一些功能纳米系统尺寸和应力效应的热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变材料和铁电材料在非挥发存储器件中展现出广阔的应用前景,同时由于纳米科技的迅猛发展,利用相变材料或铁电材料纳米结构设计和制备尺寸更小,操作更快的非挥发存储器件已经成为可能。以此为背景,近年来研究人员对相变薄膜、相变纳米线、相变纳米管和铁电、多铁薄膜等纳米结构的相变行为进行了大量研究。纳米材料的相变依赖于很多因素,其尺寸效应、表面效应和外应力效应随着系统和器件尺寸的收缩而变得愈加突出。大量涌现的新颖研究结果使得相变材料和铁电材料的纳米尺寸效应和应力效应研究成为目前的热点。
     本论文主要基于热力学的基本原理,集中研究相变材料和铁电材料在纳米尺度下尺寸变化和应力对相关性能的影响。以下是本论文的主要思路、研究方法和重要结论:
     1.建立了一个热力学模型,并将其成功应用于研究被电极薄膜夹持的非晶Ge2Sb2Te5(GST)相变薄膜三明治结构的晶化行为与膜厚的关系。首次推导出了非晶晶化相变被抑制的临界厚度的理论表达式。这个临界厚度依赖于晶态GST薄膜与衬底的界面能和非晶态GST薄膜与衬底的界面能之差△γ,融化焓和摩尔体积。另外晶化温度也显示了对界面能之差△γ的依赖。与相变薄膜非晶相和晶相的界面能γac相比较,大的△γ导致晶化温度升高,小的△γ导致晶化温度降低。
     2.基于热力学理论计算建立了GST纳米线和纳米管结构的熔点和晶化温度与其尺寸的关系。发现GST纳米线和纳米管的熔点和晶化温度都随着其直径的减小而减小。估算出了GST的非晶态表面能。首次推导出GST纳米线和纳米管的临界尺寸,低于此尺寸在升温过程中GST非晶晶化不能发生而是直接融化。纳米线临界尺寸依赖于融化和晶化温度、融化和晶化熵以及各相的表面能。纳米管的临界外半径不仅依赖于上述因素,还依赖于内外半径比。外半径与内半径之比减小,尺寸效应越明显,临界尺寸越大,而且增加的也越快。
     3.借助于唯象热力学理论研究了外机械应力对铁电聚合物P(VDF-TrFE)薄膜的介电、热释电和压电响应的影响。提出了外应力可以改变相变温度的预期。外压应力可提高居里温度并增加平面外自发极化,同时减小了平面外热释电系数和压电系数。此外,压应力减小铁电相的平面外介电常数而增加了顺电相介电常数。计算结果表明P(VDF-TrFE)与钙钛矿铁电体的效应相反。这主要来源于辐照P(VDF-TrFE)和钙钛矿铁电体的电致伸缩系数的显著不同。
     4.借助于唯象热力学理论研究了外机械应力对两类铁电/铁磁异质结PTO/Terfenol-D(a)和P(VDF-TrFE)/Terfenol-D(b)的磁电耦合效应的影响,取得以下结果:建立了外应力下多铁异质结的朗道相变热力学理论;分析了铁电薄膜在外磁场和应力场下的应变情况;计算了铁磁衬底在外应力和外磁场下的压磁系数的变化;计算了PTO/Terfenol-D和P(VDF-TrFE)/Terfenol-D两种异质结在外应力下的磁电极化系数和磁电电压系数,结果表明外应力对两类异质结的磁电极化系数的数值的作用是相反的,但是都在相变点达到最大值,而对两类异质结的磁电极化系数的数值的大小的作用是相同的。
To realize their potential in applications to ultrahigh-density memory devices, phase change thin films, wires, tubes and ferroelectric and multiferroic thin film in nanoscale have been actively investigated in recent years. Phase transition of nanomaterials is a collective phenomenon, depending on the combined effects of many factors, such as the ambient temperature, sample dimensions, surface effect, external stresses, etc. Studies of the effects of sample dimensions, surface tension, and external stresses on properties of phase change materials and ferroelectrics have been conducted and studied during last several decades.
     The purpose of this thesis is to study size effects and stress effects on the properties of phase change materials and ferroelectrics in nano-scale. The main ideas, approches and results of our study are listed as follows:
     1. The thickness dependent crystallization behavior of thin amorphous Ge2Sb2Te5(GST) films sandwiched between different cladding materials has been investigated based on a thermodynamic model. It is revealed that there is a critical thickness below which the crystallization can not occur. The critical thickness is determined by the energy difference△γ between the crystalline GST/substrate interface energy and the amorphous GST/substrate interface energy, the melting enthalpy, and the mole volume. The calculated result is in good agreement with the experiments. Furthermore, the crystallization temperature is also affected by interface energy difference△γ. Larger△γ gives rise to a higher crystallization temperature, and vice versa. This impact becomes stronger as the film thickness is decreased.
