双三相永磁同步电机驱动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统三相电机相比,多相电机具有低压大功率输出、容错能力强等优点,在船舰电力推进、电动汽车、航空航天等领域具有广阔的应用前景。随着电力电子技术和微电子技术的发展,电机的相数已不再是传动系统设计中的一个制约因素,多相电机驱动系统得到了越来越多的关注。论文以相移30°双三相永磁同步电机(PMSM)为研究对象,对多相电机的驱动控制技术进行了深入研究。
     论文首先通过坐标变换,得到了双三相PMSM在双d-q和矢量空间解耦(VSD)坐标系下的数学模型,并给出了基于两种模型的矢量控制策略。双d-q矢量控制等效于对两台三相电机的控制,VSD矢量控制将对电流的控制放在了两个相互正交的子空间中。通过对两种矢量控制策略的比较,指出在相同的控制参数下两者对转矩和转速的控制效果是一致的。由于VSD模型揭示了双三相电机多谐波子空间的特点,在保证转速控制性能的前提下,既可以采用四维电流控制以得到最小的定子铜耗,也可以采用二维电流控制以简化控制系统结构,电流控制更加灵活。
     其次,对双三相PMSM的脉宽调制(PWM)算法进行深入分析。传统两矢量空间矢量脉宽调制(SVPWM)具有更高的母线电压利用率但是注入谐波电压过大,而四矢量SVPWM只用于输出正弦电压,限制了其调制范围。针对以上问题,论文将四矢量SVPWM扩展到非正弦电压调制区,得到了和两矢量SVPWM同样的调制范围,同时降低了注入的谐波电压,进而减少了谐波电流。将四矢量非正弦电压SVPWM统一到双零序注入PWM中,提出三段式调制策略,将线性调制范围分为正弦电流调制区、正弦电压调制区和非正弦电压调制区。其中第一个调制区对应的是四维电流控制,后两个调制区对应的都是二维电流控制,这种调制策略在全调制范围内对母线电压进行了最优化利用。
     再次,研究了永磁同步电机的非线性控制策略。通过输出反馈线性化得到完全解耦的永磁同步电机线性化模型,在该模型下可以通过直接控制电压来控制电机转速。针对反馈线性化控制对电机参数较为依赖的问题,将终端滑模(TSM)控制策略应用到反馈线性化模型中,分别设计转速和直轴电流滑模控制器,推导出控制率并给出系统稳定性证明。为了降低滑模增益,减小抖振,设计扰动观测器并对观测到的扰动量进行补偿。仿真结果表明,基于扰动补偿的反馈线性化终端滑模控制提高了转速的动态性能且具有较强的鲁棒性。
     最后,针对多相电机具有多控制自由度的特点研究了电机缺相后的容错运行问题。多相电机在缺相后,不同的中线连接方式对应着不同的电流优化控制策略。根据不同的中线连接方式以及相应的电流约束条件,选定矢量空间解耦变换阵,建立一相和正交两相开路双三相永磁同步电机的VSD数学模型,将电机变量分别映射到与机电能量转换相关的d-q子空间和与机电能量转换无关的z1-z2-z3子空间中。提出基于VSD模型的双三相PMSM容错控制策略,通过在z1-z2-z3子空间中设定不同的电流参考值可以分别得到定子铜耗最小和定子电流幅值最小两种电流优化控制策略。仿真和实验结果验证了容错控制方案的有效性。
Compared with conventional three-phase motor, multiphase motor has the advantages of large power output with low voltage, good fault tolerant ability. It is suited for some application areas, such as electric ship propulsion, electric vehicles and aircrafts. With the development of power electronics and micro-electronics, phase number is not a restriction in the system design. Multiphase drive system has attracted more and more attention. Dual three-phase permanent magnet synchronous motor (PMSM) which has two sets of three-phase windings phase shifted by 30 electrical degrees is chosen as research object. Its drive and control technique are deeply studied in this dissertation.
     Firstly, the models of dual three-phase PMSM are set up in the double d-q and vector space decomposition (VSD) reference frames. Two vector control strategies related to the two models are proposed. The double d-q vector control is equivalent to the control of two three-phase motors. In VSD model, the current is controlled in two orthogonal subspaces. The comparative analysis of the two strategies shows that they have consistent control performance of torque and speed when their control parameters have the same value. The VSD model indicates the features of multiple harmonic subspaces of dual three-phase motor, so its current control is more flexible. With the same speed control performance, VSD vector control strategy can use four-dimension current control to minimize stator loss or two-dimension current control to simplify the system control structure.
