新型混合励磁无刷爪极发电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆发电机是车辆电气设备的主要电源,它不仅要为点火系统及其它用电设备提供电能,还要向蓄电池充电。
     目前,车辆上使用的发电机主要是电励磁有刷爪极发电机,这是因为电励磁有刷爪极发电机的结构简单、成本低、励磁调节方便。电励磁有刷爪极发电机通过调节励磁电流可以方便地调节气隙磁场,但是电励磁爪极发电机存在极间漏磁大、功率密度低、励磁损耗大、电机效率低等缺陷,且采用电刷-滑环结构,可靠性不高。
     随着我国社会经济的不断发展,城市车辆保有量逐渐增大,城市的交通拥堵,车辆行驶缓慢,车辆发电机的输出电压和输出功率达不到额定值,从而导致发电机既不能为蓄电池充电,也不能向点火系统及其他车载设备供电。与此同时,人们对车辆舒适性的要求越来越高,车辆附属的设备越来越多,使车辆的用电量大大增加,从而导致发电机常常处于过载运行,使发电机过热,影响使用寿命。为了克服这些缺点可以采用功率高的发电机,但是由于车辆内部结构非常紧凑,留给发电机的安装空间很小,基于上述原因,如何在不减少功率的基础上缩小其体积或者在原有的基座型号上研制一种高功率密度的新型发电机显得越来越重要。
     永磁发电机具有结构简单、比功率大、效率高和可靠性高的特点,但由于车辆发电机在正常工作时是变频、变速、变负载的工况,由于永磁电机励磁无法调节,随着电机转速的增加,必须进行弱磁控制保持电枢电动势的平衡。传统永磁同步电机通过增加直轴电流,利用电枢反应的去磁作用实现气隙磁场的减弱,这种方法在拓宽转速范围的同时导致铜耗增加,使系统的效率下降,并且过大的直轴电流会引起永磁体的不可逆退磁。此外,逆变器的电压和电流也是有限的。因此永磁发电机难以满足车辆发电机变速、变负载、电压恒定的要求。
     混合励磁发电机,采用了永磁励磁和电励磁相结合的励磁方式,解决了永磁发电机磁通不可调的缺点,通过励磁电流的调节,可以实现发电机在转速及负载变化范围内,输出恒定电压的技术要求。
     车辆用混合励磁爪极发电机是一种新型结构电机,它采用电励磁和永磁励磁相结合的励磁方式,与传统的电励磁爪极发电机相比,具有低速性能好、输出性能较好、效率较高等优点。本文针对目前混合励磁爪极发电机的不足,提出了新型的混合励磁无刷爪极发电机,采用三维有限元法并对该电机的磁场进行了分析计算,建立该电机的改进等效磁网络模型,利用该模型对电机的输出性能进行了计算,最后进行了样机的试制及试验,为该电机的进一步深入研究和开发应用奠定了基础。
     论文的研究内容主要有以下几个方面:
     1、提出了一种新型的并联式结构的混合励磁无刷爪极发电机。新型混合励磁无刷爪极发电机的两个爪极焊接在一起,一个跟轴相连,另一个的极掌部分有较大的内孔,励磁支架固定在端盖上,上面绕有励磁绕组,绕组和支架伸入爪极内。爪之间的间隙数与极数相等,一半的间隙用于将两个爪极焊接在一起(采用非导磁材料),另一半用于放置梯形柱形的永磁体。新型混合励磁爪极发电机结合了电励磁无刷爪极发电机和并联式混合励磁有刷爪极发电机的优点,在不增大励磁电流的情况下增大了气隙磁密,减少了励磁损耗,提高了电机的功率密度,改善了电机的低速发电性能。同时,励磁绕组静止不动,无电刷一滑环结构,实现了无刷化,提高了发电机工作的可靠性。
     2、新型混合励磁无刷爪极发电机的爪极形状不规则,电机磁场分布复杂,是典型的三维场,其设计和分析有一定的难度。本文采用Ansoft/Maxwell3D有限元分析软件对混合励磁无刷爪极发电机的性能进行了分析。首先,基于Ansoft/Maxwell3D的三维静磁场仿真平台,建立了新型混合励磁无刷爪极发电机的一对极有限元分析模型,分析了新型混合励磁无刷爪极发电机的磁场分布特点;之后,基于Ansoft/Maxwell3D的三维瞬态场仿真平台,首先建立了新型混合励磁无刷爪极发电机的三维瞬态场时步有限元分析模型,然后添加电机的整流输出电路,将它们作为一个整体进行分析,利用该模型,得到了混合励磁无刷爪极发电机的负载特性曲线。
     3、建立了考虑磁场三维分布的电机改进等效磁网络模型。新型混合励磁无刷爪极发电机的磁场是典型的三维场,本文对传统的等效磁网络模型进行了改进,建立考虑磁场三维分布的改进等效磁网络模型,详细说明了建模过程中励磁磁动势、电机磁导的计算问题,采用该模型对电机空载磁场分布进行了分析,同时,利用该模型对电机的负载特性进行了计算,为爪极电机的磁场分析提供了一种新的行之有效的计算手段。
     4、设计制造了一台12kW、28V样机,并进行了样机的性能试验,结果显示电机的性能良好。
     5、提出了两种特殊转子结构的混合励磁无刷爪极发电机,并对这两种发电机进行分析研究。分析结果表明:与电励磁爪极发电机相比,两种特殊转子的混合励磁无刷爪极发电机具有更高的气隙磁通密度,用较小的励磁电流即可产生较大的气隙磁密,减少了励磁损耗,提高了电机的励磁效率,采用无刷结构,取消了电刷-滑环结构,提高了系统的可靠性。
Automobile alternator is the main power supply of the vehicle electrical equipment, it is not only to provide power to the ignition system and other electrical equipment, but also to charge the battery.
