate change scenarios. Global Change Biology17,1740–1749.
    16. Chau, A., Mackauer, M.,1997. Dropping of pea aphids from feeding site: A consequence ofparasitism by the wasp, Monoctonus paulensis. Entomologia Experimentalis et Applicata83,247–252.
    17. Chown, S.L.,2001. Physiological variation in insects: hierarchical levels and implications. Journalof Insect Physiology47,649–660.
    18. Chown, S.L., Addo-Bediako, A., Gaston, K.J.,2002. Physiological variation in insects: large-scalepatterns and their implications. Comparative Biochemistry and Physiology Part B131,587-602.
    19. Chown, S.L., Jumbam, K.R., S rensen, J.G., Terblanche, J.S.,2009. Phenotypic variance, plasticityand heritability estimates of critical thermal limits depend on methodological context. FunctionalEcology23,133–140.
    20. Chown, S.L., Terblanche, J.S.,2007. Physiological diversity in insects: ecological and evolutionarycontexts. Advances in Insect Physiology33,50–152.
    21. Cooper, B.S., Williams, B.H., Angilletta, M.J.,2008. Unifying indices of heat tolerance inectotherms. Journal of Thermal Biology33,320–323.
    22. Davies, Z.G., Wilson, R.J., Coles, S., Thomas, C.D.,2006. Changing habitat associations of athermally constrained species, the silver-spotted skipper butterfly, in response to climate warming.Journal of Animal Ecology75,247–56.
    23. Day, K.R., Docherty, M., Leather, S.R., Kidd, N.A.C.,2006. The role of generalist insect predatorsand pathogens in suppressing green spruce aphid populations through direct mortality andmediation of aphid dropping behavior. Biological Control38,233–246.
    24. Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., andMartin, P. R.2008. Impacts of climate warming on terrestrial ectotherms across latitude.Proceedings of the National Academy of Sciences of USA105,6668-6672.
    25. Diffenbaugh, N.S., Pal, J.S., Trapp, R.J., Giorgi, F.,2005. Fine-scale processes regulate theresponse of extreme events to global climate change. Proceedings of the National Academy ofSciences of the United States of America102,15774–15778.
    26. Dill, L.D., Fraser, A.H.G., Roitberg, B.D.,1990. The economics of escape behaviour in the peaaphid, Acyrthosiphon pisum. Oecologia83,473–478.
    27. Dunbar, H.E., Wilson, A.C.C., Ferguson, N.R., Moran, N.A.,2007. Aphid thermal tolerance isgoverned by a point mutation in bacterial symbionts. PLoS Biology5,1006-1015.
    28. Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O.,2000.Climate extremes: observations, modeling, and impacts. Science289,2068–2074.
    29. Edward DA, Blyth JE, McKee R, Gilburn AS.2007. Change in the distribution of a member of thestrand line community: the seaweed fly (Diptera: Coelopidae). Ecological Entomology,32(6):741-746.
    30. Elderkin, C.L., Klerks, P.L.,2005. Variation in thermal tolerance among three Mississippi riverpopulations of the zebra mussel, Dreissena polymorpha. Journal of Shellfish Research24,221–226.
    31. Francke, D.L., Harmon, J.P., Harvey, C.T., Ives, A.R.,2008. Pea aphid dropping behaviordiminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis et Applicata127,118–124.
    32. Feder, M.E., Hofmann, G.E.,1999. Heat-shock proteins, molecular chaperones, and the stressresponse: evolutionary and ecological physiology. Annual Review of Physiology61,243-282.
    33. Flynn DF, Sudderth EA, Bazzaz FA.2006. Effects of aphid herbivory on biomass and leaf-levelphysiology of Solanum dulcamara under elevated temperature and CO2. Environmental andExperimental Botany,56:10-18.
    34. Francke DL, Harmon JP, Harvey CT, et al.2008. Pea aphid dropping behavior diminishes foragingefficiency of a predatory ladybeetle. Entomologia Experimentalis et Applicata,127:118-124.
    35. Frears, S.L., Chown, S.L., Webb, P.I.,1997. Behavioural thermoregulation in the mopane worm(Lepidoptera). Journal of Thermal Biology22,325-330.
    36. Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Tank, A.M., Peterson, T.,
    2002. Observed coherent changes in climatic extremes during the second half of the twentiethcentury. Climate Research19,193-212.
    37. Gerner, E.W.,1987. Thermal dose and time-temperature factors for biological responses to heatshock. International Journal of Hyperthermia3,319-327.
    38. Gish, M., Inbar, M.,2006. Host location by apterous aphids after escape dropping from the plant.Journal of Insect Behavior19,143–153.
    39. Gish, M., Dafni, A., Inbar, M.,2010. Mammalian herbivore breath alerts aphids to flee host plant.Current Biology20, R628–R629.