     Secondly, the pulse width modulation (PWM) algorithms for dual three-phase motor are analyzed. Conventional two-vector space vector PWM (SVPWM) has a high DC bus utilization, but the output voltage has large harmonics. The four-vector SVPWM is just used to produce sinusoidal phase voltage, so the DC bus utilization cannot reach to the highest value. Four-vector SVPWM is extended to the non-sinusoidal voltage range in this dissertation. It has the same modulation range as the two-vector SVPWM, but reduces the voltage harmonics in non-sinusoidal voltage range. So the current harmonics and stator loss can also be reduced. The four-vector non-sinusoidal voltage modulation algorithm is then integrated into double zero-sequence injection PWM and three-segment modulation is proposed. The total modulation range is divided into three segment, sinusoidal current range, sinusoidal voltage range and non-sinusoidal voltage range. The first is related to four-dimension current control and the last two are related to two-dimension current control. This modulation algorithm has an optimal utilization of DC bus in the whole modulation range.
     Thirdly, the nonlinear control strategy for PMSM is studied. A fully decoupled linear model of PMSM is obtained by output feedback linearization. In this model, the speed can be controlled by directly controlling the voltage. The performance of the feedback linearization control depends on the parameters very much. To solve this problem, terminal sliding mode (TSM) control is used to design the speed and direct current controllers. The control laws are deduced and the system stability is proved. In order to reduce the sliding mode gain and chattering phenomena, a disturbance observer is designed. The disturbance observed is then compensated in the control. The simulation results show that the feedback linearization terminal sliding mode control with disturbance compensation improves the dynamic performance of speed and has good robustness.
     Lastly, in connction with the feature of multiple control dimensions of dual three-phase PMSM, fault tolerant control strategies with open phases are researched. Different neutral connections correspond with different optimal current control methods when the multiphase motor has open phases. Vector space decomposition transformation matrixes are determined according to different neutral connections and their current constrains with one open phase or two orthogonal open phases. Then different VSD models are deduced. All the variables are projected into d-q subspace which has relation to the electromechnical energy convertion and the z1-z2-z3 subspace which has no contribution to electromechnical energy convertion. Vector control methods based on VSD models are proposed. By setting different current references in z1-z2-z3 subspace, two optimal current control methods of minimum stator loss control and minimum current magnitude control are obtained. The effectiveness of the fault tolerant control methods are confirmed by simulation and expermnet results.
引文
[1]陈伯时.交流调速系统[M].北京:机械工业出版社,1998:1-2.
    [2]李崇坚.大功率交流电机变频调速技术的研究[J].电力电子,2010,(1):11-16.
    [3]李永东.高性能、大容量变频调速系统发展趋势及其产业化[J].电气时代,2010,(9):54-56.
    [4] Abu-Rub H,Holtz J,Rodriguez J,et al. Medium-Voltage Multilevel Converters-State of the Art,Challenges,and Requirements in Industrial Applications[J]. IEEE Transactions on Industrial Electronics,2010,57(8):2581-2596.
    [5] Rodriguez J , Bernet S , Steimer P K , et al. A Survey on Neutral-Point-Clamped Inverters[J]. IEEE Transactions in Industrial Electronics,2010,57(7):2219-2230.
    [6] Malinowski M,Gopakumar K,Rodriguez J,et al. A Survey on Cascaded Multilevel Inverters[J]. IEEE Transactions on Industrial Electronics,2010,57(7):2197-2206.
    [7] Levi E,Bojoi F,Profumo F,et al. Multiphase Induction Motor Drives-A Technology Status Review[J]. IET Electric Power Applications,2007,1(4):489-516.
    [8] Sign G K. Multi-Phase Induction Machine Drive Research-A Survey[J]. Electric Power Systems Research,2002,61(2):139-147.
    [9]李山.多相感应电机控制技术的研究[D].重庆:重庆大学博士学位论文,2009:1-2.
    [10]薛山.多相永磁同步电机驱动技术[D].北京:中国科学院研究生院博士学位论文,2005:1-3.
    [11] Levi E. Multiphase Electric Machines for Variable-Speed Applications[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1893-1909.