     By now, the electric excitation claw-pole alternator has been widely used in vehicles due to its simple structure and low cost. However, the high leakage flux, low efficiency, and the existence of brushes and slip rings significantly restrict its further development.
     With the continuous development of China's socio-economic, urban car ownership increases gradually, the city's traffic is congested. The output voltage and output power of the automobile alternator are less than the rating, so the alternator can not charge the battery, or neither can not supply power to the ignition system and the other vehicle equipment. At the same time, the auto ancillary equipment increases gradually, so that the electricity consumption of the car increases significantly. The alternator is often in overload operation, which made the alternator is overheated. In order to overcome all these disadvantages, the alternator with higher power could be used. However, the automobile interior structure is compact, the space leaving for the alternator is very small. For the above reasons, how to reduce the alternator's volume, or increase the power in the original volume is becoming more and more necessary.
     The permanent magnet alternator eliminates the field winding, brushes and slip rings, and thus is simpler and more reliable. The efficiency and power density is improved. However, the regulation of magnetic field is difficult to be realized.
     To improve the capacity of magnetic field regulation of permanent magnet alternators, hybrid excitation has been proposed. The hybrid excitation claw pole alternator has both permanent magnets (PMs) and field winding, which takes the advantages of both the electric excitation claw pole alternator and the permanent magnet alternator. Compared with traditional electric excitation claw pole alternator, the hybrid excitation claw pole alternator has higher efficiency and power density, which makes it a very promising technique in recent years.
     To overcome all the drawbacks of the present hybrid claw pole alternators, a novel hybrid excitation brushless claw pole alternator is developed in this paper. This alternator combines the constant excitation source by PMs with the variable magnetic flux produced by the toroidal field winding located in the excitation bracket. The permanent magnet magnetic flux and electric excitation flux are parallel connected. This alternator eliminates the brushes and slip rings, so the reliability is greatly improved.
