锆基非晶合金微成形技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型零器件在微机电系统(MEMS).通讯、电子、国防、医学等领域具有广阔的应用前景,这些行业的发展对微成形技术(Micro-forming Technology)提出了更高的要求。非晶合金一系列优良性能使其成为最理想的微成形材料之一,因此,非晶微成形技术引起了人们的广泛关注。但人们对非晶材料在微成形过程中的变形和流动特征、尺寸效应的产生机理以及影响因素仍不清晰;非晶合金微成形工艺参数选择、微成形模具的设计与制造理论还很不完善;另外,超塑性微成形是否影响非晶材料组织和性能也不得而知。有鉴于此,本文以锆基非晶合金为对象,系统地开展了非晶合金超塑性微成形技术的基础研究和工艺研究。
     首先,系统地研究了块体非晶合金Zr55Cu30Al10Ni5在其过冷液态区内不同温度下的单轴压缩变形行为以及不同载荷模式下的微成形能力。结果表明,其流变特性强烈依赖于温度和应变速率,在690 K的温度下压缩时,该合金过冷液表现出明显的非牛顿流特征,而在690 K以上的过冷液态区内,随着应变速率的增加,Zr55CU30Al10Ni5非晶过冷液的流动特性逐渐由牛顿流向非牛顿流体转变,而且发生这种转变的临界应变速率值随温度的升高而增大,725K时,临界应变速率降到约为10-2s-1。另外,振动载荷能降低非晶合金的流动粘度,提高其微成形能力。增加载荷的振幅或者在低频阶段增加频率都有利于提高非晶合金的微成形能力。
     选用DEFROM软件,对块体非晶合金Zr55Cu30Al10Ni5在过冷液态区内的超塑性微反挤压过程进行了有限元模拟分析。结果表明,随着挤压速度的升高,非晶合金由牛顿流转向非牛顿流体,指出块体非晶合金Zr55Cu30Al10Ni5的最佳微反挤压工艺参数为:温度725 K,挤压速度高于4μm.s-1。
     在数值模拟研究的指导下,分别选用块体非晶ZrssCu30Al10Ni5和Zr65Cu15Ni10Al10作为实验材料,对不同壁厚的简单杯形零件和变截面三维复杂零件的微反挤压工艺进行了实验研究,分析了温度、挤压速度等工艺参数对非晶合金的微成形能力以及成形质量的影响规律。成功挤压出外径为2.2 mm,壁厚只有50μm的简单杯形非晶零件以及变截面三维复杂微型非晶零件,零件的形状和尺寸符合设计要求,表观质量良好。
     选用非晶合金Zr65Ni10Al10Cu15为实验材料,分别设计了外径为1.2 mm和0.6mm两个系列杯形零件的微反挤压方案,通过理论分析和实验研究,系统地探讨了非晶合金在微反挤压过程中的尺寸效应现象。结果表明,随着坯料尺寸或者零件壁厚的减小,表观粘度单调增加;当零件内外径之比大于0.83后,非晶合金微反挤压成形表现出明显的尺寸效应。进一步分析发现,零件尺寸和壁厚减小引起的比表面积增加,导致微反挤压过程中摩擦、表面能等因素的影响急剧上升,这是产生尺寸效应的根本原因。在泊肃叶方程的基础上,结合尺寸效应分析,推导出计算非晶合金微反挤压成形载荷的理论公式。
     利用显微维氏硬度计(Vickers Indenter).纳米压痕仪(Nano Indenter)系统地分析了不同尺寸非晶零件在微反挤压成形过程中的变形特征和性能变化。研究发现,对于大壁厚零件,其硬度与铸态非晶合金的硬度接近;而对于薄壁零件,其纳米压痕硬度低于铸态非晶合金。另外,零件纵截面上的显微硬度明显不均匀,杯壁内侧拐角处的硬度最大,而杯口处的硬度最低,相对差值到达14%。分析认为,成形零件的性能变化以及分布不均匀主要是由于非晶坯料在复杂应力状态和局部强烈剪切变形引起的自由体积变化所致。
     本论文的研究结果为开发非晶合金微成形工艺提供了可靠的理论依据,同时,也为扩大非晶合金的工业化应用范围奠定坚实的理论基础。
Micro-parts and micro-devices have broad application prospect in many areas, such as micro-electro-mechanical-system (MEMS), communication, electronics, national defense, medical science, etc. The development of these industries put forward a higher requirement on micro-forming technology. Bulk metallic glass (BMGs) have lots of superior propertiesis and they are one of the most ideal micro forming materials, micro forming technology of BMGs have attracted wide attention in recent years. But the deformation and flow characteristics of BMGs during the micro forming, size effect and the influencing factors are still not clear; the selection of micro forming parameters and the design and manufacture theory of micro die are not perfect; In addition, whether the micro-structure and properties of BMGs will be influenced by superplastic forming is also unknown. In view of those, systematically basic research and technology research of superplastic micro forming technology of BMGs are carried out in this paper.
