非线性振动系统锐共振振动同步与控制同步关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保证振动机械的双激振电机能实现稳定的同步运动以及振幅稳定性,传统的振动机械绝大部分都工作在远超共振(z≈3~6)状态,少数工作在近共振(z≈0.8~0.9)状态,随着计算机控制技术的发展,实现双激振电机的同步、同步运动稳定性及振幅稳定问题可以通过综合动力学分析及计算机控制得到很好的解决,因此,基于共振原理用较小的激振力即可获得较大振幅的特点,提出了工作频率比z≈0.95~1.05的双电机同步激振锐共振机械,该类振动机械的显著优点是,在保证振动系统具备所需振幅的前提下,系统的激振力最小,由于其节能、经济、高效的特点,代表了今后振动机械发展过程中一个非常值得探讨的方向。但目前有关振动同步理论的研究大多是对振动机械进行线性或拟线性化处理,在远超共振或近共振状态下展开的。而对于锐共振振动机械,由于系统的多自由度、各部件之间的间隙、摩擦以及材料本身的物理特性等导致非线性因素异常突出,对系统的运动形态有重要的影响,不能再被简单的忽略或线性化处理,使得利用传统的振动同步理论来分析和解释锐共振振动机械的同步现象很困难,甚至不再适用。同时,由于振动机械在锐共振区域内工作,振幅响应对外界诸如:负载波动、环境干扰等影响因素异常敏感,使得在远超共振振动机械应用中已较好解决的振幅稳定性问题,成为锐共振自同步振动机械应用过程中必须研究解决的一个重要内容。由此引发,在研究锐共振振动系统双激振电机振动同步机理的同时,必须综合考虑振动系统的非线性动力学行为,研究基于非线性振动系统动力学分析的振动同步和基于多电机电气控制策略的控制同步问题,解决非线性振动系统锐共振情况下,双激振电机的同步性、同步运动稳定性,以及非线性振动系统锐共振的振幅稳定性,具有重要的理论意义和实际工程应用价值。
     为从理论上揭示非线性振动系统锐共振同步运动机理,在本文第二章中利用机械振动学及非线性动力学理论,建立了非线性振动系统的动力学模型,并根据电机学拖动理论,建立了振动系统中激振电机的等效数学模型和非线性电气特性模型。并将两类模型纳入同一分析对象中,组成非线性振动系统的机电耦合动力学模型。
     与以往文献大多在远超共振或低临界近共振状态下,进行线性或拟线性化振动系统的双激振电机振动同步理论研究不同,以文中建立的单质体多自由度弱非线性振动系统模型、单质体单自由度强非线性振动系统模型为研究对象,在本文第三章中通过非线性系统平均法、能量法等非线性动力学理论对振动系统进行了理论分析及数值仿真,研究了在非线性振动系统锐共振情况下,双激振电机的振动同步及同步运动稳定性问题,以及由于系统的非线性因素影响,双激振电机可能出现的谐波锐共振谐振同步现象。讨论了振动系统双激振电机间的同步性与系统锐共振频率比之间的关系,以及振动系统的非线性弹性力、阻尼力、惯性力、偏心转子的转动惯量、激振电机的机械电气外特性等诸多因素对双激振电机同步运行的影响。
     由于非线性振动系统在锐共振状态下工作,对外界环境扰动的敏感性,易造成各激振电机负载分配不均,使其转速差、相位差发生变动,导致双激振电机不能实现同步,或同步状态极不稳定,并且锐共振情况下系统的振幅响应受外扰极易失稳等特性。使得从非线性振动系统动力学角度研究双激振电机振动同步的同时,还需要研究针对各激振电机的控制同步问题,以及系统锐共振的振幅稳定性控制问题。在本文第四章中,根据目前控制领域中广泛应用的异步电机等效模型,推导了异步电机基于等效模型的传递函数,并依此设计了双激振电机偏差补偿跟踪同步控制策略。在文中4.3节基于交流异步电机的非线性电气特性模型,设计了异步电机转速、转子磁链的模糊自适应估计器,以及基于该估计器的电机矢量控制系统,并由Lyapunov稳定性理论证明了对电机控制的稳定性,随后在此基础上设计了双激振电机输出交叉耦合协调同步控制策略。通过对文中设计的同步控制策略进行讨论及实验仿真分析,得出该控制同步策略能有效实现非线性振动系统锐共振情况下,双激振电机的同步稳定性控制问题。在一定程度上避免了传统文献在大量的假设条件及精确数学模型下,仅实现振动系统远超共振或近共振情况下控制同步的不足。文中4.4节讨论了非线性振动系统锐共振振幅稳定性影响因素,在分析振动系统物料波动对锐共振振幅影响的基础上,设计了非线性振动系统实现振幅稳定的控制策略,并通过仿真实验讨论了文中设计的振幅稳定性控制策略对振动系统锐共振控制的有效性。
     为揭示非线性振动系统锐共振情况下,双激振电机的同步运动机理,文中第五章基于非线性振动系统的机电耦合动力学模型,通过定量仿真分析了非线性振动系统的频率俘获锐共振现象,研究了非线性振动系统向锐共振区域逼近时,双激振电机基于振动机体的运动耦合,实现振动同步的过渡过程。讨论了非线性振动系统频率俘获锐共振同步现象与系统刚度、阻尼、双激振电机驱动矩、电机轴摩擦阻矩、偏心转子质心矩等参数之间的关系。给出了非线性振动系统弹簧刚度及阻尼值变化时,机体的振动响应及双电机同步回转可能出现的各种不同运动形式。
     本文第六章,在双电机激振锐共振实验台上进行了实验研究,对实际振动机械的锐共振同步运动现象及振幅稳定性控制过程中出现的现象进行了讨论,验证了文中理论推导结果及控制策略的正确性与有效性。
In order to guanrantee the stable synchronization motion and amplitude stability, classical vibrating machine mostly work under the far ultra resonating (z≈3~6) or near resonating (z≈0.8~0.9) conditions. But accompany with the development of computer control technology, the problem of amplitude stabilty can be solved by computer control technology well. So based on the resonance principle that vibrating machine arrived at required amplitude, but the exciting force is the least, the dual-exciting motors synchronization drive sharp resonance vibration machine which work at the frequency radio z≈0.95~1.05has been put out. Because the energy-saving, economical and efficient characteristics of this type vibrating machine, it