     2. The phase change behavior of Ge2Sb2Te5(GST) nanowires and nanotubes was investigated by using thermodynamic calculations. It is revealed that the melting and crystallization temperatures for both nanowires and nanotubes decrease as the diameter of the nanostructures is reduced. There exists a critical diameter for both nanowires and nanotubes, below which the crystallization could not take place. It determines the ultimate scaling limit of nanowires or nanostructures phase-change memory. The critical diameter for nanowires depends on the difference between the surface energy of solid and liquid phases, the bulk melting and crystallization temperatures, as well as the melting and crystallization entropy. The critical diameter of the nanotubes is larger than that of the nanowires. And it is also dependent on theratio of outer diameter over inner diameter of the tubes. The lower ratio of outer diameter over inner diameter gives rise to the larger critical diameter of the nanotubes.
     3. Using the phenomenological Landau thermodynamic theory, we investigated the effect of external mechanical loads on the phase transition and physical properties of poly(vinylidene fluoride-trifluorethylene)[P(VDF-TrFE)] thin films. Quantitative calculation shows that the phase transition temperature, polarization, dielectric, pyroelectric and piezoelectric properties are highly sensitive to external mechanical loads. External compressive stress increases the phase transition temperature and the out-of-plane polarization and decreases the out-of-plane dielectric constant below Tc, pyroelectric coefficient and piezoelectric coefficient (absolute value) and vice versa. Compared with pervoskite-type ferroelectrics, the calculated results are opposite due to the different intrinsic parameters between pervoskite and polymer ferroelectrics, especially, electrostrictive constants. The ability to tailor the properties in ferroelectric P(VDF-TrFE) thin films with the mechanical load can offer a tremendously promising future for applications in multifunctional devices such as agile mechanical sensors and transducers.
     4. A phenomenological thermodynamic theory is used to investigate the effect of external mechanical stress on the magnetoelectric (ME) coupling in ferroelectric PbTiO3or organic P(VDF-TrFE)/ferromagnetic Terfenol-D heterostructures. The results showed that the effects of external stress on the value of polarization strain sensitivity and ME polarization coefficient for PbTiO3and P(VDF-TrFE) are opposite, in which the electro strictive constants play a significant role. However, the external stress has similar influence on the value of ME voltage coefficient in the two heterostructures. The compressive stress increases their ME voltage coefficient and a peak appears near the stress of200MPa, in qualitative agreement with the experiment result. It is proposed that external stress might provide a new way to enhance or adjust magnetoelectric coupling in multiferroic heterostructures.
引文
[1]K. E. Drexler, Proceedings of the National Academy of Sciences USA,78,5275 (1981).
    [2]G. Binning, H. Rohrer, C. Gerber et al. Phys. Rev. Let,49,57 (1982)
    [3]D.M. Eigler, P. S. Weiss and E. K. Schweizer, Phys. Rev. Let.66,1189 (1991)
    [4]张立德,牟季美,纳米材料学,辽宁科学技术出版社,1994,1-240.
    [5]王启明,物理,279,34 (1998).
    [6]L.Pfeiffer L, Appl. Phys. Lett.56,1697 (1990).
    [7]A. Scherer and H. G. Craighead H. G, Appl. Phys. Lett.49,1284 (1986).
    [8]黄和鸾,郭立伟,半导体超晶格-材料与应用,辽宁大学出版社,1992,9-14.
    [9]L. Pfeiffer, Appl. Phys.Lett.56 1697 (1990).
    [10]K. Kash, Appl. Phys. Lett.53,782 (1988).
    [11]A. Scherer and H. G. Craighead, Appl. Phys. Lett.49,1284(1986).
    [12]周瑞发,韩雅芳,陈祥宝.纳米材料技术.北京:国防工业出版社,2003.
    [13]刘吉平,郝向阳.纳米科学与技术.北京:科学出版社。2002.
    [14]G Ouyang, X. L. Li, X. Tan, and G. W. Yang, Appl. Phys. Lett.2006。89:031904 (2006).
    [15]G. Ouyang, X. Tan, and G. W. Wang, Nanotechnology,17,4257 (2006).