     First, the uniaxial compression deformation behaviors of Zr55Cu30Al10Ni5 bulk metallic glass (BMG) in the supercooled liquid region and the micro-formability under different load mode are studied systematically, the results show that the deformation behavior of the BMG is strongly dependent on the temperature and strain rate, and there exists obvious stress overshoot when deformed at a low temperature or high strain rate. It exhibited non-newtonian behavior at a temperature of 690 K, but when deformed above 690 K, it will chang from a Newtonian flow at low strain rates to a non-Newtonian flow at high strain rates, the critical strain rate increased with the increasing in temperature and is about 10-2 s-1 at the temperature of 725 K. In addition, the study shows that vibration load can improve the micro-formability of MBGs by reducing the viscosity, higher amplitude or higher frequency is helpful to improve the micro-formability.
     The superplastic micro back-extrusion process of Zr55Cu30Al10Ni5 MBG supercooled liquid is investigated by using DEFROM software.The results shows that with the increasing of extrusion speed, the MBG supercooled liquid change form a Newtonian flow to a non-Newtonian flow, and points out that the optimum extrusion process parameters of Zr55Cu30Al10Ni5 MBG are:at a temperature of 725 K and extrusion speed above 4μm.s-1.
     Choosing cup-shaped parts with simple cross-section and three-dimensional complex variable cross-section as research objects, the micro back-extrusion process of Zr55Cu30Al10Ni5 and Zr65Cu15Ni10Al10 BMGs in their supercooled liquid region are studied under the guidance of numerical simulation, the influence law of the main process parameters, such as temperature and extrusion speed, on the forming quality and micro formability of the BMGs are analysed. A micro-cup-shaped object with an outer diameter of 2.2 mm and a single side wall thickness of only 0.05 mm, as well as a micro part with a three-dimensional complex variable cross-section are successfully extruded. Scanning electron microscopy shows that the parts, with good apparent quality, maintain amorphous structures, the shapes and sizes of the parts meet the design requirements.
     Two series of cup-shaped micro parts with the out diameter of 1.2 mm and 0.6 mm but different wall thickness were set as the objects, the size effect during the micro back-extrusion process of the Zr65Cu15Ni10Al10 BMG are systematically investigated. The results show that the apparent viscosity monotonously increases with the decreases of overall dimension or the wall thickness, and there exits obviously size effect when the ratio of inner diameter to outer diameter is greater than 0.83. Further analysis found that the rapid increase in the specific surface area resulted by the decreases in parts size and wall thickness causes the rapid increase in the micro friction and surface energy, and those contributes to size effect. Based on the Hagen-Poiseuille-equation, a equation for calculating the required extrusion load is deduced.
     The deformation characteristics and property changes of the BMGs during in the micro back-extrusion process were systematically analyzed by means of micro-hardness measurement and nanoindentation, the study found that the hardness of thick-walled parts is similar to this of as-cast amorphous alloy, but the nano-indentation hardness of thin-walled parts is smaller than that of as-cast amorphous alloys. In addition, the micro-hardness distribution of the longitudinal section is far from uniform, the largest hardness was found at the inside corner and the lowest hardness at the edge place, the relative difference value is about 14%. The free volume change caused by the complex stress state and local strong shear deformation is the main cause for the property changes and the uneven distribution of microhardness.
     These research results supply a credible theoretics bases for the development of BMGs micro forming technology, and also provide a stable academic foundation for expanding the industrialized application range of BMGs.
引文
[1]M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, in:51st General Assembly of CIRP, Nancy, France,2001:445-462.
    [2]M.G.U. Engel, Microforming -a Challenge to the Plasticity Research Community Addressed to the 40th Anniversary of the JSTP. Journal of the JSTP,2002,494(43): 171-172.
    [3]U. Engel, R. Eckstein, Microforming- from basic research to its realization, in: 9th International Conference on Metal Forming (METAL FORMING 2002, Birmingham, England,2002:35-44.
    [4]申昱,于沪平,阮雪榆.材料塑性与几何尺寸关系研究[J]锻压技术,2006:64-67.
    [5]W.L. Johnson, Bulk amorphous metal - An emerging engineering material, Jom-Journal of the Minerals Metals & Materials Society,54 (2002) 40-43.
    [6]P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nano-fabrication with metallic glass - an exotic material for nano-electromechanical systems, Nanotechnology,18 (2007).
    [7]S.J. He, Gao L.R. Amorphous Materials and Application [M]. Beijing:Mechanical Industry Press,1987:61.
    [8]Y. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems, Journal of Materials Processing Technology, 119(2001)307-311.
    [9]张志豪,刘新华,谢建新.Zr基非晶合金精密直齿轮超塑性成形试验研究.机械工程学报.2005,3:151-154.
    [10]张志豪,周成,谢建新.Zr55Al10Ni5Cu30大块非晶合金的超塑性挤压成形性能.中国有色金属学报.2005(1):33-37.
    [11]张志豪,刘新华,周成,等.Zr基大块非晶合金的超塑性成形性能[J].中国有色金属学报,2004.14(7):1073-1077,.
    [12]J.A. Wert, C. Thomsen, R.D. Jensen, M. Arentoft, Forming of bulk metallic glass microcomponents, Journal of Materials Processing Technology,209 (2009) 1570-1579.