represents one of the most important development direction of vibrating machine. But at present the related vibration synchronization theory research mostly have been carried out at the far ultra resonating or low critical near resonating conditions for the vibration machine. To the sharp resonance vibrating machine, the dual-exciting sources, multiple-degree-of-freedom and the gap between every components assembly, friction and so on make the nonlinear factors abnormal outstanding, so the nonlinear vibrating system cannot be simply neglected or linearization processed. Which make us comprehensive considerate the nonlinear dynamic behaviors of the vibrating system. And use them to research and settle the synchronization and synchronization motion stability of the dual-exciting motors which used to drive the nonlinear vibrating system under the systemic sharp resonance conditions. The research results have important theoretical significance and practical engineering application value.
     In order to disclosure the sharp resonance vibration synchronization motive mechanics of the nonlinear vibrating system from the theoretical perspectives, in the second chapter of this paper, the dynamic model of nonlinear vibrating system had been established based on the machinery dynamics and nonlinear vibration theory. The equivalent numerical simulation model of exciting motor and nonlinear electric characteristics model have been established based on the electric machinery drive theory. Now lead the machine dynamics model and motor model into a uniform research object, which can be used to compose the coupled electromechanical dynamic model for nonlinear vibrating system.
     Different the previous research which mostly carry out carry out the dual-exciting motors vibration synchronization theory under far more than resonance or low critical near resonance conditions from the view of linear or quasi-linear, in this paper make the single-mass multiple-degree of freedom weakly nonlinear system and single-mass single-degree of freedom strongly nonlinear system as the research object to carry out the vibration synchronization theory research. In the third chapter of this paper, use the nonlinear system average method, energy method and so on to carry out the theoretical analysis. And to analysis the harmonic sharp resonance harmonic vibration synchronization phenomena of the dual exciting motors during the course of the vibrating system motion, because of the systemic nonlinear factors. The relationship between the vibration synchronization of dual-exciting motors and the sharp resonance working frequency of nonlinear system had been discussed in the paper. The influence of the vibrating systemic elastic force, damping force, inertial force and the rotary inertia of eccentric runner, mechanical electric external characteristics of exciting motor and so on to the vibration synchronization of dual-exciting motors have been analyzed also.