    [12] Parsa L. On Advantages of Multi-Phase Machines[C]//Proceedings of Annual Conference of IEEE Industrial Electronics Society. New York:IEEE,2005:1574-1579.
    [13]张敬南.船舶电力推进六相同步电动机控制系统研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2009:8-10.
    [14] Klingshirn E A. High Phase Induction Motor-Prat I: Description and Theoretical,Considerations. IEEE Transactions on Power Apparatus and Systems,1983,102(1):47-53.
    [15]许实章.交流电机绕组理论[M].北京:机械工业出版社,1985:327-331.
    [16] White D C,Woodson H H. Electromechanical Energy Conversion[M]. New York,US:Wiley,1959:545-593.
    [17]黄进. p对极n相对称系统的变换理论[J].电工技术学报,1995,10(1):53-57.
    [18] Zhao Y F,Lipo T A. Space Vector PWM Control of Dual Three-phase Induction Machine Using Vector Space Decomposition[J]. IEEE Transactions on Industry Applications,1995,31(5):1100-1109.
    [19] Abbas M A,Christen R,Jahns T M. Six-Phase Voltage Source Inverter Driven Induction Motor[J]. IEEE Transactions on Industry Applications,1984,20(5):1251-1259.
    [20]张巍,辜承林.采用空间矢量解耦的双三相异步电动机仿真研究[J].大电机技术,2009,(3):14-18.
    [21] Ferreira C L,Bucknall R W G. Modelling and Real-time Simulation of an Advanced Marine Full-Electrical Propulsion System[C]//Proceedings of PEMD Conference. Stevenage:IET,2004:574-579.
    [22]王东,吴新振,马伟明,等.非正弦供电十五相感应电机气隙磁势分析[J].中国电机工程学报,2009,29(15):88-94.
    [23] Nelson R H, Krause P C. Induction Machine Analysis for Arbitrary Displacement between Multiple Winding Sets[J]. IEEE Transactions on Power Apparatus and Systems,1974,93(3):841-848.
    [24] Lipo T A. A d-q Model for Six Phase Induction Machines[C]//Proceedings of ICEM. New York:IEEE,1980:860-867.
    [25] Singh G K,Pant V,Singh Y P. Stability Analysis of a Multi-phase(Six-phase) Induction Machine[J]. Computers and Electrical Engineering,2003,29(7):727-756.
    [26] Singh G K,Pant V,Singh Y P. Voltage Source Inverter Driven Multi-phase Induction Machine[J]. Computers and Electrical Engineering,2003,29(8):813-834.
    [27] Zhang J N,Cong W,Li J,et al. The Research of Mathematical Model of Six-phase Double Y-Coil Synchronous Motor Based on VectorControl[C]//Proceedings of ICMA. New York:IEEE,2007:2388-2393.
    [28]张敬南,丛望.船舶电力推进六相同步电动机控制研究[J].哈尔滨工程大学学报,2010,31(9):1209-1216.
    [29]范子超,于庆广,张晓明.双定子绕组同步电机及其单绕组等效模型[J].电工技术学报,2007,22(2):2-8.
    [30] Wang B L,Gu W,Chu J X,et al. A Novel Modeling for a Dual Three-phase Permanent Magnet Synchronous Machine[C]//Proceedings of ICCARV. New York:IEEE,2008:1630-1634.
    [31] Kianinezhad R,Nahid B,Betin F,et al. A New Field Orientation Control of Dual Three Phase Induction Machines[C]//Proceedings of ICIT. New York:IEEE,2004:187-192.
    [32] He Y H,Hu W H,Wang Y,et al. Speed and Position Sensorless Control for Dual-Three-Phase PMSM Drives[C]//Proceedings of APEC. New York:IEEE,2009:945-950.
    [33] Nategh S,Kianinezhad R,Seifossadat S G,et al. A New Robust Model Based Sensorless Control for Six Phase Induction Machine[C]//Proceedings of ICIEA. New York:IEEE,2009:1032-1037.
    [34] Nategh S , Moghaddasian M , Kianinezhad R. A New Sensorless Field-Oriented Control for Six-Phase Induction Machines[C]//Proceedings of SPEEDAM. Ischia,New York:IEEE,2008:273-277.
    [35] Nategh S,Ghasemi A,Kianinezhad R,et al. An Improved Fuzzy Model Based Sensorless Control for Six-Phase Induction Machines[C]//Proceedings of ICIEA. New York:IEEE,2008:1469-1474.