    [16]H. Gleiter, Acta Mater.48,1 (2000).
    [17]M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Japan,9,359(1954).
    [18]A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in semiconductor nanocrystals, Science,256,1425 (1992).
    [19]R. Defay, I. Prigogine, Surface tension and adsorption, Wiley, New York,1951.
    [20]Z. Zhang, J.C.Li, Q. Jiang, J. Phys. D:Appl. Phys.33,2653 (2000).
    [21]K. F. Peters, J. B. Cohen, Y. W. Chung, Melting of Pb nanoparticles, Phys. Rev. B 57,13430(1998).
    [22]R. E. Cavicchi, R. H. Silsbee, Phys. Rev. Lett.52,1453(1984).
    [23]A. I. Gusev, A. A. Rempel, Camb. Internat. Sci. Pub.25,189 (2004).
    [24]F. Delogu, TNanotechnology,18,235706 (2007).
    [25]P. Ball, L. Garwin, Science at the atomic scale, Nature,355,761(1992).
    [26]N. Setter, D. Damjanovic, L. Eng, G. Fox, G (Fox, G); S. Gevorgian, (Gevorgian, S.);S. Hong, A. Kingon, H. Kohlstedt, Park, Stephenson, G. B. Stephenson, I. Stolitchnov,; A. K. Taganstev, D. V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys.100,051606 (2006).
    [27]T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, ANNUAL REVIEW OF MATERIALS SCIENCE 30,263(2000).
    [28]L. B. Freund, W. D. Nix, Appl. Phus. Lett.69,173 (1996).
    [29 E. Bichoutskaia, A. W. Popov, A. El-barbarya, Phys. Rev. B 71,113403 (2005).
    [30]S. Y. Kim, J. Park, H. C. Choi, J Am Chem Soc,129,1705 (2007).
    [31]L. Hui, F. Pederiva, B. L. Wang, Appl. Phys. Lett.86,011913 (2005).
    [32]B. M. Bai, M. Li, Nano lett.6,2284 (2006).
    [33]G. Ouyang, X.Tan,M. Q. Cai, Appl. Phys. Let.89,183104 (2006).
    [34]G. Ouyang, X. Tan, G. W. Yang, Phys. Rev. B.2006'74:195408.
    [35]G. Ouyang, L. H. Liang, C. X. Wang, Appl. Phys. Lett.2006,88,091914 (2006).
    [36]C. X. Wang, G. W. Yang, Mater Sci&Eng R 49,157 (2005).
    [37]N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Phys. Rev. Lett.80,1988 (1998).
    [38]N. A. Pertsev, A. K. Tagantsev, N. Setter, Phys. Rev. B 61,825 (2000).
    [39]Z.-G. Ban, S. P. Alpay, J. Appl. Phys.91,9288 (2002).
    [40]Z.-G. Ban, S. P. Alpay, J. Appl. Phys.93,504 (2003).
    [41]N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, R. Waser, Phys. Rev. B.67,054107 (2003).
    [42]V. B. Shirokov, Y. I. Yuzyuk, B. Dkhil, V. V. Lemanov. Phys. Rev. B 75,224116 (2007).
    [43]V. B. Shirokov, Y. I. Yuzyuk, B. Dkhil, V. V. Lemanov. Physics of the Solid State, 50,928. (2008).
    [44]A. G. Zembilgotov, N. A. Pertsev, U. Bottger, R. Waser, Appl. Phys.Lett.86, 052903 (2005).
    [45]J. Wang, T.-Y. Zhang, Appl. Phys. Lett.86,192905 (2005).
    [46]Y. M. Tao, Y. Z. Wu, J. Appl. Phys.101,024111 (2007).
    [47]J. H. Qiu, Q. Jiang, Phys. Lett. A 101,034110 (2007).
    [48]G. Akcay, I. B. Misirlioglu, S. P. Alpay, J. Appl. Phys.101,104110 (2007).
    [49]H.-X. Cao, V. C. Lo, Z.-Y. Li, J. Appl. Phys.101,014113 (2007).
    [50]A. G. Zembilgotov, U. Bottger, R. Waser, J. Appl. Phys.104,054118 (2008).
    [51]W. S. Yan, R. Zhang, X. Q. Xiu, Z. L. Xie, P. Han, R. L. Jiang, S. L. Gu,Y. Shi, Y D. Zheng, Appl. Phys. Lett.96,064103 (2008).
    [52]Oswaldo Dieguez, Silvia Tinte, A. Antons, Claudia Bungaro, J. B. Neaton, Karin M. Rabe, David Vanderbilt, Phys. Rev. B 69,212101 (2004).