     When the nonlinear vibrating system works under sharp resonance conditions, the phase difference and rotational speed difference may change because the initial condition difference, technical parameter difference of dual-exciting motors and the synchronization motion is so fragile that can be influenced by outer environment condition. All make from the nonlinear vibrating system dynamics view to research the vibration synchronization for dual-exciting motors, at same time must to research the controlled synchronization problem of dual-exciting motors. In the forth chapter of this paper, the transfer function of equivalent model have been deduced, and the deviation compensation tracking control synchronization strategy have been established in the paper. In the section of4.3, the fuzzy self-adaptive estimator for rotational speed and rotor flux of asynchronous motor have been designed based on the nonlinear electronic characteristic model of ac asynchronous motor, and the vector control system for motor have been established based on the estimator which refer ahead. Based on the front analysis the cross coupling coordination synchronization control scheme for dual exciting motors has been established. From the test discussion and simulation analysis, the conclusion that the controlled synchronization strategy which designed in the paper can make the dual exciting motors realize the controlled synchronization under the nonlinear vibrating system sharp resonance conditions. The controlled synchronization can effective avoid the deficiency of traditional literature only realize the controlled synchronization motion at far more than resonance or low critical near resonance conditions.
     In order to discovery the synchronization motion mechanism of dual exciting motors when the nonlinear vibrating system works under sharp resonance conditions. In the fifth chapter, the frequency capture sharp resonance phenomena of nonlinear vibrating system have been quantify simulation analysis, based on the electromechanical coupling dynamics model for nonlinear vibrating system which driven by dual exciting motors. The interrelationship between the non-ideal driving source and body's motion of nonlinear vibrating system had been discussed. And the vibration synchronization transient change law of dual exciting motors had been researched when the nonlinear vibrating system moved to the sharp resonance point. The relationship between the frequency capture sharp resonance synchronization phenomena of nonlinear vibrating system which driven by dual exciting motors and the stiffness, damping of vibrating system, driving torque of dual exciting motors, friction resistance torque, centric torque of eccentric rotor and so on. And the various possible motion forms of vibration response and synchronization rotate for dual exciting motors have been discussed, when the spring stiffness and damping of nonlinear vibrating system changed.
     In the sixth chapter, the phenomena of sharp resonance vibration synchronization and amplitude stability controlled have been discussed, based on the practical experiment on sharp resonance experimental table which driven by dual exciting motors. And the correctness of the theoretical study results and controlled strategies which researched in this paper had been proved.
引文
[1]闻邦椿,赵春雨,苏东海,等.机械系统的振动同步与控制同步[M].北京:科学出版社,2003,2:1-5.
    [2]Blekhamn I I. The synchronization in nature and technology [M]. New York:ASME Press,1988.
    [3]闻邦椿,李以农,张义民,等.振动利用工程[M].北京:科学出版社,2005,8:210-218.
    [4]闻邦椿,刘树英,何勃.振动机械的理论与动态设计[M].北京:机械工业出版社,2001,10.
    [5]闻邦椿,刘凤翘,刘杰.振动筛、振动给料机、振动输送机的设计与调试[M].北京:化学工业出版社,1989,2.
    [6]闻邦椿,赵春雨,范俭.机械系统同步理论的应用与发展[J].振动工程学报,1997,10(3):264-272.
    [7]张天侠,鄂晓宇,闻邦椿.振动同步系统中的耦合效应[J].东北大学学报,2003,24(9):839-842.
    [8]Zhang T X, Wen B C, Fan J. Study on synchronization of two eccentric rotors driven by hydraulic motors in one vibrating systems [J]. Shock and Vibration,1997,17(4): 305-310.
    [9]Blekhman I I, Fradkov A L, Tomchina O P, etc. Self-synchronization and controlled synchronization:general definition and example design [J]. Mathematics and Computers in Simulation,2002,58(4-6):367-384.
    [10]陈予恕.非线性振动[M].北京:高等教育出版社,2002,1:7-23.
    [11]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007,1:5-46.
    [12]陈予恕,曹登庆,吴志强.非线性动力学理论及其在机械系统中应用的若干进展[J].宇航学报,2007,28(4):794-804.
    [13]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,2005,1:220-232.
    [14]刘子和,闻邦椿.控制同步理论及其应用[C].全国第四届非线性振动会议论文集,1989,1:162-165.
    [15]李骊,叶红玲.强非线性系统周期解的能量法[M].北京:科学出版社,2007,5:69-85.
    [16]Blekhmam I I, Fradkov A L, Nijmeijer H. On self-synchronization and controlled synchronization [J]. Systems & Control Letters,1997,31(6):299-305.
    [17]Robert L H, Thomas R B. Starting characteristics of electric submergible oil well pumps [J]. IEEE Transaction on Industrial Applications,1986,22(1):133-144.