    40. Gish, M., Dafni, A., Inbar, M.,2011. Avoiding incidental predation by mammalian herbivores:accurate detection and efficient response in aphids. Naturwissenschaften98,731–738.
    41. Grodzicki, P., Caputa, M.,2005. Social versus individual behaviour: a comparative approach tothermal behaviour of the honeybee (Apis mellifera L.) and the American cockroach (Periplanetaamericana L.). Journal of Insect Physiology51,315-322.
    42. Harmon, J.P., Moran, N.A., Ives, A.R.,2009. Species response to environmental change: impactsof food web interactions and evolution. Science323,1347–1350.
    43. Hausmann, C., Samietz, J., Dorn, S.,2004. Monitoring the dynamics of orchard colonisation byAnthonomus pomorum in spring. Entomologia Experimentalis et Applicata110,207-216.
    44. Hayward, S.A.L., Worland, M.R., Convey, P., Bale., J.S.,2003. Temperature preferences of themite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritimeAntarctic. Physiological Entomology28,114-121.
    45. Hazell, S.P., Groutides, C., Neve, B.P., Blackburn, T.M., Bale, J.S.,2010a. A comparison of lowtemperature tolerance traits between closely related aphids from the tropics, temperate zone, andArctic. Journal of Insect Physiology56,115-122.
    46. Hazell, S.P., Neve, B.P., Groutides, C., Douglas, A.E., Blackburn, T.M., Bale, J.S.,2010b.Hyperthermic aphids: Insights into behaviour and mortality. Journal of Insect Physiology56,123-131.
    47. Hendrix, D.L., Salvucci, M.E.,1998. Polyol metabolism in homopterans at high temperatures:accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies(Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology Part A: ComparativePhysiology120,487–494.
    48. Hendry, P.A., Farrugia, T.J., Kinnison, M.T.,2008. Human influences on rates of phenotypicchange in wild animal populations. Molecular Ecology17,20-29.
    49. Hickling, R., David, B.R., Jane, K.H., Chris, D.T.,2005. A northward shift of range margins inBritish Odonata. Global Change Biology11,502-506.
    50. Hoover JK, Newman JA.2004. Tritrophic interactions in the context of climate change: a model ofgrasses, cereal aphids and their parasitoids. Global Change Biology,10:1197-1208.
    51. Houston, A.I., McNamara, J.M., Hutchinson, J.M.C.,1993. General results concerning thetrade-off between gaining energy and avoiding predation. Philosophical Transactions of the RoyalSociety B: Biological Sciences341,375–397.
    52. Huey, R.B., Hertz, P.E., Sinervo, B.,2003. Behavioral drive versus behavioral inertia in evolution:a null model approach. The American Naturalist161,357–366.
    53. Hughes, C.L., Hill, J.K., Dytham, C.,2003. Evolutionary trade-offs between reproduction anddispersal in populations at expanding range boundaries. Proceedings of the Royal Society B:Biological Sciences (suppl.)270, S147–S150.
    54. IPCC,2007. Climate Change2007: The physical science basis: summary for policy makers.Cambridge University Press, Cambridge, UK.
    55. Jian, F., Jayas, D.S., White, N.D.G.,2005. Effects of temperature acclimation and age onmovement of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in response totemperature gradients. The Canadian Entomologist137,71-82.
    56. Jian, F., Jayas, D.S., White, N.D., Muir, W.E.,2002. Temperature and geotaxis preference byCryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in response to5℃/m temperaturegradients at optimum and hot temperatures in stored wheat and their mortality at high temperature.Environmental Entomology31,816-826.
    57. Kearney, M., Shine, R., Porter, W.P.,2009. The potential for behavioral thermoregulation to buffer“cold-blooded” animals against climate warming. Proceedings of the National Academy ofSciences of the United States of America106,3835–3840.
    58. Kerr, R.,2004. Three degrees of consensus. Science305,932–934.
    59. Klerks, P.L., Blaha, M.A.,2009. Heat tolerance as an indicator of climate change impacts: generalconsiderations and a case study in poeciliid fish. Environmental Bioindicators4,46–66.
    60. Lactin, D.J., Johnson, D.L.,1996. Behavioural optimization of body temperature by nymphalgrasshoppers (Melanoplus sanguinipes, Orthoptera: Acrididae) in temperature gradients establishedusing incandescent bulbs. Journal of Thermal Biology21,231-238.
    61. Lee, H.J., Boulding, E.G.,2010. Latitudinal clines in body size, but not in thermal tolerance orheat-shock cognate70(HSC70), in the highly-dispersing intertidal gastropod Littorina keenae(Gastropoda: Littorinidae). Biological Journal of the Linnean Society100,494-505.
    62. Lima, S.L., Dill, L.M.,1990. Behavioral decisions made under the risk of predation: a review andprospectus. Canadian Journal of Zoology68,619–640.