    [53]ClaudiaBungaro, K. M. Rabe, Phys. Rev. B 69,184101 (2004).
    [54]Armin Antons, J. B. Neaton, Karin M. Rabe, David Vanderbilt, Phys. Rev. B 71, 024102(2005).
    [55]Oswaldo Dieguez, Karin M. Rabe, David Vanderbilt, Phys. Rev. B 72,144101 (2005).
    [56]N.Yamada, E. Ohno, N.Akahira, K. Nishiuchi, K. Nagata, M. M. Tkao, JPn. J. Appl. Phys.26,61 (1987)
    [57]N.Yalnada, E.ohno, K.Nishiuchi, N.Akahira,J.Appl.Phys.69,2549 (1991).
    [58]A. Pirovano, A. L. Lacaita, A. Benvenuti, S. Pellizzer,R.Bez,IEEE Trans. Eleetron Devices 51,452 (2004).
    [59]A.V.Kolobov, P. Fons, A.I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga,
    Nature Mater.3,0(2004)
    [60]M.wuttig, Nature Mater.4,265 (2005).
    [61]M. Lankhorst, B.Ketelaars, R. Wolters, Nature Mater.4,347 (2005).
    [62]M.wuttig and N.Yamada, Nature Mater.,6,824(2007)
    [63]M. B. Luo, M.wuttig, Adv. Mater.16,439 (2004).
    [64]N. M.Murari, A.Kumar, R.Thomas, andR.5.Katiyar, APPI.Phys.Lett., 2008,92:132904.
    [65]Ch. Muller, N. Menou, R.Barrett, etal., J.APPI.Phys.99,054504 (2006).
    [66 J S.I. Shim, S.I.Kim, Y.T.Kim, etal., Eleetron. Lett,40(22),1397(2004).
    [67]B.T. Liu, X. B.Yan, X.Zhang, etal., Appl. Phys.Lett.,2007,91:142908.
    [68]Kojima Takashi, SakaiTOmohiro, WhtanabeTakayuki, Appl. Phys. Lett.,2002,80(15),2746 (2002).
    [69]M. Dawber, K. M. Rabe, J. F. Scott. Physics of thin film ferroelectric oxides. Rev. Mod. Phys.,2005,77(4):1083.
    [70]N. Settera, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, S. Streiffer. Ferroelectric thin films:Review of materials, properties, and applications. J. Appl. Phys.,2006,100:051606.
    [71]D. W. Chapman. Some thin-film properties of a new ferroelectric composition. J. Appl. Phys.,1969,40:2381.
    [72]M. C. Laneaster, R. J. Mytton. A thin film dielectric bolometer. Thin Solid films, 1972,13:243.
    [73]钟维烈.铁电物理学.北京:科学出版社,1998.
    [74]J. F. Scott铁电存储器.朱劲松,吕笑梅,朱星译.北京:清华大学出版社,2004.
    [75]A. Moreira dos Santosm, S. Parashar, A. R. Raju, Y. Sd. Zhao, A. K. Cheetham, C. N. R. Rao, Evidence for the likely occurrence of magnetoferroeleetrieity in the simple perovskite BiMnO3. Solid State Commun.,2002,122:49.
    [76]J. wang, H. Zheng, Z. Ma, S. Prasertehoung, M. Wuttig, R. Droopad, J.Yu, K. Eisenbeiser, R. Ramesh, Epitaxial BiFeO3 thin films on Si. Appl. Phys. Lett., 2004,85:2574.
    [77]J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe. First-principles study of spontaneous polarization in multiferroie BiFeO3. Phys. Rev. B,2005,71:014113.
    [78]R. Ramesh, N. A. Spaldin. Multiferroics:progress and prospects in thin Films. Nature Mater.,2007,6:21.
    [79]N. Yamauchi, Japanese Journal of Applied Physics Part 1:Regular PapersShort Notes & Review Papers,1986,25,590(1986).
    [80]N. Setter Journal of Applied Physics,100,051606 (2006).
    [81]R. Schroeder, Advanced Materials,2004,16,633 (2004).
    [82]R. C. Naber, Nat. Mater,4,243 (2005).
    [83]H. Ishiwara, M.Okuyama, and Y. Arimoto. Ferroelectric Random Access Memories-Fundamentals and Applications [M].Berlin:Springer,2004:86
    [84]R. G. Kepler, R. A. Anderson. Adv. Phys.,1992,41,1 (1992).