    [13]F.E. Luborsky, Amorphous Metallic Alloys (Butterworths Monographs in Materials), Butterworth-Heinemann,1983:496.
    [14]兆勃.非晶固态材料引论.科学出版社.1987,11:40-42.
    [15]黄胜涛,等.非晶态材料的结构和结构分析.科学出版社,1987:367-372.
    [16]K. Suzuki, Kataoka N. Inoue A. et.al. High saturation magnetization and soft magnetic Properties of bcc Fe-Zr-B Alloys with Ultrafine Grain Structure. Materials Transactions,JIM,1990:743-746.
    [17]D. Turnbull, Kinetics of solidification of supercooled liquid mercury droplets. The Journal of Chemical Physics,1952,20:411-424.
    [18]D. Turnbull, The liquid state and the liquid-solid transition. The 1961 Institute of Metals Division Lecture, Transactions TMS-AIME,1961,221:422-439.
    [19]P. Jund, D. Caprion, R. Jullien, Is there an ideal quenching rate for an ideal glass?, Physical Review Letters,1997(79):91-94.
    [20]W. Klements, Willens R.H. Duwez P. Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960,187:869-870.
    [21]W.L. Johnson, Bulk metallic glasses-a new engineering material. Current Opinion in Solid State & Materials Science,1996,1 (3):383-386.
    [22]A.W. Weeber, Bakker H. Amorphization by ball milling (a review). Physica B, 1988,153 (1-3):93-135.
    [23]J.H. Perepezko, Smith J.S. Glass formation and crystallization in highly undercooled Te-Cu alloys. Journal of Non-Crystalline Solids,1981,44(1):65-83.
    [24]H.W. Kui, Greer A.L.Turnbull D. Formation of bulk metallic glass by fluxing. Applied Physics Letters,1984,45:615-616.
    [25]A. Inoue, Kita K.Zhang T. et al. An amorphous La55Al25Ni20 Alloy Prepared by Water Quenching. Mater Trans JIM,1989,30(9):722-725.
    [26]A. Inoue, Kato A, Zhang T. et al. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM,1991, 32(7):609-616.
    [27]A. Peker, Johnson W.L. A Highly Processable Metallic-Glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993,63(17):2342-2344.
    [28]A. Inoue, Masumoto T. Zhang T. Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM,1990,31(3):177-183.
    [29]A. Inoue, Zhang T. Masumoto T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Materials Transactions, JIM,1990,31(5):425-428.
    [30]A. Kato, Inoue A. Horikiri H. et al. Production of Bulk Amorphous Mg85Y10Cu5 Alloy by Extrusion of Atomized Amorphous Powder. Materials Transactions, JIM, 1994,35(2):125-129.
    [31]A. Inoue, Zhang T. Masumoto T. Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys By Copper Mold Casting And Their Thermal And Mechanical-Properties. Materials Transactions JIM,1995,36(3):391-398.
    [32]A. Inoue, Gook J.S. Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region. Materials Transactions, JIM,1995,36(9):1180-1183.
    [33]A. Inoue, Nishiyama N. Takayuki M. Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996,37(2):181-184.
    [34]R. Akatsuka, T. Zhang, H. Koshiba, A. Inoue, Preparation of new Ni-based amorphous alloys with a large supercooled liquid region, Materials Transactions Jim,40 (1999) 258-261.
    [35]X.H. Lin, Johnson W.L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. Journal of Applied Physics,1995,78(11):6514-6519.
    [36]B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Amorphous metallic plastic, Physical Review Letters,94 (2005).
    [37]H. Chiriac, N. Lupu, Magnetic properties of (Nd,Ce,Pr)-Fe-(Si,Al) bulk amorphous materials, Journal of Magnetism and Magnetic Materials,196 (1999) 235-237.
    [38]H. Li, G. Subhash, X.L. Gao, L.J. Kecskes, R.J. Dowding, Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses, Scripta Materialia,49 (2003) 1087-1092.
    [39]H. Men, S.J. Pang, A. Inoue, T. Zhang, New Ti-based bulk metallic glasses with significant plasticity, Materials Transactions,46 (2005) 2218-2220.
    [40]T. Zhang, A. Inoue, Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region, Materials Transactions Jim,40 (1999) 301-306.
    [41]J.F. Loffler, Bulk metallic glasses, Intermetallics,11 (2003) 529-540.
    [42]C.J. Gilbert, R.O. Ritchie, W.L. Johnson, Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass, Applied Physics Letters,71 (1997)476-478.
    [43]M.F. Ashby, A.L. Greer, Metallic glasses as structural materials, Scripta Materialia, 54(2006)321-326.
    [44]T. Burgess, M. Ferry, Nanoindentation of metallic glasses, Materials Today,12 (2009) 24-32.
    [45]Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Materials Transactions, JIM,1995,36:866-875.
    [46]A. Inoue, Stabilization and high strain-rate superplasticity of metallic supercooled liquid, in:5th International Symposium on Electrochemical/Chemical Reactivity of Novel Materials, Sendai, Japan,1998:171-183.
    [47]Inoue A. Fan,C.Saida J.Zhang T. High-strength Zr-based Bulk Amorphous Alloys Containing Nanocrystalline and Nanoquasicrystalline Particles. Science and Technology of Advanced Materials.2000,1:73-76.