     The main contents of the paper are as follows:
     1. In chapter2, a novel hybrid excitation brushless claw pole alternator was proposed to overcome the disadvantages of the present hybrid excitation claw pole alternators. The novel hybrid excitation brushless claw pole alternator includes stator core, armature windings, claw poles, excitation bracket, DC excitation winding and permanent magnets. The rotor is composed of two claws, and the two claws are welded together with magnetic impermeable material. One claw is fixed on the shaft and the other one has a bore in the claw palm. The excitation bracket is fixed on the end closure, and the excitation winding wraps around the excitation bracket, then the excitation winding and excitation bracket insert into the claw through the bore in the claw palm. There are two additional air gaps between the bracket and the claws. The excitation winding is stationary, thus the brush and slip ring can be eliminated. Compared with the ordinary electric excitation claw-pole alternator, this hybrid excitation brushless claw-pole alternator reduces the excitation loss, increases the alternator's power density, and improves the alternator's low speed power characteristic. Furthermore, its excitation winding is stationary, thus the brush and slip ring can be eliminated. So it has good reliability.
     2. Like the other kinds of claw pole alternators, the distribution of magnetic field of the proposed alternator is3-dimensional, so3-D magnetic field analysis is necessary. The no-load magnetic field distributions and the capability of flux control are obtained based on three dimensional finite element analysis.
     3.3-D finite element analysis can be directly applied to the analysis of magnetic field. However,3-D finite element analysis takes long computation time. In chapter4, an improved equivalent magnetic circuit network model considering three dimensional magnetic field distributions is set up. The analytical expressions of permeability in the claw pole, air gap and the other stricture are deduced. The work of this part provides a powerful tool for the electromagnetic calculation of the novel hybrid excitation brushless claw-pole alternator.
     4. In chapter5, a12kW,28V prototype was designed and manufactured. The test results showed that the prototype has good performance.
     5. Two hybrid excitation brushless claw pole alternators with the field windings on the stator were proposed. Compared with the hybrid excitation brushless claw pole alternator with the field winding in the claw, the hybrid excitation brushless claw pole alternators with the field windings on the stator are simpler.
引文
[1]长沙汽车电器研究所.汽车交流发电机(第二版).北京:人民交通出版社,1980.
    [2]长沙汽车电器研究所.国内汽车电器标准汇编.1993.
    [3]长沙汽车电器研究所.国内汽车电器标准汇编.1994.
    [4]鲍晓华.汽车用爪极发电机建模及优化技术研究[D].合肥工业大学,2007.
    [5]唐任远.现代永磁电机-理论与设计[M].北京:机械工业出版社,1997.
    [6]王秀和.永磁电机[M].北京:中国电力出版社,2007.
    [7]寇宝泉,李春艳,程树康.可控磁通永磁同步电机弱磁新方案[J].中国科技论文在线,2006.
    [8]许强,贾正春,熊有伦.自适应永磁同步交流主轴驱动的弱磁控制[J].中国机械工程,1998,9(5):55~57.
    [9]袁宏,郭淑芳,汪海鹰,等.交流永磁伺服电机的弱磁控制[J].沈阳工业大学学报,1994,16(3):58-61.
    [10]尹华杰,林金铭,金振荣.永磁同步电动机的弱磁扩速分析[J].微电机,1995,28(2):11-15.
    [11]尹华杰,蒋豪贤,谢运详,等.一种永磁同步电动机弱磁新方案[J].微电机,1999,32(2):13-15.
    [12]Jahns T M. Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive[J]. Industry Applications, IEEE Transactions on,1987 (4): 681-689.
    [13]Soong W L, Ertugrul N. Field-weakening performance of interior permanent-magnet motors[J]. Industry Applications, IEEE Transactions on,2002,38(5):1251-1258.
    [14]Morimoto S, Takeda Y, Hirasa T, et al. Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity[J]. Industry Applications, IEEE Transactions on,1990,26(5):866-871.
    [15]窦汝振,温旭辉.永磁同步电动机直接转矩控制的弱磁运行分析[J].中国电机工程学报,2005,12.
    [16]Morimoto S, Sanada M, Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J]. Industry Applications, IEEE Transactions on,1994,30(4):920-926.
    [17]Amara Y. A new topology of hybrid synchronous machine [J]. IEEE Transactions on Industry Applications,2001,37(5):1273-1281.