    63. Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M., Welsh, M.J.,2003. Identification andfunction of thermosensory neurons in Drosophila larvae. Nature Neuroscience,6,267-273.
    64. Losey, J.E., Denno, R.F.,1998. The escape response of pea aphids to foliar-foraging predators:factors affecting dropping behaviour. Ecological Entomology23,53–61.
    65. Ma, C.S.,2000. Modelling and Simulation of the Population Dynamics of the Cereal AphidMetopolophium dirhodum in Northern Germany. Verlag Franzbecker, Berlin, pp.139–141.
    66. Ma, C.S., Hau, B., Poehling, H.M.2004a. Effects of pattern and timing of high temperatureexposure on reproduction of the rose grain aphid, Metopolophium dirhodum. EntomologiaExperimentalis et Applicata110,65–71.
    67. Ma, C.S., Hau, B., Poehling, H.M.,2004b. The effect of heat stress on the survival of the rose grainaphid, Metopolophium dirhodum (Hemiptera: Aphididae). European Journal of Entomology101,327–331.
    68. Ma, G., Ma, C.S.,2012. Effect of acclimation on heat-escape temperatures of two aphid species:Implications for estimating behavioral response of insects to climate warming. Journal of InsectPhysiology,58(3):303-309.
    69. MacMillan, H.A., Sinclair, B.J.,2011. The role of the gut in insect chilling injury: cold-induceddisruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. Journal ofExperimental Biology214,726-734.
    70. Marais, E., Chown, S.L.,2008. Beneficial acclimation and the Bogert effect. Ecology Letters11,1027–1036.
    71. May, M.L.,1979. Insect thermoregulation. Annual Review of Entomology24,313–349.
    72. McAllister, M.K., Roitberg, B.D.1987. Adaptive suicidal behavior in pea aphids. Nature328,797–799.
    73. Mitchell, K.A., Hoffmann, A.A.,2010. Thermal ramping rate influences evolutionary potential andspecies differences for upper thermal limits in Drosophila. Functional Ecology24,694–700.
    74. Montllor, C.B., Maxmen, A., Purcell, A.H.,2002. Facultative bacterial endosymbionts benefit peaaphids Acyrthosiphon pisum under heat stress. Ecological Entomology27,189-195.
    75. Nelson, E.H.,2007. Predator avoidance behavior in the pea aphid: costs, frequency, and populationconsequences. Oecologia151,22–32.
    76. Nelson, E.H., Matthews, C.E., Rosenheim, J.A.,2004. Predators reduce prey population growth byinducing changes in prey behavior. Ecology85,1853–1858.
    77. Neuheimer, A.B., Thresher, R.E., Lyle, J.M., Semmens, J.M.,2011. Tolerance limit for fish growthexceeded by warming waters. Nature Climate Change1,110-113.
    78. Newman JA.2005. Climate change and the fate of cereal aphids in Southern Britain. GlobalChange Biology,11:940-944.
    79. Nguyen, T.T.A., Michaud, D., Cloutier, C.,2009. A proteomic analysis of the aphid Macrosiphumeuphorbiae under heat and radiation stress. Insect Biochemistry and Molecular Biology39,20–30.
    80. Niku, B.1975. Behaviour and fecundity of apterous pea aphids (Acyrthosiphon pisum) after adropping response. Entomologia Experimentalis et Applicata18,17–30.
    81. Oku, K., Yano, S., Takafuji, A.,2004. Nonlethal indirect effects of a native predatory mite,Amblyseius womersleyi Schicha (Acari: Phytoseiidae), on the phytophagous mite Tetranychuskanzawai Kishida (Acari: Tetranychidae). Journal of Ethology22,109-112.
    82. Oliver, K.M., Degnan, P.H., Burke, G.R., Moran, N.A.,2010. Facultative symbionts in aphids andthe horizontal transfer of ecologically important traits. Annual Review of Entomology55,247-266.
    83. Pararajasingham, S., Hunt, L.A.,1991. Wheat spike temperature in relation to base temperature forgrain filling duration. Canadian Journal of Plant Science71,63-69.
    84. Parmesan, C.,2006. Ecological and evolutionary responses to recent climate change. AnnualReview of Ecology, Evolution, and Systematics37,637-669.
    85. Paradis, A., Elkinton, J., Hayhoe, K., Buonaccorsi, J.,2008. Role of winter temperature andClimate change on the survival and future range expansion of the hemlock woolly adelgid(Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for GlobalChange13,541-554.
    86. Pearson, R.G., Dawson, T.P.,2003. Predicting the impacts of climate change on the distribution ofspecies: Are bioclimate envelope models useful? Global Ecology and Biogeography12,361-371.