    [36] Bojoi R,Farina F,Lazzari M,et al. Analysis of The Asymmetrical Operation of Dual Three-Phase Induction Machines[C]//Proceedings of IEMDC. New York:IEEE,2003:429-435.
    [37] Kianinezhad R,Nahid B,Baghli L,et al. Aspects of Current Regulation in Indirect Field Oriented Control of Dual Three Phase Induction Machines[C]//Proceedings of ICIT. New York:IEEE,2006:933-938.
    [38] Bojoi R,Lazzari M,Profumo F,et al. Digital Field-Oriented Control for Dual Three-Phase Induction Motor Drives[J]. IEEE Transactions of Industry Applications,2003,39(3):752-760.
    [39] Bojoi R,Profumo F,Tenconi A. Digital Synchronous Frame Current Regulation for Dual Three-phase Induction Motor Drives[C]//Proceedings ofPESC. New York:IEEE,2003:1475-1480.
    [40] Singh G K,Nam K,Lim S K. A Simple Indirect Field-Oriented Control Scheme for Multiphase Induction Machine[J]. IEEE Transactions on Industrial Electronics,2005,52(4):1177-1184.
    [41] Camillis L D , Matuonto M , Monti A. Optimizing Current Control Performance in Double Winding Asynchronous Motors in Large Power Inverter Drives[J]. IEEE Transactions on Power Electronics,2001,16(5):676-685.
    [42] He Y H,Wang Y,Wu J L,et al. A Simple Current Sharing Scheme for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives[C]//Proceedings of APEC. New York:IEEE,2010:1093-1096.
    [43] Wu X J,Jiang J G,Dai P,et al. Full Digital Control and Application of High Power Synchronous Motor Drive with Dual Stator Winding Fed by Cycloconverter[C]//Proceedings of PEDS Conference. New York:IEEE,2003:1194-1199.
    [44] Bojoi R,Levi E,Farina F,et al. Dual Three-Phase Induction Motor Drive With Digital Current Control in the Stationary Reference Frame[J]. IEE Proceedings of Electric Power Applications,2006,153(1):129-139.
    [45] Bojoi R,Griva G,Profumo F. Field Oriented Control of Dual Three-Phase Induction Motor Drives Using a Luenberger Flux Observer[C]//Conference Records of IAS Annual Meeting. New York:IEEE,2006:1253-1260.
    [46] Bojoi R , Tenconi A , Griva G , Profumo F. Vector Control of Dual-Three-Phase Induction-Motor Drives Using Two Current Sensors[J]. IEEE Transactions on Industry Applications,2006,42(5):1284-1292.
    [47] Dujic D,Jones M,Levi E. Continuous Carrier-Based vs. Space Vector PWM for Five-Phase VSI[C]//Proceedings of International Conference on Computer as a Tool. New York:IEEE,2007:1772-1779.
    [48] Gopakumar K,Ranganathan V T,Bhat S R. Split-Phase Induction Motor Operation from PWM Voltage Source Inverter[J]. IEEE Transactions on Industry Applications,1993,29(5):927-932.
    [49]薛山,温旭辉.一种新颖的多相SVPWM[J].电工技术学报,2006,21(2):68-72.
    [50] Dujic D,Jones M,Levi E. Space Vector PWM for Nine-Phase VSI with Sinusoidal Output Voltage Generation : Analysis andImplementation[C]//Proceedings of IECON. New York:IEEE,2007:1524-1529.
    [51] Hadiouche D,Baghli L,Rezzoug A. Space-Vector PWM Techniques for Dual Three-Phase AC Machine,Analysis,Performance Evaluation, and DSP Implementation[J]. IEEE Transactions on Industry Applications,2006,42(4):1112-1122.
    [52] Marouani K,Baghli L,Hadiouche D,et al. Discontinuous SVPWM Techniques for Double Star Induction Motor Drive Control[C]//Proceedings of IECON. New York:IEEE,2006:902-907.
    [53] Prieto J,Barrero,Jones M,et al. A Modified Continuous PWM Technique for Asymmetrical Six-Phase Induction Machines[C]//Proceedings of ICIT. New York:IEEE,2010:1489-1494.
    [54] Li Shan,Xiao Huihui,Chen Hongyan. The Research of SVPWM Control Technique of Double Three-Phase Induction Machine[C]//Proceedings of ICEMS. New York:IEEE,2005:109-114
    [55] Marouani K,Baghli L,Hadiouche D,et al. A New PWM Strategy Based on a 24-Sector Vector Space Decomposition for a Six-Phase VSI-Fed Dual Stator Induction Motor[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1910-1920.