    [85]B. A. Newman, J. I. Sheinbein, J. W. Lee, Y. Takase. Ferroelectrics,127,229 (1992).
    [86]J. F. Legrand, Ferroelectrics,1989,91,303 (1989).
    [87]Furukawa, T., Advances in colloid and interface science,71-72,183(1997).
    [88]K. Kimura, H. Ohigashi. Jpn. J. Appl. Phys.,25,383(1986).
    [89]Y. Tajitsu, Jpn. J. Appl, Phys.34,5418 (1995).
    [90]颜志波. 复杂过度金属氧化物的电阻开关行为研究[D]. 南京:南京大学,2011.
    [91]E. Ascher, H. Rieder, H. Schmid, and H. Stossel, J. Appl. Phys.37,1404 (1966).
    [92]R. J. Nelmes, and F. R. Thornley, J. Phys. C:Solid State Phys.9,665 (1976).
    [93]R. J. Nelmes, and W. J. Hay, J. Phys. C:Solid State Phys.14,5247 (1981).
    [94]R. J. Nelmes, and F. R. Thornley, J. Phys. C:Solid State Phys.7,3855 (1974).
    [95]G. A. Smolenskii, and I. E. Chupis, Sov. Phys.——Usp.25,475 (1982).
    [96]H. Schmid, Ferroelectrics 162,317 (1994).
    [97]G. A. Smolenskii, A. I. Agranovskaya, and V. A. Isupov, Sov. Phys.——Solid State 1,149(1959).
    [98]南策文,2008年先进功能材料讲习班,沈阳金属所。
    [99]N. Mathur, Nature 454,591 (2008).
    [100]M. Bibes, and A. Barthelemy, Nature Mater.7,425 (2008).
    [101]M. Dawber, Reviews of Modern Physics,277,1083 (2005).
    [102]G.Vizdrik, Physical Review B,68,094113 (2003)
    [103]H. Kawai, Japanese Journal of Applied Physics,8(7),975(1969).
    [104]J. F. Scott, Science,315,954 (2007).
    [105]张修丽,材料导报,24(11),59(2010).
    [106]李言荣,挥正中.电子材料导论[M].北京:清华大学出版社,2001.
    [107]E.Fukada, IEEE. Trans. Ultrason. Ferroeleetric.Freq.Control,47,1277(2000).
    [108]S. Tasak, S.Miyata, Ferroeleetries,32,17(1981).
    [109]S. N. Fedoso, H.von Segge, J.Appl. Phys.103(1),014105(2008).
    [110]D. Q. xiao, S. B. Lang, IEEE Trans, on Electr.Insul.24,503(1989).
    [111]l.Seo. J. Jpn.1Soc. Precis. Eng,55,1374 (1989).
    [112]R.G.Kepler,R.A.Anderso, J.Appl.Phys,49(8),4990(1978).
    1113] R. G. KePIer, R. A. Anderson,R. R. Lagasse, Ferroeleetries,57(1),151(1984).
    [114]E.L.Nix.J.Nanayakkara,G.R.Davies, J. Polym. Sci. Part B:Polym. Phys,26(1), 127(1988).
    [115]T. Furukawa, J.X.Wen, K.Suzuki, J.APPI.Phys. (25),1178(1986).
    [116]R. Al-ishi, P. L.Taylor,.APPI.Phys.57,897 (1985).
    [117]H. Schmid, Magnetoelectric Interaction Phenomena in Crystals, ed M Fiebig et al(Dordrecht:Kluwer) p1 (2004).
    [118]B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, Nature 449,702 (2007).
    [119]C. Ederer, and N. A. Spaldin, Phys. Rev. B 76,214404 (2007).
    [120]D. G. Sannilov, Ferrotoroics Ferroeleetrics 354,39 (2007).
    [121]Y. Tokura Y, Science,2006,312,1481 (2006).
    [122]D. N. Astrov, Sov. Phys. JETP,11,708 (1960).
    [123]N. A. Hill, The Journal of Chemical Physics B,104,6694 (2000).
    [124]A. Filippetti and N. A. Hill, Phys. Rev. B.65,195120(2002).
    [125]G. Srinivasan, E. T. Rasmussen, B. J. Levin and R. Hayes. Phys. Rev. B.65, 134402(2002).
    [126]S. X. Dong, J. R. Cheng, J. F. Li and D. Viehland, Appl. Phys. Lett.83,4812 (2003).
    [127]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science,299,1719 (2003).
    [128]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. GSchlom, M. Wuttig, Science,303,661(2004).
    [129]T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi and Y. Syono, J. Solid. State. Chem.145,639 (1999).