    87. Pincebourde, S., Sinoquet, H., Combes, D., Casas, J.,2007. Regional climate modulates the canopymosaic of favourable and risky microclimates for insects. Journal of Animal Ecology76,424-38.
    88. Pires, H.H., Lazzari, C.R., Schilman, P.E., Diotaiuti, L., Lorenzo, M.G.,2002. Dynamics ofthermopreference in the Chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae).Journal of Medical Entomology39,716-719.
    89. Prasad, R.P., Snyder, W.E.,2010. A non-trophic interaction chain links predators in different spatialniches. Oecologia162,747–753.
    90. Robertson, R.M., Kuhnert, C.T., Dawson, J.W.,1996. Thermal avoidance during flight in thelocust Locusta migratoria. The Journal of Experimental Biology199,1383-1393.
    91. Robertson, R.M.,2004. Thermal stress and neural function: adaptive mechanisms in insect modelsystems. Journal of Thermal Biology29,351-358.
    92. Roitberg, B.D., Myers, J.H.1979. Behavioural and physiological adaptations of pea aphids(Homoptera: Aphididae) to high ground temperatures and predator disturbance. CanadianEntomologist111,515–519.
    93. Rosenzweig, M., Kang, K., Garrity, P.A.,2008. Distinct TRP channels are required for warm andcool avoidance in Drosophila melanogaster. Proceedings of the National Academy of Sciences ofUSA105,14668-14673.
    94. Russell, J.A., Moran, N.A.,2006. Costs and benefits of symbiont infection in aphids: variationamong symbionts and across temperatures. Proceedings of the Royal Society B273,603-610.
    95. Schilman, P.E., Lazzari, C.R.,2004. Temperature preference in Rhodnius prolixus, effects andpossible consequences. Acta Tropica90,115-122.
    96. Shannon PL, Jessica KA, Ann KE et al.2010. Adaptation to host plants may prevent rapid insectresponses to climate change. Global Change Biology,16:2923-2929.
    97. Sih, A., Englund, G., Wooster, D.,1998. Emergent impacts of multiple predators on prey. Trends inEcology&Evolution13,350–355.
    98. Skinner, R.H.,1996. Leaf temperature effects on Bemisia argentifolii (Homoptera: Aleyrodidae)oviposition. Environmental Entomology25,1371-1375.
    99. Smith, J.L., Rust, M.K.,1994. Temperature preferences of the western subterranean termite,Reticulitermes hesperus Banks. Journal of Arid Environments28,313-323.
    100. Sorensen, J.G., Kristensen, T.N., Loeschcke, V.,2003. The evolutionary and ecological role of heatshock proteins. Ecology Letters6,1025-1037.
    101. Stacey, D.A., Fellowes, M.D.E.,2002. Influence of temperature on pea aphid Acyrthosiphon pisum(Hemiptera: Aphididae) resistance to natural enemy attack. Bulletin of Entomological Research92,351–357.
    102. Stephens A E A, Kriticos D J, Leriche A.2007. The current and future potential geographicaldistribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin ofEntomological Research,97(4):369-378.
    103. Stillman, J.H.,2003. Acclimation capacity underlies susceptibility to climate change. Science301,
    65.
    104. Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C., Chown, S.L.,2007. Critical thermallimits depend on methodological context. Proceedings of the Royal Society B274,2935–2942.
    105. Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A.,2005. A rapid shiftin a classic clinal pattern in Drosophila reflecting climate change. Science308,691-693.
    106. van Asch M, van Tienderen PH, Holleman LJM et al.2007. Predicting adaptation of phenology inresponse to climate change, an insect herbivore example. Global Change Biology,13:1596-1604.
    107. Villagra, C.A., Ram rez, C.C., Niemeyer, H.M.,2002. Antipredator responses of aphids toparasitoids change as a function of aphid physiological state. Animal Behaviour64,677–683.
    108. Villalpando SN, Williams RS, Norby RJ.2009. Elevated air temperature alters an old-field insectcommunity in a multifactor climate change experiment. Global Change Biology,15:930-942.
    109. Ward, D., Seely, M.K.,1996. Behavioral thermoregulation of six Namib desert tenebrionid beetlespecies (Coleoptera). Annals of the Entomological Society of America89,443-451.
    110. Wiktelius, S.,1987. Distribution of Rhopalosiphum padi (Homoptera: Aphididae) on spring barleyplants. Annals of Applied Biology110,1–7.
    111. Wooster, D.E., DeBano, S.J., Madsen, A.,2011. Predators are more important than conspecificsand water temperature in influencing the microdistribution and behavior of a detritivorous stonefly.Fundamental and Applied Limnology179,215–223.
    112. Yocum, G.D., Denlinger, D.L.,1993. Induction and decay of thermosensitivity in the flesh fly,Sarcophaga crassipalpis. Journal of Comparative Physiology B163,113-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700