    [56] Grandi G,Serra G,Tani A. Space Vector Modulation of a Six-Phase VSI Based on Three-Phase Decomposition[C]//Proceedings of SPEEDAM. New York:IEEE,2008:674-679.
    [57] Gopakumar K,Ranganathan V T,Bhat S R. An Efficient PWM Technique for Split Phase Induction Motor Operation Using Dual Voltage Source Inverters[C]//Conference Records of IAS Annual Meeting. New York:IEEE,1993:582-587.
    [58] Cheng F B,Yang H,Zhao R X,et al. A PWM Strategy for Six-Phase Dual Stator Induction Motor Fed by Two Identical Voltage Source Inverters[C]//Proceedings of ICEMS. New York:IEEE,2009.
    [59] He Y H,Wang Y,Wu J L,et al. A Comparative Study of Space Vector PWM Strategy for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives[C]//Proceedings of APEC. New York:IEEE,2010:915-919.
    [60] Yazdani D,Khajehoddin S A,Bakhshai A,et al. A Generalized Space Vector Classification Technique for Six-Phase Inverters[C]//Proceedings of PESC.New York:IEEE,2007:2050-2054.
    [61] Yazdani D,Khajehoddin S A,Bakhshai A,et al. Full Utilization of The Inverter in Split-Phase Drives by Means of a Dual Three-Phase Space Vector Classification Algorithm[J]. IEEE Transactions on Industry Electronics,2009,56(1):120-129.
    [62] Prieto J,Barrero F,Toral S. Sigma-Delta Modulation for Multiphase Drives[C]//Proceedings of IECON. New York:IEEE,2009:831-835.
    [63]侯立军,苏彦民,陈林.一种新颖的用于六相感应电机调速系统的空间矢量PWM方法[J].电工电能新技术,2004,23(1):11-15.
    [64] Dujic D,Grandi G,Jones M,et al. A Space Vector PWM Scheme for Multifrequency Output Voltage Generation with Multiphase Voltage-Source Inverter[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1943-1955.
    [65] Casadei D,Dujic D,Levi E,et al. General Modulation Strategy for Seven-Phase Inverters with Independent Control of Multiple Voltage Space Vectors[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1921-1932.
    [66] Levi E,Dujic D,Jones M,et al. Analytical Determination of DC-Bus Utilization Limits in Multiphase VSI Supplied AC Drives[J]. IEEE Transactions on Energy Conversion,2008,23(2):433-443.
    [67] Dujic D,Jones M,Levi E,et al. DC-Bus Utilisation in Series-Connected Multi-Phase Machines Supplied from a VSI with a Composite Phase Number[C]//Proceedings of ICEM. New York:IEEE,2010.
    [68] Barrero F,Arahal M R,Gregor R,et al. One-Step Modulation Predictive Current Control Method for the Asymmetrical Dual Three-Phase Induction Machine[J]. IEEE Transactions of Industrial Electronics,2009,56(6):1974-1983.
    [69] Barrero F,Arahal M R,Gregor R,et al. A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines[J]. IEEE Transactions of Industrial Electronics,2009,56(6):1937-1954.
    [70] Gregor R,Barrero F,Toral S,et al. Enhanced Predictive Current Control Method for the Asymmetrical Dual-three Phase Induction Machine[C]//Proceedings of IEMDC. New York:IEEE,2009:265-272.
    [71] Gregor R,Barrero F,Toral S,et al. Predictive-Space Vector PWM Current Control Method for Asymmetrical Dual Three-Phase Induction Motor Drives[J]. IET Electric Power Applications,2010,4(1):26-34.
    [72] Iqbal A,Levi E,Jones M,et al. Generalised Sinusoidal PWM with Harmonic Injection for Multi-Phase VSIs[C]//Proceedings of PESC. New York:IEEE,2006.
    [73]孟超,欧阳红林,刘伟侯,等.双Y移30°永磁同步电机的空间矢量调制[J].中国电机工程学报,2010,30(3):90-98.
    [74] Zaimeddine R , Undeland T. Direct Torque Control Scheme for Dual-Three-Phase Induction Motor[C]//Proceedings of IPEC-ECCE Asia. New York:IEEE,2010:3007-3014.