    [130]M. K. Singh, S. Ryu and H. M. Jang. Phys. Rev. B.2005,72:132101
    [131]W. Prellier, M. P. Singh and P. Murugavel, J. Phys:Cond. Matter.17,7753 (2005).
    [132]T. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Tobbens and J. A. Mydosh, Phys. Rev. B 69:134108 (2004).
    [133]P. Murugavel, M. P. Singh, W. Prellier, B. Mercey, C. Simon and B. Raveau, J. Appl. Phys.97,103914 (2005).
    [134]M. Zeng, J. G. Wan, Y. Wang, H. Yu, J. M. Liu, X. P. Jiang and C. W. Nan, J. Appl. Phys.95,8069 (2004).
    [135]张辉,杨俊峰,方亮,杨卫明.材料导报,17,64(2003)
    [136]Y Xi. Ferroelectrics,261,667(2001).
    [137]J. V. Mantese, A. L. Micheli, N. W. Schubring, R. W. Hayes, G. Srinivasan and S. P. Alpay, Appl. Phys. Lett.87,082503 (2005).
    [138]A.Milchev, W. S. Kruijt, M. Sluyters-Rehbach et. al, J. Electroanal. Chem. 362(1-2),21 (1993)
    [139]H. K. Adam, The physics and chemistry of surfaces, Oxford University Press, U.K.,1941.
    [140]H. Muller. Properties of Rochelle Salt. Phys. Rev.57,829 (1940).
    [141]A. F. Devonshire. Theory of Barium Titanate, Part Ⅰ. Phil. Mag.40,1040 (1949).
    [142]A. F. Devonshire, Theory of Barium Titanate, Part Ⅱ. Phil. Mag.42,1065 (1951).
    [143]L. D. Landau, EMLifshitz. Statistical Physics:the 3rd Edition. Oxford Pergamon Press,1980,47:135.
    [144]蔡玉平.位移型相变的对称性与序参量.河北工业大学硕士论文.2000.
    [1]A. V. Kolobov, P. Fons, A. I. Frenkel, Alexei L. Ankudinov, J. Tominaga, and T. Uruga, Nature Mater.3,703 (2004).
    [2]M. Wuttig and N. Yamada, Nature Mater.6,824 (2007).
    [3]J. Hegedus and S. R. Elliott, Nature Mater.7 (2008),399.
    [4]S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, J. Appl. Phys.103,114310 (2008).
    [5]M. Zacharias and P. Streitenberg, Phys. Rev. B 62,8391(2000).
    [6]S. Raoux, H.-Y. Cheng, J. L. Jordan-Sweet, B. Munoz, M. Hitzbleck, Appl. Phys. Lett.94,183114(2009).
    [7]R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett.10,414 (2010).
    [8]Q. Jiang, H. M. Lu, Surf. Sci. Rep.63,427 (2008).
    [9]Q. Jiang, H. X. Shi, and M. Zhao, Acta Mater.47 (1999),2109.
    [10]L. H. Liang, X. M. You, H. S. Ma, and Y. G. Wei, J. Appl. Phys.108,084317 (2010).
    [11]I. A. Kotze and D. Kuhlmann-Wilsdorf, Appl. Phys. Lett.9,96 (1966).
    [12]T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Thin Solid Films, 370,258 (2000).
    [13]S. Senkadera and C. D. Wright, J. Appl. Phys.95,504 (2004).
    [14]S. Li, J.S. Lian, Q. Jiang, Chem. Phys. Lett.455,202 (2008).
    [15]J. C. Li, W. Liu, Q. Jiang, Traus. Nonferrous Met. Soc. China.15,419 (2005).
    [16]Q. Jiang, D. S. Zhao and M. Zhao, Acta. mater,49,3143 (2001).
    [17]J.C. Lia, M. Lia, Q. Jiang, Physica B,403,618 (2008).
    [1]X. Sun, B. Yu, G. Ng, and M. Meyyappan, J. Phys. Chem C 111 (2007) 2421.
    [2]S-H. Lee, D-K. Ko, Y. Jung, and R. Agarwal, Appl. Phys. Lett.89 (2006) 223116.
    [3]D. Yu, J. Wu, Q. Gu, and H. Park, J. Am. Chem. Soc.128 (2006) 8148.
    [4]S. Meister, H. Peng, K. Mcllwrath, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett.6 (2006) 1514.
    [5]X. Sun, B. Yu, G. Ng, T. D. Nguyen, and M. Mayyappan, Appl. Phys. Lett.89 (2006)233121.