    [48]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia,48 (2000) 279-306.
    [49]W.L. Johnson, Bulk glass-forming metallic alloys:Science and technology, Mrs Bulletin,24(1999)42-56.
    [50]L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, T.C. Hufnagel, Enhanced plastic strain in Zr-based bulk amorphous alloys, Physical Review B,64 (2001).
    [51]孙亚娟.邢大伟,黄永江等.一种新的具有室温大塑性的Zr基块体非晶合金,稀有金属材料与工程,2009,38:54-58.
    [52]Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system, Scripta Materialia, 56(2007)161-164.
    [53]Y.J. Huang, J. Shen, J.F. Sun, Bulk metallic glasses:Smaller is softer, Applied Physics Letters,90 (2007).
    [54]H. Somekawa, A. Inoue, K. Higashi, Superplastic and diffusion bonding behavior on Zr-Al-Ni-Cu metallic glass in supercooled liquid region, Scripta Materialia,50 (2004) 1395-1399.
    [55]Y. Kawamura, T. Nakamura, A. Inoue, Superplasticity in Pd4oNi4oP2o metallic glass, Scripta Materialia,39 (1998) 301-306.
    [56]M.D. Demetriou, W.L. Johnson, Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1, Acta Materialia,52 (2004) 3403-3412.
    [57]K.C. Chan, Q. Chen, L. Liu, Deformation behavior of Zr55.9Cu18.6Ta8Al7.5Ni10bulk metallic glass matrix composite in the supercooled liquid region, Intermetallics,15 (2007) 500-505.
    [58]E. Bakke, Busch R.and Johnson W. L.The viscosity of the Zr46.75Ti8.25Cu75Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid [J]. Appl. Phys. Lett.1995,67 (22):3260-3263.
    [59]R. Busch, E. Bakke, W.L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy, Acta Materialia,46 (1998) 4725-4732.
    [60]L. Liu, Z.F. Wu, J. Zhang, Crystallization kinetics of Zr55Cu50Al10Ni5 bulk amorphous alloy, Journal of Alloys and Compounds,339 (2002) 90-95.
    [61]P.N. Zhang, J.F. Li, Y. Hu, Y.H. Zhou, Structure evolution of bulk Zr60Cu20Pd10Al10 amorphous alloy during rolling deformation, Journal of Materials Science,43 (2008)7179-7183.
    [62]M. Heggen, F. Spaepen, M. Feuerbacher, Creation and annihilation of free volume during homogeneous flow of a metallic glass, Journal of Applied Physics,97 (2005).
    [63]H.J. Jun, K.S. Lee, J. Eckert, Y.W. Chang, High-temperature deformation behavior and formability of a Zr-Cu-Al-Ni bulk metallic glass, in:Bulk-Metallic Glasses IV Symposium held at the 2007 TMS Annual Meeting, Orlando, FL, 2007:1831-1837.
    [64]W.J. Kim, D.S. Ma, H.G. Jeong, Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region, Scripta Materialia,49 (2003) 1067-1073.
    [65]沈军,王刚,孙剑飞,等.Zr基块体非晶合金在过冷液相区的超塑性流变行为.金属学报.2004,40(5):518~522.
    [66]C.L. Chiang, J.P. Chu, C.T. Lo, T.G. Nieh, Z.X. Wang, W.H. Wang, Homogeneous plastic deformation in a Cu-based bulk amorphous alloy, in:3rd International Conference on Bulk Metallic Glasses, Beijing, PEOPLES R CHINA, 2003:1057-1061.
    [67]J.Lu,G. Ravichandran,W.L.Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Materialia,51 (2003) 3429-3443.
    [68]T.G. Nieh, J. Wadsworth, Homogeneous deformation of bulk metallic glasses, Scripta Materialia,54 (2006) 387-392.
    [69]J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, C. Yan, L. Ye, B.D. Zhou, Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region, Intermetallics,13 (2005) 79-85.
    [70]闫相全,宋晓艳,张久兴.块体非晶合金材料的研究进展[J].稀有金属材料与工程.2008,(37)5:931-935.
    [71]G. Kumar, A. Desai, J. Schroers, Bulk Metallic Glass:The Smaller the Better, Advanced Materials,23 (2011) 461-476.
    [72]石保庆.钎焊技术发展动向[J].焊接技术,1998(1):37-38.
    [73]佘素琴.Ni基非晶钎料的研究及应用[J].上海钢研,1991(4):93-97.
    [74]M. Singh, R. Asthana, T.P. Shpargel, Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,498 (2008) 19-30.
    [75]M. Singh, R. Asthana, Joining of zirconium diboride-based ultra high-temperature ceramic composites using metallic glass interlayers, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,460 (2007) 153-162.
    [76]B.A. Kalin, V.T. Fedotov, O.N. Sevrjukov, A. Moeslang, M. Rohde, Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel, Journal of Nuclear Materials,329 (2004) 1544-1548.
    [77]J.S. Zou, Z.G. Jiang, Q.Z. Zhao, Z. Chen, Brazing of SiaN4 with amorphous Ti40Zr25Ni15Cu20 filler, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,507 (2009) 155-160.