    [18]Niu S X, Chau K T, Jiang J Z. Design and control of a new double-stator cup-rotor permanent-magnet machine for wind power generation[J]. IEEE Trans, on Magnetics,2007,43(6):2501-2503.
    [19]寇宝泉,谢大纲,程树康.磁力线开关型混合励磁磁阻电机的转矩特性[J].中国电机工程学报,2007,27(15):1-7.
    [20]Hu Jianhui, Zou Jibin. Finite element calculations of the saturation DQ-axes inductance for a direct drive PM synchronous motor considering cross-magnetization[C]. IEEE PEDS, Singapore,2003.
    [21]Wang Shyhjier, Lin Shirkuan. Analytical prediction of the incremental inductance of the permanent magnet synchronous motors[J]. IEEE Transactions on Magnetics, 2004,40(4):3737-3744.
    [22]Lee Jiyoung. Computation of inductance and static thrust of a permanent magnet type transverse flux linear motor[J]. IEEE Transactions on Industry Applications, 2006,42(2):487-494.
    [23]Muhegger. W, Teppan W. Manfred Rentmeister. Working condition of a Permanent Excited Synchronous Motor in Flux-Weakening Mode[C]. Proceeding of ICEM. 1990:1107-1110.
    [24]严岚,贺益康.复合转子永磁无刷直流电动机弱磁特性研究[J].电工技术学报,2004,19(3):59-64.
    [25]Qunjing W, Fei M, Guoli L. The analysis and calculations on 3-Dimensional field and inductance of a claw-pole alternator under no-load condition[J]. Proceedings-Chinese Society of Electrical Engineering,2002,22(1):38-42.
    [26]Luo X, Lipo T A. A synchronous/permanent magnet hybrid AC machine[J]. Energy Conversion, IEEE Transactions on,2000,15(2):203-210.
    [27]Yiping D, Haizhen C. A design research for hybrid excitation rare earth permanent magnet synchronous generator[C]//Electrical Machines and Systems,2001. ICEMS 2001. Proceedings of the Fifth International Conference on. IEEE,2001,2:856-859.
    [28]Feng Y C, Yun L H, Ping L X, et al. Electromagnetic design of hybrid excitation synchronous machine with asymmetrically stagger permanent magnet[C]//Electrical Machines and Systems,2007. ICEMS. International Conference on. IEEE,2007: 1617-1622.
    [29]Xiping L, Heyun L, Chengfeng Y, et al. Static characteristic of a novel dual-stator hybrid excited synchronous generator based on 3D finite element method [C]//Electrical Machines and Systems,2007. ICEMS. International Conference on. IEEE,2007:1539-1543.
    [30]Jiao G, Rahn C D. Field weakening for radial force reduction in brushless permanent-magnet DC motors[J]. Magnetics, IEEE Transactions on,2004,40(5): 3286-3292.
    [31]Briz F, Diez A, Degner M W, et al. Current and flux regulation in field-weakening operation [of induction motors] [J]. Industry Applications, IEEE Transactions on, 2001,37(1):42-50.
    [32]Sneyers B, Novotny D W, Lipo T A. Field weakening in buried permanent magnet ac motor drives [J]. Industry Applications, IEEE Transactions on,1985 (2):398-407.
    [33]Bose B K. A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine[J]. Industry Applications, IEEE Transactions on,1988, 24(6):987-997.
    [34]Macminn S R, Jahns T M. Control techniques for improved high-speed performance of interior PM synchronous motor drives[J]. Industry Applications, IEEE Transactions on,1991,27(5):997-1004.
    [35]Schiferl R F, Lipo T A. Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications [J]. Industry Applications, IEEE Transactions on,1990,26(1):115-123.
    [36]Zhu X, Cheng M, Hua W, et al. Investigation of flux regulation performance and experimental validation for a novel hybrid excited doubly salient permanent magnet machine[J]. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING,2008,28(3):90.
    [37]Xiaoyong Z, Ming C, Wenxiang Z, et al. An overview of hybrid excited electric machine capable of field control[J]. Transactions of China Electrotechnical Society, 2008,23(1):30-39.