    [6]X. Sun, B. Yu, and M. Meyyappan, Appl. Phys. Lett.90 (2007) 183116.
    [7]Y. Jung, S-H. Lee, D-K. Ko, and R. Agarwal, J. Am. Chem. Soc.128 (2006) 14026.
    [8]S-H. Lee, Y. Jung, and R. Agarwal, Nature Nanotechnol.2 (2007) 626.
    [9]S-H. Lee, Y. Jung, and R. Agarwal, Nano Lett.8 (2008) 3303.
    [10]S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, J. Appl. Phys.103 (2008) 114310.
    [11]S. Raoux, H-Y. Cheng, J. L. Jordan-Sweet, B. Munoz, and M. Hitzbleck, Appl. Phys. Lett.94 (2009) 183114.
    [12]R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett.10 (2010) 414.
    [13]G. Bai, R. Li, H. N. Xu, Y. D. Xia, Z. G. Liu, H. M. Lu, and J. Yin, Physica B 406(2011)4436.
    [14]S-H.Lee, Y.Jung, H-S. Chung, A. T. Jennings, R. Agarwal, Physica E 40 (2008) 2474.
    [15]Y. Jung, R. Agarwal, C. Y. Yang, and R. Agarwal, Nanotechnology 22 (2011) 254012.
    [16]Q. Jiang and C. C. Yang, Current nanoscience 4 (2008) 179.
    [17]M. Li, Materials Letters 76 (2012) 138.
    [18]G. Guisbiers, and S. Pereira, Nanotechnology 18 (2007) 435710.
    [19]J. Kalb, F. Spaepen, M. Wuttig, J. Appl. Phys.93 (2002) 2389.
    [20]S. W. Nam, T. Y. Lee, J. S. Wi, D. Lee, H. S. Lee, K. B. Jin, M. H. Lee, and K. B. Kim, J. Electrochem. Soc.154 (2007) H884.
    [21]T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Thin Solid Films 370 (2000) 258.
    [22]M. Wautelet, J.Phys. D:Appl. Phys.24 (1991) 343.
    [23]J. A. Kalb, F. Spaepen, and M. Wuttig, J. Appl. Phys.98 (2005) 054940.
    [24]I. A. Kotze and D. Kuhlmann-Wilsdorf,1966 Appl. Phys. Lett.9 (1966) 96.
    [25]D. A. Porter, K. E. Easterling, and M. Y. Sherlf, Phase transformations in Metals and Alloys (London:Taylor & Francis) 2009.
    [1]A. J. Lovinger, Science 220,1115(1983).
    [2]S. B. Lang, and S. Muensit, Appl. Phys. A 85,125 (2006).
    [3]B. Neese, B. C. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
    [4]Z, Hu, M. Tian, B. Nysten. A. M. Jonas, Nat. Mater.8,62 (2009).
    [5]Y. J. Park, S. J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K. J. Kim, C. Park, Macromolecules 41,8648 (2008).
    [6]S. Ducharme, A. Gruverman, Nat. Mater.8,9 (2009).
    [7]K. EI-Hami, M. Hara, H. Yamada, K. Matsushige, Ann. Chim. Sci. Mat.26,217 (2001).
    [8]K. J.Choi, M. Biegalski, Y. L. Li, et al. Science 306,1005 (2004).
    [9]J. B. Neaton, K. M. Rabe, Appl. Phys. Lett.82,1586 (2003).
    [10]Z. L. Wang, and J. H. Song, Science 312,242 (2006).
    [11]W. Cochran, Adv. Phys.9,387 (1960).
    [12]N. A. Pertsev, A. G. Zembilgotov, and A. K. Taganatsev, Phys. Rev. Lett.80, 1988(1998).
    [13]A. Yu. Emelyanov, N. A. Pertsev, and A. L. Kholkin, Phys. Rev. B 66,214108 (2002)
    [14]G. Bai and W. H. Ma, Physica B 405,1901 (2010).
    [15]S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova, and S. G. Yudin, Phys. Rev. Lett.84,175 (2000).
    [16]P. F. Liu, X. J. Meng, J. H. Chu, G. Geneste, and B. Dkhil, J. Appl. Phys.105, 114105 (2009).
    [17]T. Li, C. Q. Chen, and J. X. Zhou,Ther. Appl. Mech. Lett.1,011008 (2011).
    [18]T. Furukawa, Ferroelectrics 57,63 (1984).
    [19]H. Wang, Q. M. Zhang, L. E. Cross, and A. O. Sykes, J. Appl. Phys.74,3394 (1993).