    [18]Shaltout A. Closing torque of large induction motors with stator trapped flux [J]. IEEE Transaction on Energy and Conversion,1996,11(1):84-90.
    [19]Yacamini R, Smith K S, Ran L. Monitoring torsion vibrations of electromechanical systems using stator currents [J]. ASME Journal of Vibration and Acoustics,1998, 120(3):72-79.
    [20]梅凤翔,史荣昌,张永发,等.约束力学系统的运动稳定性[M].北京:北京理工大学出版社,1997,1:275-302.
    [21]#12
    [22]Inone J. On the multiple self-synchronization of mechanical vibration [C]. Proceedings of the World 4th Congress on the Theory of Machines and Mechinsims,1975,9: 451-457.
    [23]Huseyin K. Vibration and stability of multiple parameter systems [M]. Noordhoff International Publishing,1978.
    [24]Lorenz R D, Schmidt P B. Synchronized motion control for process automation [C]. Proceedings of the 1989 IEEE Industry Applications Society Annual Meeting,1989,2: 1693-1698.
    [25]Turl G, Summer M, Asher G M. A synchronized multi-motor control system using sensorless induction motor drivers [C]. Proceedings of the International Conference on Power Electronics and Drivers,2002,4:16-18.
    [26]Seaward D R, Johson R C. Replacement of mechanical transmissions by synchronized variable electrical speed drives [C]. Proceedings of 4th International Conference Electronics, Machanics and Drives,1989,9:364-368.
    [27]#12
    [28]Inoue, Araki, Jinnouchi. Survey of the synchronization of dynamic system [C]. Proceedings of the International Conference on Mechanical Dynamics,1987,6: 429-433.
    [29]Ronald I. Mill main drives response and mechanical performance [J]. Iron & Steel Engineer,1992,42(5):37-41.
    [30]Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillations [J]. SIAM Appl Math,1990,50(6):1645-1662.
    [31]Tomizuka M, Hu J S. Synchronization of two motion control axes under adaptive feed-forward control [J]. ASME Journal of Dynamic System, Measurement, and Control, 1992,114(10):196-203.
    [32]井上顺吉,荒木嘉昭,林节子.振动机械の自己同期化についこ[M].日本机械学会论文集,昭和41年,32:184-190.
    [33]井上顺吉.振动机械·自己同期化(倍数次周期)[M].日本机械学会论文集,昭和51年,42:103-110.
    [34]Alex M K. AISE torque amplification and vibration investigation project [J]. Iron & Steel Engineer,1973,23(7):25-32.
    [35]施火泉,张惠萍.多电机传动系统的同步控制[J].江南大学学报(自然科学版),2003,2(4):371-373.
    [36]Guy Monaco. Dynamic analysis of rolling mills mathematical models and experimental results [J]. Iron & Steel Engineer,1997,47(12):35-46.
    [37]闻邦椿,关立章.自同步振动机的同步理论与调试方法[J].矿山机械,1979,6(5):22-26.
    [38]张楠,侯晓林,闻邦椿.双转子自同步系统同步行为分析[J].农业机械学报,2009,40(4):184-188.
    [39]陆信.无强迫联系双轴惯性激振器运动状态分析[J].矿山机械,1975,2(3):63-65.
    [40]闻邦椿,关立章.平面双质体自同步振动机的同步理论[J].东北工学院学报,1979,2:53-58.
    [41]闻邦椿,关立章.空间单质体与双质体自同步振动机的同步理论[J].东北工学院学报,1980,1:54-70.
    [42]何筑生,顾安蓓.双振动电机自同步运转的再实验[J].矿山机械,1982,8(1):27-28.
    [43]闻邦椿,林向阳.振动同步传动及其工业应用[J].机械工程学报,1984,31(4):52-57.
    [44]闻邦椿.激振器偏移式自同步振动机运动规律的研究[J].应用力学学报,1985,2(3):23-36.
    [45]Wen B C, Zhang T X. Controlled Synchronization of Mechanical System [C]. Proceedings of the 3rd International Conference on Vibration and Motion Control, Tokyo, Japan,1996,11:327-331.
    [46]关立章,闻邦椿.在共振区内工作的自同步振动机的同步性研究[C].全国第四届非线性振动会议论文集,1986,7:27-31.
    [47]Wen B C. Synchronization theory of self-synchronous vibration machines with ellips motion Locus [C]. Proceedings of ASME Vibration and Noise Conference, Boston, America,1987,9:495-500.