    [38]白海军.轴向分段式外永磁转子爪极电机研究[D].沈阳:沈阳工业大学,2010.
    [39]Mizuno T, Nagayama K, Ashikaga T, et al. Basic principles and characteristics of hybrid excitation synchronous machine[J]. Electrical engineering in Japan,1996, 117(5):110-123.
    [40]Zhang Hongjie, Tang Renyuan. Theory and design of hybrid excitation permanent magnet synchronous generators [C]. International Conf. on Electrical Machines and System, Shenyang,2001,2,898-900.
    [41]Lu Qinfen, Ye Yunyue. Magnetic field and thrust of hybrid excitation linear synchronous motor[J]. Proceedings of the CSEE,2005,25(10):127-130.
    [42]Qunjing W, Guoli L, Fei M, et al. Investigation and calculations on 3-dimensional field and inductance of a hybrid claw-pole alternator with PM excitation[J]. Transactions of China Electrotechnical Society,2002,17(5):1-5.
    [43]Wang Qunjing, Chen Jun, Jiang Weidong, Wu Lijian. The modeling and calculation on a new type hybrid claw-pole alternator[J]. Proceedings of the CSEE,2003,23(2): 67-70.
    [44]赵朝会,李遂亮,严仰光.混合励磁电机的研究现状及进展[J].河南农业大学学报,2004,38(4).
    [45]Zhao C, Yan Y. A review of development of hybrid excitation synchronous machine[C]//Industrial Electronics,2005. ISIE 2005. Proceedings of the IEEE International Symposium on. IEEE,2005,2:857-862.
    [46]窦一平.组合励磁稀土永磁同步发电机的设计研究[D].南京:南京航空航天大学,2002.
    [47]Tapia J A, Leonardi F, Lipo T A. Consequent pole permanent magnet machine with field weakening capability[C]//Electric Machines and Drives Conference,2001. IEMDC 2001. IEEE International. IEEE,2001:126-131.
    [48]Aydin M, Huang S, Lipo T A. A new axial flux surface mounted permanent magnet machine capable of field control[C]//Industry Applications Conference,2002.37th IAS Annual Meeting. Conference Record of the. IEEE,2002,2:1250-1257.
    [49]Naoe N, Fukami T. Trial production of a hybrid excitation type synchronous machine[C]//Electric Machines and Drives Conference,2001. IEMDC 2001. IEEE International. IEEE,2001:545-547.
    [50]Chalmers B J, Akme R, Musaba L. Design and field-weakening performance of permanent-magnet/reluctance motor with two-part rotor[J]. IEE Proceedings-Electric Power Applications,1998,145(2):133-139.
    [51]Bianchi N, Bolognani S. Parameters and volt-ampere ratings of a synchronous motor drive for flux-weakening applications[J]. Power Electronics, IEEE Transactions on,1997,12(5):895-903.
    [52]Huang S, Yang Z, Jian G. Study and design of the hybrid excitation synchronous generator operating constant voltage over a wide range of speeds[C]//Vehicle Power and Propulsion Conference,2008. VPPC'08. IEEE. IEEE,2008:1-5.
    [53]Jibin Z, Xinghe F. Study on the structure and flux regulation performance of a novel hybrid excitation synchronous generator[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on. IEEE,2008:3549-3553.
    [54]Henneberger G, Hadji-Minaglou J R, Ciorba R C. Design and test of permanent magnet synchronous motor with auxiliary excitation winding for electric vehicle application[C]. European Power Electronics Chapter Symposium, Lausanne.1994: 645-649.
    [55]Fodorean D, Djerdir A, Viorel I A, et al. A double excited synchronous machine for direct drive application—Design and prototype tests [J]. Energy Conversion, IEEE Transactions on,2007,22(3):656-665.
    [56]Amara Y, Vido L, Gabsi M, et al. Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion[J]. Vehicular Technology, IEEE Transactions on,2009,58(5):2137-2149.