    [78]詹捷,孙志富,陈元芳.铁基非晶态合金在制造业中的应用[J].现代制造工程2002(10):5-6.
    [79]刘欣,王敬丰,覃彬,等.非晶态镁基储氢合金的研究进展[J].材料导报2006,20(10):120-122.
    [80]吴煜明,雷永泉,吴京,等.机械合金化Mg2Ni基非晶态贮氢合金的电化学特性[J].稀有金属材料与工程1997,26(3):26-29.
    [81]C. Iwakura, S. Nohara, S.G. Zhang, H. Inoue, Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite, Journal of Alloys and Compounds,285 (1999) 246-249.
    [82]张凯锋,雷鹍.面向微细制造的微成形技术.中国机械工程,2004,15(12):1121-1127.
    [83]M.A. Geiger M, Production of Microparts-size Effects in Bulk Metal Forming Similarity Theory. Production Engineering,1997,4:55-58.
    [84]T.A. Kals, R. Eckstein, Miniaturization in sheet metal working, Journal of Materials Processing Technology,103 (2000) 95-101.
    [85]R. Eckstein, U. Engel, Behavior of the grain structure in micro sheet metal working, 2000.
    [86]L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens, Size effects in the processing of thin metal sheets, Journal of Materials Processing Technology,115 (2001)44-48.
    [87]U. Engel, Tribology in microforming, in:2nd International Conference on Tribology in Manufacturing Processes (ICTMP2004), Nyborg, DENMARK, 2004:265-273.
    [88]E.U. Messner A, Kals R, et al. Size effect in the FE-simulation of micro-formingprocesses. Journal of Materials Processing Technology,1994,45: 371-376.
    [89]U.E. N.Tiesler, M.Geiger,.Forging of Microparts-Effects of Miniaturization on Friction.M.Geiger.Proceeding of the 6th ICTP. Nuremberg, Bavaria,Germany. 1999:889-894.
    [90]U.E. T Sobis, M Geiger. A theoretical study of ear simulation in metal forming processes [J]. Journal of Materials Processing Technology,1992.34:233-240.
    [91]N. Tiesler, U. Engel, Microforming-Effects of miniaturization, in:M. Pietrzyk, J. Kusiak, J. Majta, P. Hartley, I. Pillinger (Eds.) 8th International Conference on Metal Forming, Krakow, Poland,2000:355-360.
    [92]雷丽萍,曾攀,方刚.塑性微成形技术及其工艺特点分析.第五界全国塑性加工年会论文集.2003:75-78,.
    [93]F. Vollertsen, Z. Hu, H.S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology,151 (2004) 70-79.
    [94]M.F. K.Yoshida, I.Kubold. FEM analysis and experimental on multistage forging for wrist watch parts. Proceeding of the 6th ICTP. Nuremberg, Bavaria,Germany. 1999:901-906.
    [95]M.A. Geiger M, Production of Microparts-size Effects in Bulk Metal Forming Similarity Theory. Production Engineering,1997,4:55-58.
    [96]E.U.M.A.T. N. Cold Forging of Microparts-effect of Miniaturization on Friction.The 1st ESAFORM Conference on Materials Forming, Sophia Antipolis, France,1998.
    [97]G.M.L.L.J.Y.A. A. Factors Affecting the Double Cup Extrusion Test for Evaluation of Friction in Cold and Warm Forging. Annals of the CIRP,1993,42(1):347-351.
    [98]H. R, Microsystems Research and Development in Japan, in:A. M (Ed.), Site Reports,2002:14-18.
    [99]刘刚,田扬超,洪义麟,等.LIGA技术制造活动微结构的研究[J].中国科学技术大学学报.2000,30(增刊):136-139].
    [100]J. Dopper, M. Clemens, W. Ehrfeld, S. Jung, K.P. Kamper, H. Lehr, Micro gear pumps for dosing of viscous fluids, Journal of Micromechanics and Microengineering,1997(7):230-232.
    [101]K.R.T. A. Fundamentals on the Miniaturization in Sheet Metal Working Processes. Reihe Fertigungstechnik Erlangen,1999,87:54-60.
    [102]S.F. Jimma T, On High Speed Precision Blanking of IC Lead-Frames Using a Progressive Die. Journal of Materials Processing Technology,1990,22:291-305.
    [103]F. Sekine, Effective stripper-holding on high speed precision blanking of electronic machine parts, in:M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani, U.P. Singh (Eds.) Sheet Metal,2005:805-808.
    [104]L.W.B. Cheung C.F, Chin W.M. An Investigation of Tool Wear in the Dambar Cutting of Intergrated Circuit Packages. Wear,2000, (237):274-282.
    [105]W.B. Lee, C.F. Cheung, L.K. Chan, W.M. Chiu, An investigation of process parameters in the dam-bar cutting of integrated circuit packages, Journal of Materials Processing Technology,1997 (66):63-72.
    [106]W.S.H. Chan K.C. Theoretical Analysis of Spring back in Bending of Integrated Circuit Lead frames. Journal of Materials Processing Technology,1999(91):111-115.