    [48]张天侠,闻邦椿.具有弹性联系的两台振动机的同步理论[J].化工起重运输,1984,2:53-58.
    [49]陈宇明.自同步振动机的电算方法[J].振动与冲击,1983,1(6):144-149.
    [50]程福安,段志善,徐德龙,等.自同步振动磨机的非线性动力学特性[J].西安建筑科技大学学报,1999,31(6):111-114.
    [51]侯勇俊.三振动电机自同步椭圆振动筛的同步理论[J].西南石油大学学报,2007,29(3):168-172.
    [52]张楠,侯晓林,闻邦椿.三激振器同相回转振动系统的同步运动过程[J].煤矿机械,2008,29(11):3-5.
    [53]熊万里,何勃,闻邦椿.机电耦合自同步系统的过渡过程分析[J].东北大学学报,2000,21(2):158-161.
    [54]Blekhman E E. The synchronization in nature and technology [M]. Moscow:Nauka Press,1981.
    [55]Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators [J]. Physical Review Letters,1999,83(3):536-539.
    [56]韩清凯,杨晓光,秦朝烨,闻邦椿.激振器参数对自同步振动系统的影响[J].东北大学学报,2007,28(7):1009-1012.
    [57]韩清凯,秦朝烨,闻邦椿.自同步振动系统的稳定性与分岔[J].振动与冲击,2007,26(1):31-34.
    [58]Martin B J, Park H S. Analysis of the tonic vibration reflex:influence of vibration variables on motor unit synchronization and fatigue [J]. Eur J Appl Phasiol,1997,75(6): 504-511.
    [59]吕景林,王群力,马建敏.柔性驱动在实现双激振器自同步中的作用[J].矿山机械,2001,28(11):51-52.
    [60]吕富强.振动电动机自同步近似分析法[J].矿山机械,1990,18(12):28-30.
    [61]侯勇俊,张明洪,吴华,等.双轴自同步平动椭圆振动筛研究[J].天然气工业,2004,24(3):84-87.
    [62]Banerjee S, Saha P, Chowdhury R. On the application of adaptive control and phase synchronization in nonlinear dynamics [J]. International Journal of Nonlinear Mechanics, 2004,39(2):25-31.
    [63]Akatsu K, Kawamura A. Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection [J]. IEEE Transaction on Industry Application,2000,36(3):764-771.
    [64]Koren Y. Cross-coupled biaxial computer control for manufacturing system [J]. ASME Journal of Dynamic System Measurement and Control,1980,102(2):945-952.
    [65]Kulkani P, Srinivasaa K. Cross-coupled compensators for multi-axial feed drive servomechanisms [C]. In Proceedings of the Japan-USA Symposium of Flexible Automation,1985,7:64-73.
    [66]Kulkani P, Srinivasaa K. Optimal contouring control of multi-axial feed drive servomechanisms [J]. ASME Journal of Engineering for Industry,1989,111(5): 140-148.
    [67]Guo L, Schone A. Control of Hydraulic rotor Multi-motor systems based on linearization [J]. Automatic,1994,30(9):173-178.
    [68]Tomizuka M, Hu J, Chiu T. Synchronization of two motion control axes under adaptive feed-forward control [J]. ASEM Journal of Dynamic System Measurement and Control, 1992,114(6):1124-1129.
    [69]Knkubo T..通过弹性耦合轴进行同步控制[J].钢与铁.1998,18(6):83-84.
    [70]郭庆鼎,唐光谱.基于解耦控制的双电机同步传动技术的应用研究[J].控制与决策.2001,16(1):72-75.
    [71]范俭,李东升,闻邦椿.双机传动机械系统同步控制的研究[J].东北大学学报.1994,93(6):567-570.
    [72]许强,贾正春,李朗如.永磁同步电机的模型参考自适应速度控制[J].电气传动.1998,39(5):3-7.
    [73]郭庆鼎,唐光谱,唐元刚,傅建国.基于自适应控制的双电机同步传动控制技术的研究[J].机械工程学报.2002,38(2):79-81.
    [74]范俭,闻邦椿,柴天佑.西台交流电动机传动机械系统定速比控制的研究[J].机械 工程学报,1996,32(5):7-12.
    [75]吴慎言,高建会.模型参考自适应控制应用在多电机同步拖动中的初步研究[J].电气自动化,1989,(1):17-19.