    [57]Xiao K, Liu C, Zhou Q. The structural and characteristic study on the novel parallel magnetic path hybrid excitation synchronous generator[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on. IEEE,2008:3608-3611.
    [58]Akemakou A D, Phounsombat S K. Electrical machine with double excitation, especially a motor vehicle alternator:U.S. Patent 6,147,429[P].2000-11-14.
    [59]Luo X, Lipo T A. A synchronous/permanent magnet hybrid AC machine[J]. Energy Conversion, IEEE Transactions on,2000,15(2):203-210.
    [60]王群京,李国丽,马飞.具有永磁励磁的混合式爪极发电机空载磁场分析和电感计算[J].电工技术学报,2002,(5):1-5.
    [61]Zhang D, Zhao C, Zhu L, et al. On hybrid excitation claw-pole synchronous generator with magnetic circuit series connection[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on. IEEE,2008:3509-3513.
    [62]Wang Q, Chen J, Jiang W, et al. T The modeling and calculating on a new hybrid claw-pole alternator [J]. Proceedings of the Csee,2003,2:015.
    [63]Yang C, Lin H, Guo J, et al. Design and analysis of a novel hybrid excitation synchronous machine with asymmetrically stagger permanent magnet[J]. Magnetics, IEEE Transactions on,2008,44(11):4353-4356.
    [64]Zhang Z, Yan Y, Yang S, et al. Principle of operation and feature investigation of a new topology of hybrid excitation synchronous machine[J]. Magnetics, IEEE Transactions on,2008,44(9):2174-2180.
    [65]王群京,倪有源,李国丽.爪极电机的结构、理论及应用[M].北京:中国科学技术大学出版社,2006.
    [66]F.L.Zesier, J.R.Brauer. Automotive alternator electromagnetic calculations using three dimensional finite elements[J]. IEEE Transactions on Magnetics,1985,21(6): 2453-2456
    [67]Belmans R, Swaenen G, Geysen W, et al. Calculation of the characteristics of a claw pole generator[J]. Magnetics, IEEE Transactions on,1990,26(2):952-955.
    [68]Brauer J R, Schaefer S M, Lambert N J, et al. Mixing 2D with 3D finite elements in magnetic models[J]. Magnetics, IEEE Transactions on,1990,26(5):2193-2195.
    [69]V,Ostovic, J.M.Miller, V.Garg, R.D.Schultz, S.Swales, A magnetic equivalent circuit based performance computation of a Lundell alternator[J]. IEEE Transactions on Industry Application,1999,35(4):825-830.
    [70]Hua Bai, Steven D.Pekarek, et al. Analytical derivation of a coupled-circuited model of a claw-pole alternator with concentrated stator windings[J]. IEEE Transactions on Energy Conversions,2002,17(1):32-38.
    [71]H.Roisse, M.Hecquet, P.Brochet. Simulations of synchronous machines using a electric-magnetic coupled network model[J]. IEEE Transactions on Magnetics,1998, 34(5):3656-3659.
    [72]Christian Kaehler, Gerhard Henneberger. Eddy-current computation in the claws of a synchronous claw-pole alternator in generator mode[J]. IEEE Transactions on Magnetics.2002,38(2):1201-1204.
    [73]Christian Kaehler, Gerhard Henneberger. Transient 3-D FEM computation of eddy-current losses in the rotor of a claw-pole alternator[J]. IEEE Transactions on Magnetics,2004,40(2):1362-1365
    [74]Ramesohl I, Henneberger G. Calculation and measurement of time characteristics of local field quantities in the air-gap of claw-pole alternators[J]. Magnetics, IEEE Transactions on,1997,33(5):4200-4202.
    [75]Fer A F, Akay H U. Calculation of magnetic forces in a Lundell alternator using 3D finite elements[C]//Electric Machines and Drives Conference Record,1997. IEEE International. IEEE,1997:TA1/4.1-TA1/4.3.
    [76]J.O'Dwyer, C.Patterson, T.Reibe. Dual voltage alternator[C]. Proceedings of the 1996 IEE Colloquium on Machines for Automotive Applications.1996:4/1-4/5.