    [107]K.C. Chan, S.H. Wang, The grain shape dependence of springback of integrated circuit leadframes, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1999 (270):323-329.
    [108]P. H.J. FE-Simulation of Micro Bending. The 7th International Conference on Sheet Metal,Bamberg,Meisenbach,1999.
    [109]F.M. Pucher H.J. FE-Simulation of the Lead Forming Process and Characterization of the Mechanical Properties. The Semicon West'97,Plastic Package Manufacturing Conference,San Jose,1997.
    [110]Y. Saotome, K. Yasuda, H. Kaga, Microdeep drawability of very thin sheet steels, Journal of Materials Processing Technology,2001 (113):641-647.
    [111]Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft of 10 μm in module, Microsystem Technologies,2000 (6):126-129.
    [112]王长丽.锌合金和铝合金超塑微挤压研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [113]张凯锋,王长丽,于彦东.1420Al-Li合金超塑特性及微成形[J]金属成形工艺,2003(1):1-14.
    [114]张轶波,张志豪,谢建新.块体非晶合金精密模锻成形流动行为[J].塑性工程学报,2008,15(5):37-41.
    [115]郭晓琳,马明臻,单德彬,等.Zr基非晶合金微塑性成形工艺研究[J].稀有金属材料与工程,2008,37:769-772.
    [116]Y. Saotome, K. Itoh, T. Zhang, A. Inoue, Superplastic nanoforming of Pd-based amorphous alloy, Scripta Materialia,2001 (44):1541-1545.
    [117]Y. Saotome, T. Okamoto, An in-situ incremental microforming system for three-dimensional shell structures of foil materials, Journal of Materials Processing Technology,2001 (113) 636-640.
    [118]Y. Saotome, Y. Fukuda, I. Yamaguchi, A. Inoue, Superplastic nanoforming of optical components of Pt-based metallic glass, Journal of Alloys and Compounds, 2007(434)97-101.
    [119]Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass, Acta Materialia,1997(46) 253-263.
    [120]V.s.F. Geiger M. Kals R. Fundamentals on the Manufacturing of Sheet Metal Micropart s. Annals of the CIRP,1996,45(1):277-282.
    [121]H. Ike, M. Plancak, Coining process as a means of controlling surface microgeometry, Journal of Materials Processing Technology,1998.80(1):101-107.
    [122]Y. Saotome, S. Miwa, T. Zhang, A. Inoue, The micro-formability of Zr-based amorphous alloys in the supercooled liquid state and their application to micro-dies, in:5th Asia-Pacific Conference on Materials Processing, Seoul, South Korea, 2001:64-69.
    [123]Y. Sao tome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, A. Inoue, The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures, in:2nd International Conference on Bulk Metallic Glasses, Chilung, Taiwan,2002:1241-1247.
    [124]Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass, Scripta Materialia,1997 (37):431-436.
    [125]Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses, in:10th International Conference on Rapidly Quenched and Metastable Materials (RQ10), Bangalore, India,1999:674-678.
    [126]T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, Y. Hirotsu, Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region, Acta Materialia,2001(49):2887-2896.
    [127]G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H. Stachurski, B.D. Zhou, Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid recgion, Journal of Non-Crystalline Solids,2005 (351):209-217.
    [128]J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state, Acta Materialia,2008(56):471-478.
    [129]张黎楠.Zr基大块非晶合金在过冷液相区中的塑性变形行为及有限元模拟:[硕士学位论文].武汉.华中科技大学图书馆,2009.
    [130]B. Gun, K.J. Laws, M. Ferry, Superplastic flow of a Mg-based bulk metallic glass in the supercooled liquid region, Journal of Non-Crystalline Solids,2006(352): 3896-3902.
    [131]H. Kato, Y. Kawamura, A. Inoue, H.S. Chen, Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20, Applied Physics Letters,1998 (73):3665-3667.
    [132]A.I.Isayev, C.M.Wong,X. Zeng. Effect of Oscillations During Extrusion on Rheology and Mechanical Properties of Polymers[J].Advances in Polymer Technology,1990,10(1):31-45.
    [133]N.S. Deshpande, M. Barigou, Vibrational flow of non-Newtonian fluids, Chemical Engineering Science,2001 (56):3845-3853.
    [134]J.A. Goshawk, K. Walters. The effect of oscillation on the drainage of an elastoviscous liquid[J]. Non-Newtonian Fluid Mech.1994 (54):449-464.
    [135]N.P. Thien, J. Dudek. Pulsating flow of a plastic fluid[J]. Nature.1982,296: 843-844.
    [136]S. Suh, S.Yoo, D.I. Kim, B. Lee. Effect of Physical Vibration on Blood Viscosity[J]. Korean Vascular Surgery Society.1998,14:29-33.
    [137]M. Murakawa, M. Jin, The utility of radially and ultrasonically vibrated dies in the wire drawing process, Journal of Materials Processing Technology,2001(113): 81-86.
    [138]Z.Huang, M.Lucas, M.J.Adams. Influence of ultrasonic on upsetting of a model paste[J], Ultrasonics.2002(40):43-48.
    [139]吴晓,柳和生.聚合物熔体在异型材三维动态挤出口模内的停留时间分布[J].中国塑料,2004,18(4):94-97.