    [76]赵春雨,闻邦椿,韩清凯.同向回转双机传动振动系统的同步控制[C].第二届全球华人自动控制会议,中国西安,1997,9:274-278.
    [77]张承慧,石庆生,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [78]Lan H, Liou J J, Huang C Y. LMI-based integral fuzzy control of DC-DC converters [J]. IEEE Transactions on Fuzzy Systems,2006,14(1):71-80.
    [79]张承慧,石庆生,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007,22(1):30-34.
    [80]张昌凡,王耀南.基于智能协调控制的滑模系统[J].电子测量与仪器学报,2000,14(3):1-3.
    [81]Yeh S S, Hsu P L. Analysis and design of the integrated controller for precise motion systems [J]. IEEE Transactions on Control Systems Technology,1999.111(2):140-180.
    [82]Wen J Y, Wu Q H, Turner D R. Optimal coordinated voltage control for power system voltage stability [J]. IEEE Transactions on Power Systems,2004,19(2):1115-1122.
    [83]Li R, Chen W M, Liu D K. Fuzzy intelligent control of automotive vibration via magneto-rheological damper [C]. Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems. New Jersey:IEEE Press,2005,11:503-507.
    [84]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989,3.
    [85]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006,6.
    [86]Bimal K B. Modern power electronic and AC drives [M]. Beijing:China Machine Press, 2003.1.
    [87]Jai PA. Power electronic systems theory and design [M]. Prentice Hall PTR,2001.
    [88]Jones M, Levi E, Iqbal A. Vector control of a five-phase series-connected two-motor drive using synchronous current controllers [J]. Electric Power Components and Systems, 2005,33(4):411-430.
    [89]Yang G, Chin T H. Adaptive-speed identification scheme for a vector controlled speed sensorless inverter-induction motor drive [J]. IEEE Transactions on Industry Application, 1993,29(4):820-824.
    [90]胡寿松.自动控制原理简明教程[M].北京:科学出版社.2008,2.
    [91]Chen B S, Lee C H, Chang Y C. H∞ Tracking desigen of uncertain nonlinear SISO systems:adaptive fuzzy control approach [J]. IEEE Transactions on Fuzzy Systems, 1996,4(2):32-43.
    [92]Taniguchi T, Tanaka K, Ohtake H, et al. Model construction, rule reduction, and robust compensation for generalized form of Takagi-sugeno fuzzy systems [J]. IEEE Transactions on Fuzzy Systems,2001,9(4):525-538.
    [93]吴士昌,吴忠强.自适应控制[M].北京:机械工业出版社.2005,10.
    [94]佟绍成,柴天佑.一类非线性系统的模糊自适应H∞控制[J].控制与决策,1997,12(6):660-666.
    [95]刘金琨.智能控制[M].北京:电子工业出版社.2005,5.
    [96]Yhe S S, Hsu P L. Theory and applications of the robust cross-coupled control design [J]. ASME Journal of Dynamic Systems, Measurement and Control,1999,121(3):524-530.
    [97]何勍.单质体弹性连杆式振动机双驱动自同步理论[J].矿山机械.1993,21(10):2-4.
    [98]张晓钟,段志善.自同步振动机械非线性动力学分析[J].西安建筑科技大学学报,1993,25(4):457-462.
    [99]王秀莲,张晓钟,段志善,等.双电磁激振器受弹性梁耦联时的工作特性[J].西安建筑科技大学学报,1996,28(1):70-73.
    [100]Wen B C. Vibration synchronization and controlled synchronization in mechanical system [C]. Proceedings of APVC'95 (Malaysia),1995,11:112-116.
    [101]Zhang T X, Wen B C, Fan J. Study for special feature of rotating speed and synchronization of hydraulic eccentric rotors [C]. Proceedings of the International Conf. on Vibration Engineering, Beijing, China,1994:833-836.
    [102]闻邦椿,关立章.平面单质体自同步振动机的同步理论[J].东北工学院学报,1979,2:53-58.
    [103]闻邦椿,赵春雨,宋占伟.振动系统的振动同步、控制同步、复合同步[J].工程设计,1997,3(3):1-5.
    [104]闻邦椿,刘凤翘.振动机械的理论及应用[M].北京:机械工业出版社,1982.
    [105]闻邦椿.振动同步理论的几个最新研究结果及其工业应用[J].振动与冲击,1983,1(3):21-28.
    [106]陈伯时.异步电动机无速度传感器控制的成就与发展[J].电气技术,2006,8(4):1-3.