    [77]Liang F, Miller J M, Xu X. A vehicle electric power generation system with improved output power and efficiency [J]. Industry Applications, IEEE Transactions on,1999,35(6):1341-1346.
    [78]Khan I A. Automotive electrical systems:architecture and components[C]. Digital Avionics Systems Conference,1999. Proceedings.18th. IEEE,1999,2:8. C.5-1-8. C. 5-10 vol.2.
    [79]Kassakian J G, Perreault D J. The future of electronics in automobiles[C]./Power Semiconductor Devices and ICs,2001. ISPSD'01. Proceedings of the 13th International Symposium on. IEEE,2001:15-19.
    [80]Drakunov S, Utkin V, Zarei S, et al. Sliding mode observers for automotive applications[C]. Control Applications,1996, Proceedings of the 1996 IEEE International Conference on. IEEE,1996:344-346.
    [81]Utkin V I, Chen D S, Zarei S, et al. Synchronous rectification of the automotive alternator using sliding mode observer[C]. American Control Conference,1997. Proceedings of the 1997. IEEE,1997,2:1141-1145.
    [82]张伟雄,郑蝉君,张敬华.基于磁网络模型方波永磁电机气隙磁场的研究[J].微特电机,1999,27(6):3-7.
    [83]张伟雄,张敬华,郑蝉君.基于磁网络模型爪极电机气隙磁场的研究[J].微特电机,2003,28(6):1 0-16.
    [84]陈娓,陈传森.爪极发电机漏磁的有限元分析[J].工程数学学报,2004,21(1):1-6.
    [85]赵朝会.串联磁路混合励磁爪极发电机的结构设计和特性[J].电工技术学报,2009,24(5):1-7.
    [86]Zhang Da, Zhao Chaohui, Zhu Lei, et al. On hybrid excitation claw-pole synchronous generator with magnetic circuit series connection[C]. International Conference on Electrical Machines and Systems. Wuhan, China:CES, NSFC, KIEE and IEEJ,2008: 3509-3513.
    [87]王群京,陈军,姜卫东,等.一种新型混合励磁爪极发电机的建模与计算[J].中国电机工程学报,2003,23(2):67-70,76.
    [88]Ni Youyuan, Wang Qunjing, Bao Xiaohua, et al. Optimal design of a hybrid excitation claw-pole alternator based on a 3-D MEC method[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, Nanjing, China:ICEMS,2005:644-647.
    [89]王群京,倪有源,张学,等.基于三维等效磁网络法计算混合励磁爪极发电机负载特性[J].电工技术学报,2006,21(6):96-100.
    [90]Chengfeng Y, Heyun L, Jian G. Magnetic field analysis of hybrid excitation brushless claw-pole motor with three-dimensional finite element method[C]. Electrical Machines and Systems,2005. ICEMS 2005. Proceedings of the Eighth International Conference on. IEEE,2005,1:664-666.
    [91]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982.
    [92]俞宏生.工程电磁场分析与计算[M].北京:人民交通出版社,1997.
    [93]张伟雄.磁网络法研究及混合励磁设计[D].合肥工业大学,2000.
    [94]王远兵.车用混合励磁爪极发电机的有限元分析和研究[D].合肥工业大学,2009.
    [95]刘士勇.磁通开关电机的设计与控制[D].山东大学,2008.
    [96]巩源泉.磁通开关发电机系统研究[D].山东大学,2009.
    [97]刘国强,赵凌志,蒋继娅Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [98]鲁军勇,梁得亮,丰向阳.基于Ansoft的永磁直线无刷直流电动机的仿真研究[J].中小型电机,2004,1:21-23.
    [99]严登俊,刘瑞芳,胡敏强,等.鼠笼异步电机起动性能的时步有限元计算[J].电机与控制学报,2003,7(3):177-181.
    [100]Zhu Z Q, Howe D. Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors[J]. Magnetics, IEEE Transactions on,1992, 28(2):1371-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700