    [20]Z. Y. Cheng, T. B. Xu, V. Bharti, S. X. Wang, and Q. M. Zhang, Appl. Phys. Lett. 74,1901(1999).
    [21]K. Matsushige, Phase Transition,18,247 (1989).
    [22]S. Miyata, T. Itoh, Y. Saruyams, Y. Kawasaki, T. Yanagisawa and R. Iwata, J. Phys.Soc. Jpn.73,1793 (2004).
    [23]G. A. Rossetti, L. Eric Cross, and K. Kushida, Appl. Phys. Lett.59,2524 (1991).
    [24]T. Furukawa, Phase Transitions 18,143 (1989).
    [25]A. J. Lovinger, Science,220,1115 (1983)
    [26]K. Omote, H. Ohigashi, and K. Koga, J. Appl. Phys.81,2760 (1996).
    [1]W. Eerenstein, N. V. Mathur, and J. F. Scott, Nature 442,759 (2006).
    [2]R. Ramesh, and N. A. Spaldin, Nat. Mater.621 (2007).
    [3]C. Israel, N. D. Mathur, and J. F. Scott, Nat. Mater.7,93 (2008).
    [4]C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater.22,2900 (2010).
    [5]C.W. Nan,M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103,031101 (2008).
    [6]J. Lou, M. Liu, D. Reed, Y. Ren, N. Sun, Adv. Mater.21,4711 (2009); C. A. F. Vaz, J. Hoffman, C. H. Anh, R. Ramesh, Adv. Mater.22,2900 (2010); H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303,661 (2004); G. Srinivasan, E. T. Rasmussen, B. J. Levin, R. Hayes, Phys. Rev. B 65,134402 (2002).
    [7]J. Zhai, S. Dong, Z. Xing, J. Li, D. Viehland, Appl. Phys. Lett.89,083507 (2006); b) K. Mori, M. Wuttig, Appl. Phys. Lett.81,100 (2002);c) S. Dong, J. Zhai, J. Li, D. Viehland, Appl. Phys. Lett.89,252904 (2006);J. Das, J. Gao, Z. Xing, J. F. Li, D. Viehland, Appl. Phys. Lett.95,092501 (2009);Y. Lin, N. Cai, J. Zhai, G. Liu, C. W. Nan, Phys. Rev. B 72,012405 (2005).
    [8]C. W. Nan, G. Liu, Y. Lin, and H. Chen, Phys. Rev. Lett.94,197203 (2005).
    [9]G. Liu, C. W. Nan, Z. K. Xu, and H. Chen, J. Phys. D 38,2321 (2005).
    [10]G. Liu, C. W. Nan, and J. Sun, Acta Mater.54,917 (2006).
    [11]N. A. Pertsev, H. Kohlstedt, and B. Dkihl, Phys. Rev. B 80,054102 (2009).
    [12]V. G. Kukhar. N. A. Pertsev, and A. L. Kholkin, Nanotechnology 21,265701 (2010).
    [13]P.-E. Janolin, N. A. Pertsev, D. Sichuga. and L. Bellaiche, Phys. Rev. B 85, 140401 (2012).
    [14]N. A. Pertsev, S. Prokhorenko, and B. Dkhil, Phys. Rev. B 85,134111 (2012).
    [15]X. J. Zheng, and X. E. Liu, J. Appl. Phys.97,053901 (2005).
    [16]G Bai, R. Li, Z. G. Liu, Y. D. Xia, and J. Yin, J. Appl. Phys. 111,044102 (2012).
    [17]T.Wu,M.A.Zurbuchen,S.Saha,R.-V. Wang,S.K.Streiffer,and J.F.Mitchell, Phys.Rev.B 73,134416(2006).
    [18]The list of the parameters used in the calculations(in SI units,the temperature T in K). For PbTiO3: α=7.6(T-752)×105; β=-2.92×108 γ=1.56×109;Q11=0.089;Q12=-0.026;s11=8.0×10-12;s12=-2.5×10-12. For P(VDF-TrFE)65:35,α=3.5(T-313)×107;β=-1.5×1012;γ=1.9×1014; Q11=-12;Q12=3;s11=3.32×10-10;s12=-1.44×10-10.For Terfenol-D, λs=1300 ppm;μ0Ms=0.8T;χm=80;σs=200 MPa;Es=110 GPa.
    [19]K.H.Lam,C.Y Lo,J.Y Dai,H.L.W Chan,and H.S.Luo,J.Appl.Phys.109, 024505(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700