    [140]柳和生,吴晓.振动场作用下聚合物熔体在L型挤出口模内的流动分析[J].塑性工程学报,2005,12(5):105-109.
    [141]陈学锋,瞿金平.振动力场对聚合物熔体黏性的影响,轻工机械2004(4):22-24.
    [142]S. Shin, J.H. Lee, The effect of traversal vibration on the suspension viscosity, International Communications in Heat and Mass Transfer,2002 (29):1069-1077.
    [143]陈德民,梁立孚,孙剑飞.在石墨坩锅电弧炉中制备大块非晶合金.特种铸造及有色合金,2003,1(129):12-13.
    [144]H. Kimura, T. Masumoto, Amorphous metallic alloys (edited by F. Luborsky Butterworths, London).1983,187.
    [145]H.A.Bruck, T.Christman, A. J.Rosakis, et. al. Quasi-static constitutive behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall,1994,30:429-434.
    [146]陈德民,梁立孚,宋海燕.非晶合金的弹塑性本构关系研究[J].航空发动机, 2003(4):38-41.
    [147]R. Hill, Mathematical theory of plasticity. Oxford:University Press,1950.
    [148]L M. Kachanov, Theory of plasticity. Moscow:Education Press,1956.
    [149]R.Wang, Z.H.Xiong,W. B Huang, Foundation of plasticity.Beijing:Science Press, 1987 (in Chinese).
    [150]程明,张士宏J.A.Wert.镁基大块非晶合金在过冷液相区流变行为本构关系.中国有色金属学报,2005,15(11):1682-1686.
    [151]Q. Yang, A. Mota, M. Ortiz, A finite-deformation constitutive model of bulk metallic glass plasticity, Computational Mechanics,2006(37):194-204.
    [152]L. Anand, C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses, Journal of the Mechanics and Physics of Solids,2005(53):1362-1396.
    [153]L. Anand, C. Su, A constitutive theory for metallic glasses at high homologous temperatures, Acta Materialia,2007(55):3735-3747.
    [154]H.J. Jun, K.S. Lee, S.C. Yoon, H.S. Kim, Y.W. Chang, Finite-element analysis for high-temperature deformation of bulk metallic glasses in a supercooled liquid region based on the free volume constitutive model, Acta Materialia, 2010(58):4267-4280.
    [155]郑志镇,成蛟,王新云,等.Zr基大块非晶合金在过冷液相区超塑性成形的摩擦行为及机理研究,中国机械工程,2009,20:2510-2513.
    [156]X.Y. Wang, N. Tang, Z.Z. Zheng,et.al. A Maxwell-pulse constitutive model of Zr55Cu50Al10Ni5 bulk metallic glasses in supercooled liquid region, Journal of Alloys and Compounds,2011(59):2518-2522.
    [157]Y. Kawamura, A. Inoue, Newtonian viscosity of supercooled liquid in a Pd40Ni40P20 metallic glass, Applied Physics Letters,2000(77):1114-1116.
    [158]C. Way, P. Wadhwa, R. Busch, The influence of shear rate and temperature on the viscosity and fragility of the Zr41.2Ti13.8Ni10Cu12.5Be22.5 metallic-glass-forming liquid, Acta Materialia,2007 (55):2977-2983.
    [159]G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals, Nature, 2009(457):868-U128.
    [160]J. Schroers, N. Paton, Amorphous metal alloys form like plastics, Advanced Materials & Processes,2006(164):61-63.
    [161]N. Nishiyama, A. Inoue, Glass transition behavior and viscous flow working of Pd40Cu30Ni10P20 amorphous alloy, Materials Transactions Jim,1999(40):64-71.
    [162]J. Schroers, The superplastic forming of bulk metallic glasses, Jom,2005(57): 35-39.
    [163]J. Schroers, Q. Pham, A. Desai, Thermoplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication, Journal of Microelectromechanical Systems,2007(16):240-247.
    [164]W.J. Kim, J.B. Lee, H.G. Jeong, Superplastic gas pressure forming of Zr65Al10Ni10Cu15 metallic glass sheets fabricated by squeeze mold casting, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006(428):205-210.
    [165]H. Soejima, N. Nishiyama, H. Takehisa, M. Shimanuki, A. Inoue, Viscous flow forming of Zr-based bulk metallic glasses for industrial products, in:A. Inoue (Ed.) 11th International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, Sendai, JAPAN,2004:531-534.
    [166]H.M. Chiu, G. Kumar, J. Blawzdziewicz, J. Schroers, Thermoplastic extrusion of bulk metallic glass, Scripta Materialia,2009(61):28-31.
    [167]D.L. Henann, V. Srivastava, H.K. Taylor, M.R. Hale, D.E. Hardt, L. Anand, Metallic glasses:viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing, Journal of Micromechanics and Microengineering,19(2009).
    [168]S.L. Zhu, X.M. Wang, F.X. Qin, K. Abe, H. Kimura, A. Inoue, Temperature-time-transformation curve and viscous flow deformation of Zr55Cu30Al10Ni5 bulk glassy alloy, Materials Transactions,2006(47):2308-2311.