    [107]Cristian L, Boldea I. A modified direct torque control for induction motor sensorless dirve [J]. IEEE Transaction on Industry Application,2002,36(1):122-130.
    [108]Kevin D H, Thomas G H. A comparison of spectrum estimation techniques for sensorless speed detection in induction machines [J]. IEEE Transaction on Industry Application,1997,33(4):898-905.
    [109]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transaction on Systems, Man and Cybernetics,1985,15(1): 116-132.
    [110]Mehrotra P, Quaico J E, Venkatesan R. Speed estimation of induction motor using artificial neural networks [C]. Proceedings of the 22nd International Conference on Industrial Eletronics, Control, and Instrumentation. Los Alamitos,1996,11:881-886.
    [111]赵春雨,朱洪涛,闻邦椿.多机传动机械系统的同步控制[J].控制理论与应用,1999,16(2):179-183.
    [112]刘子和,闻邦椿.带双偏心转子的振动系统的控制同步理论及试验研究[C].全国第二届转子动力学会议论文集,1989:273-276.
    [113]赵春雨,闻邦椿.同向回转双机传动振动系统相位差的模糊监督控制[J].振动工程学报,2001,14(1):42-46.
    [114]熊万里,闻邦椿,张天侠,段志善.利用机电耦合模型研究自同步振动机械的动力学特性[J].矿山机械,1999,35(7):64-66.
    [115]Xiong W L, Wen B C, Duan Z S. Engineering characteristics and its mechanism explanation of vibratory synchronization transmission [J]. Chinese Journal of Mechanical Engineering,2004,17(2):185-188.
    [116]熊万里,闻邦椿,段志善.自同步振动及振动同步传动的机电耦合机理[J].振动工程学报,2000,13(3):326-330.
    [117]侯勇俊,闫国兴.三电机激振自同步振动系统的机电耦合机理[J].振动工程学报,2006,19(3):354-358.
    [118]张楠,侯晓林,闻邦椿.偏移式同相回转自同步振动机自同步过程[J].东北大学学报(自然科学版),2009,30(6):853-856.
    [119]邱家俊.交流电机启动过程的扭振及电震荡[J].应用力学学报,1989,6(4):12-19.
    [120]邱家俊.机电分析动力学[M].北京:科学出版社,1990.
    [121]邱家俊.交流电机启动过程的横振及扭振[J].力学学报,1989,21(4):432-441.
    [122]Qiu J J, Qiu Y. Coupled mechanical and electric dynamics problems, considering the nonlinearity of electromagnetism [C]. International Conference on Structural Dynamics, Vibration, Noise and Control,1995,9:307-311.
    [123]Yamapi R, Woafo P. Dynamics and synchronization of coupled self-sustained electromechanical devices [J]. Journal of Sound and Vibration,2005,285(5): 1151-1170.
    [124]邱家俊.机电耦联动力系统的非线性振动[M].北京:科学出版社,1996,12:455-542.
    [125]Qing G H, Qiu J J, Liu Y H. Modified H-R mixed variation principle for magnetoelectroelastic bodies and state-vector equation [J]. Applied Mathematics and Mechanics,2005,26(6):722-728.
    [126]刘杰.弱非线性惯性共振式振动机振幅的稳定性[J].东北大学学报,1987,53(4):465-471.
    [127]刘杰,李允公,刘劲涛,徐会希.基于振幅稳定的原点反共振振动机动力学分析及其控制[J].机械工程学报,2006,42(1):145-148.
    [128]Liu J, Li X Q, Wu L, Wen B C. Partial differencial linearization on mathematical model of electromagnetic vibration machine [C]. Proceeding of APVC'95 (Malaysia),1995,11: 400-405.
    [129]刘杰,巫林,纪盛青,闻邦椿.电振机振幅控制数学模型[J].东北大学学报,1996,17(1):104-109.
    [130]冯登泰.应用非线性振动力学[M].北京:中国铁道出版社,1982.
    [131]宋艳萍,李淑娟,马斌.关于激振器偏移式自同步理论分析[J].河南机电高等专科学校学报,2003,11(3):67-68.
    [132]Ho M T, Datta A, Bhattacharyya S P. A linear programming characterization of all stabilizing PID controllers [C]. Proceedings of the 1997 American Control Conference, 1997,4:3922-3928.
    [133]裘春航,吕和祥,蔡志勤.在哈密顿体系下分析非线性动力学问题[J].计算力学学报,2000,17(2):127-132.