    [75] Kianinezhad R,Nahid B,Betin F,et al. A Novel Direct Torque Control (DTC) Method for Dual Three Phase Induction Motors[C]//Proceedings of ICIT. Mumbai,India:IEEE,2006:939-943.
    [76] Marouani K,Khoucha F,Kheloui A,et al. Study and Simulation of Direct Torque Control of Double-Star Induction Motor Drive[C]//Proceedings of EPE-PEMC. New York:IEEE,2006:1233-1238.
    [77] Moghaddasian M,Nategh S,Kianinezhad R,et al. A Direct Torque Control (DTC) Method for Dual Three Phase Induction Motors Using a Fuzzy Inference System[C]//Proceedings of SPEEDAM. New York:IEEE,2008:1088-1092.
    [78] Alcharea R,Kianinezhad R,Nahid-Mobarakeh B. Direct Torque Control for Six-Phase Symmetrical Induction Machines[C]//Proceedings of IECON. New York:IEEE,2008:3090-3095.
    [79] Moghadasian M,Kianinezhad R,Betin F,et al. Torque Ripple Minimization in Direct Torque Control of Six-Phase Induction Machines Using Fuzzy Inference Systems[C]//Proceedings of ICEM. New York:IEEE,2010.
    [80] Kianinezhad R,Alcharea R,Nahid B,et al. A Novel Direct Torque Control (DTC) for Six-Phase Induction Motors with Common Neutrals[C]// Proceedings of SPEEDAM. New York:IEEE,2008:107-112.
    [81] Hatua K,Ranganathan V T. Direct Torque Control Schemes for Split-Phase Induction Machine[J]. IEEE Transactions on Industry Applications,2005,41(5):1243-1254.
    [82] Khajeh A,Moghani J S,Shahbazi M. An Efficient Direct Torque ControlScheme for Split Phase Induction Motor[C]//Proceedings of PEDS Conference. New York:IEEE,2007:1285-1289.
    [83] Bojoi R,Farina F,Griva G,et al. Direct Torque Control for Dual Three-Phase Induction Motor Drives[J]. IEEE Transactions on Industry Applications,2005,41(6):1627-1636.
    [84] Bojoi R,Tenconi A,Vaschetto S. Direct Stator Flux and Torque Control for Asymmetrical Six-Phase Induction Motor Drives[C]//Proceedings of ICIT. New York:IEEE,2010:1507-1512.
    [85] Jahns T M. Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase-Drive Units[J]. IEEE Transactions on Industry Applications,1980,16(3):321-331.
    [86]陈林.十五相感应电机定子绕组多相开路的稳态分析[J].电工技术学报,2004,19(11):14-19.
    [87] Liu T H,Fu J R,Lipo T A. A Strategy for Improving Reliability of Field-Oriented Controlled Induction Motor Drives[J]. IEEE Transactions on Industry Applications,1993,29(5):910-918.
    [88] Fu J R , Lipo T A. Disturbance-Free Operation of a Multiphase Current-Regulated Motor Drive with an Open Phase[J]. IEEE Transactions of Industry Application,1994,30(5):1267-1274.
    [89] Toliyat H A . Analysis and Simulation of Five-Phase Variable-Speed Induction Motor Drives under Asymmetrical Connections[J] . IEEE Transactions on Power Electronics,1998,13(4):748-756.
    [90]欧阳红林,周马山,童调生.多相永磁同步电动机不对称运行的矢量控制[J].中国电机工程学报,2004,24(7):145-150.
    [91] Zheng L , Fletcher J E , Williams B W. Current Optimization for a Multi-Phase Machine under an Open-Circuit Phase Fault Condition[C]//Proceedings of ICEM. New York:IEEE,2006:414-419.
    [92] Jacobina C B,Miranda R S,Correa M B. Disturbance-Free Operation of a Six-Phase AC Motor Drive System[C]//Proceedings of PESC. New York:IEEE,2004:925-931.
    [93] Shamsinejad M,Nahidmobarakeh B,Pierfederici S,et al. Fault Tolerant and Minimum Loss Control of Double-Star Synchronous Machines under Open Phase Conditions[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1956-1965.
    [94] Singh G K,Pant V. Analysis of a Multiphase Induction Machine under Fault Condition in a Phase-Redundant A.C. Drive System[J]. Electric Machines and Power Systems,2000,28(6):577-590.