    [169]C.F. Li, A. Inoue, Precipitation of nano-scale icosahedral quasicrystalline phase in amorphous Hf73Pd27 alloy, Materials Transactions Jim,2001(42):176-178.
    [170]洪深泽.挤压工艺及模具设计[M].北京:机械工业出版社,1996.
    [171]F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica,1977,25:407-415.
    [172]A.S. Argon, Plastic deformation in metallic glasses. Acta Metallurgica,1979, 27:47-58.
    [173]M. Heilmaier, J. Eckert, Elevated temperature deformation behavior of Zr-based bulk metallic glasses, Advanced Engineering Materials,2005(7):833-841.
    [174]K.C. Chan, L. Liu, J.F. Wang, Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region, in:12th International Conference on Liquid and Amorphous Metals (LAM12), Metz, FRANCE,2004:3758-3763.
    [175]O.Pawelski, A.Beitrag zur, hnlichkeitstheorie der Umformtechnik. Archiv fur das Eisenhu"ttenwesen,1964,35(1):27-36.
    [176]O.Pawelski, Ways and Limits of the Theory of Similarity in Application to Problems of Physics and Metal Forming. Journal of Materials Processing Technology,1992,34:19-30.
    [177]S.S. Joshi, S.N. Melkote, An explanation for the size-effect in machining using strain gradient plasticity, Journal of Manufacturing Science and Engineering-Transactions of the Asme,2004(126):679-684.
    [178]F. Vollertsen, D. Biermann, H.N. Hansen, I.S. Jawahir, K. Kuzman, Size effects in manufacturing of metallic components, Cirp Annals-Manufacturing Technology, 2009(58):566-587.
    [179]W.L. Chan, M.W. Fu, J. Lu, The size effect on micro deformation behaviour in micro-scale plastic deformation, Materials & Design,2011(32):198-206.
    [180]S.A. Parasiz, R. VanBenthysen, B.L. Kinsey, Deformation Size Effects Due to Specimen and Grain Size in Microbending, Journal of Manufacturing Science and Engineering-Transactions of the Asme,132 (2010).
    [181]R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates, Acta Materialia,2004(52):2429-2434.
    [182]S. Xie, E.P. George, Size-dependent plasticity and fracture of a metallic glass in compression, Intermetallics,2008(16):485-489.
    [183]W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, in:Bulk Metallic Glasses Conference, Singapore, Singapore,2000:642-649.
    [184]N. Van Steenberge, J. Sort, A. Concustell, J. Das, S. Scudino, S. Surinach, J. Eckert, M.D. Baro, Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy, Scripta Materialia,2007(56):605-608.
    [185]F.Q. Yang, K.B. Geng, P.K. Liaw, G.J. Fan, H. Choo, Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation, Acta Materialia, 2007(55):321-327.
    [186]李宁.非晶合金的形变行为及尺寸效应研究:[博士学位论文].武汉.华中科技大学图书馆,2009.
    [187]马怀宪.金属塑性加工学[M].北京:冶金工业出版社,1997:32-43.
    [188]刘静安.铝合金挤压工具与模具(上)[M].北京:冶金工业出版社,1990:68-86.
    [189]H. Choi-Yim, W.L. Johnson, Bulk metallic glass matrix composites, Applied Physics Letters,1997(71):3808-3810.
    [190]G. Wilde, G.P. Gorler, K. Jeropoulos, R. Willnecker, H.J. Fecht, Specific volume, heat capacity and viscosity of deeply undercooled Pd40Ni40P20 bulk glass forming alloy, in:M.D. Baro, S. Surinach (Eds.) International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials (ISMANAM 97), Barcelona, Spain,1997:541-546.
    [191]D.R. Lide, Handbook of Chemistry and Physics,73rd edition (Boca Raton, FL: CRC Press,1992).
    [192]张大伟,杨合,孙志超.多向加载近净成形研究动态[J].精密成型工程,2009,1(1):39-46.
    [193]徐吉生.等径三通多向模锻金属流动研究[J].锻压技术,2002(4):11-14.
    [194]C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Materialia,2003(51):87-99.
    [195]B. Yang, T.G. Nieh, Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass, Acta Materialia,2007(55):295-300.
    [196]P.S.Steif, F.Spaepen, J. W.Hutchinson, Strain localization in amorphous metals, Acta Metallurgica,1982,30:447-455.
    [197]C.A. Schuh, T.G. Nieh, A survey of instrumented indentation studies on metallic glasses, Journal of Materials Research,2004(19):46-57.
    [198]P.E.Donovan, W.M.Stobbs, The structure of shear bands in metallic glasses. Acta Metallurgica,1981,29:1419-1436.
    [199]J. Li, Z.L. Wang, T.C. Hufnagel, Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy, Physical Review B,65 (2002).
    [200]W.H. Jiang, M. Atzmon, Mechanically-assisted nanocrystallization and defects in amorphous alloys:A high-resolution transmission electron microscopy study, Scripta Materialia,2006(54):333-336.
    [201]M.L. Falk, J.S. Langer, From simulation to theory in the physics of deformation and fracture, Mrs Bulletin,2006(25):40-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700