    [134]Soylemez M T, Munro N, Baki H. Fast calculation of stabilizing PID controllers [J]. Automatica,2003,39(1):121-126.
    [135]Tan N, Kaya I, Atherton D P. Computation of stabilizing PI and PID controllers [C]. Proceedings of 2003 IEEE Conference on Control Applications,2003,4:876-881.
    [136]方锦清.非线性系统中混沌控制方法、同步原理及应用前景[J].物理学进展,1996,15(2):1-36.
    [137]Maria D E, Sousa, Vieira A J. Synchronization of regular and chaotic systems [J]. Physics Review Letters,1992,68(5):423-427.
    [138]张廷宪,郑志刚.耦合非线性振子系统的同步研究[J].物理学报,2004,53(10):3287-3292.
    [139]谭晓惠,张继业,杨翊仁.非线性系统同步的反向设计[J].西南交通大学学报,2001,36(6):651-654.
    [140]包刚,韩元春,图布心.耦合非线性振子的一些同步行为[J].内蒙古民族大学学报(自然科学版),2007,22(5):389-491.
    [141]秦卫阳,王红瑾,张劲夫.一类时变非线性振动系统的同步控制方法[J].物理学报,2007,56(8):4361-4364.
    [142]Liu H B, Li S Y, Chai T Y. Intelligent coordinated control of power-plant main steam pressure and power output [J]. Journal of Systems Engineering and Electronics,2004, 15(3):350-358.
    [143]李骊.强非线性振动系统的定性理论与定量方法[M].北京:科学出版社,1997.
    [144]陈予恕.非线性振动系统的分叉及混沌理论[M].北京:高等教育出版社,1993.
    [145]Pecora L M. Synchronization in chaotic systems [J]. Physical Review Letters,1990, 64(8):97-105.
    [146]方锦清.超混沌同步及其超混沌控制[J].科学通报,1995,40(4):306-307.
    [147]朱洪波,肖井华,李向明.耦合映射的混沌广义同步[J].北京邮电大学学报,1999,22(3):12-15.
    [148]Kocarev L, Parlitz U. Synchronizing spatio-temporal chaos in coupled nonlinear oscillators [J]. Physical Review Letters,1996,77(11):2206-2209.
    [149]Xu H, Datta A, Bhattacharyya S P. PID stabilization of LTI plants with time-delay [C]. Proceedings of 2003 IEEE International Conference on Decision and Control,2003,7: 4038-4043.
    [150]赵德宗,张承进,郝兰英.一种无速度传感器感应电机鲁棒滑模控制策略[J].中国电机工程学报,2006,26(22):122-127.
    [151]牛恒林.具有弱磁的三台电机比例同步连轧控制系统[J].基础自动化,1997,4(3):31-32.
    [152]刘福才,张学莲,刘立伟.多级电动机传动系统控制同步理论与应用研究[J].控制工程,2002,9(4):87-90.
    [153]卢金铎,刘锦波.双电动机传动机械系统的同步控制[J].控制工程,2005,12(4):398-400.
    [154]龚伟安.双激振电动机均衡椭圆运动振动筛动力学分析[J].石油机械,2002,30(5):1-3.
    [155]Bernard J, Martin H. Analysis of the tonic vibration reflex:influence of vibration variables on motor unit synchronization and fatigue [J]. European Journal Application Physiol,1997,75(8):504-511.
    [156]Szabelski K, Warminski J. Self-excited system vibrations with parametric and external excitations [J]. Journal of Sound and Vibration,1995,187(4):595-607.
    [157]Gauthier D J, Bienfang J C. Intermittent loss of synchronization in coupled chaotic oscillators:toward a new criterion for high-quality synchronization [J]. Phsical review letters,1996,77(9):1751-1754.
    [158]路强,沈传文,季晓隆,等.一种用于感应电机控制的新型滑模速度观测器研究[J].中国电机工程学报,2006,26(18):164-168.
    [159]Potapenko M A. Slow vibrations of unbalanced rotors(vibration exciters) during the disturbance of self-synchronization conditions [J]. Journal Machinery Manufacture and Reliability,2008,37(3):228-229.
    [160]孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1989,10:114-139.
    [161]Kanchan R S, Gopakumar K, Kennel R. Synchronized carrier-based SVPWM signal generation scheme for the entire modulation range extending up to six-step mode using the sampled amplitudes of reference phase voltages [J]. IET Electric Power Applications, 2007,1(3):407-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700