    [95] Zhao Y F,Lipo T A. Modeling and Control of a Multi-Phase Induction Machine with Structural Unbalance , Part I-Machine Modeling and Multi-Dimensional Current Regulation[J]. IEEE Transactions on Energy Conversion,1996,11(3):570-577.
    [96] Zhao Y F,Lipo T A. Modeling and Control of a Multi-Phase Induction Machine with Structural Unbalance,Part II-Field-Oriented Control and Experimental Verification[J]. IEEE Transactions on Energy Conversion,1996,11(3):578-584.
    [97] Tian D,Chen L,Hou L J,et al. Modeling and Simulation of Dual Three-Phase Induction Machine with Two Opened Phases[C]//Proceedings of ICIT. New York:IEEE,2008:1-5.
    [98] Alcharea R,Nahidmobarakeh B,Baghli L,et al. Decoupling Modeling and Control of Six-Phase Induction Machines under Open Phase Fault Conditions[C]//IECON New York:IEEE,2006:5101-5106.
    [99] Kianinezhad R,Nahidmobarakeh B,Baghli L,et al. Modeling and Control of Six-Phase Symmetrical Induction Machine under Fault Condition due to Open Phases[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1966-1977.
    [100] Fnaiech M A,Betin F,Caplino G A,et al. Fuzzy Logic and Sliding-Mode Controls Applied to Six-Phase Induction Machine with Open Phases[J]. IEEE Transactions on Industrial Electronics,2010,57(1):354-364.
    [101] Ryu H M,Kim J W,Sul S K. Synchronous-Frame Current Control of Multiphase Synchronous Motor under Asymmetric Fault Condition due to Open Phases[J]. IEEE Transactions of Industry Applications,2006,42(4):1062-1070.
    [102]周马山,欧阳红林,童调生,等.不对称多相PMSM的矢量控制[J].电工技术学报,2004,19(12):37-41.
    [103]彭芳彪,严东超,王光明,等.六相永磁容错电机不对称运行研究[J].空军工程大学学报(自然科学版),2009,10(3):73-77.
    [104] Alcharea R,Kianinezhad R, Nahid B,et al. Fault Tolerant DTC for Six-Phase Symmetrical Induction Machine[C]//Proceedings of IECON. NewYork:IEEE,2009:3279-3284.
    [105] Chen L,Tian D,Cheng S L. Direct Torque Control for Dual-Three Phase Induction Machine with One Stator Phase Opened[C]//Proceedings of the WCICA. New York:IEEE,2010:1518-1522.
    [106]刘贤兴,卜言柱,胡育文,等.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59.
    [107] Baik I C,Kim K H,Youn M J. Robust Nonlinear Speed Control of PM Synchronous Motor Using Boundary Layer Integral Sliding Mode Control Technique[J]. IEEE Transactions on Control Systems Technology,2000,8(1):47-54.
    [108]刘栋良.永磁同步电机伺服系统非线性控制策略的研究[D].杭州:浙江大学博士学位论文,2005:29-34.
    [109]张涛,蒋静坪,张国宏.交流永磁同步电机伺服系统的线性化控制[J].中国电机工程学报,2001,21(6): 40-43.
    [110]张纯明,郭庆鼎.基于反馈线性化的交流直线永磁同步伺服电动机速度跟踪控制[J].电工技术学报,2003,18(3):5-9.
    [111] Slotine J E,Li W.应用非线性控制[M].程代展,译.北京,机械工业出版社,2006.
    [112] Wu Y,Yu X,Man Z. Terminal Sliding Mode Control Design for Uncertain Dynamic System[J]. Systems and Control Letters,1998,34(5):281-288.
    [113] Tang Y. Terminal Sliding Mode Control for Rigid Robots[J]. Automatica,1998,34(1):51-56.
    [114]冯勇,鲍晟,余兴火.非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194-198.
    [115] Feng Y,Yu X,Man Z. Non-Singular Terminal Sliding Mode Control of Rigid Manipulators[J]. Automatica,2002,38(12):2159-2167.
    [116] Bibeiro R L,Jacobina C B,Silva E R,et al. Fault-Tolerant Voltage-Fed PWM Inverter AC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
    [117] Bolognami S,Zordan M,Zigliotto M. Experimental Fault-Tolerant Control of a PWM Drive[J]. IEEE Transactions on Industrial Electronics,2000,47(5):1134-1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700