航空整体结构件数控加工变形校正理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变形校正是包括航空整体结构件制造在内的许多工业产、成品制造的关键工艺过程。目前,航空整体结构件的变形校正仍停留在凭操作者经验进行粗放生产的水平,因变形复杂无法校正或因操作不当引起工件报废的现象时有发生,严重影响航空整体结构件的生产效率和最终产品精度,并进一步影响航空航天产品的生产进度与生产成本。本文通过理论分析、有限元数值计算以及试验研究相结合的方法,对航空整体结构件变形校正理论和方法及相关关键技术进行了研究。全文共分七章。
     第一章阐述了变形校正的基本概念、,在总结不同生产对象,国内外所采用变形校正理论和方法的基础上,针对航空整体结构件的结构特点与变形特点,提出了航空整体结构件变形校正的基本要求及需要研究解决的关键工艺理论和方法。最后给出了本学位论文的选题背景、主要研究内容和章节安排。
     第二章在确定弯曲变形类型识别和变形量测量方法的基础上,首先研究了弯曲变形零件校正需要满足的基本曲率关系;进一步利用弹塑性理论,建立了弯曲变形零件校正需要满足的弯矩—反弯校正曲率间的通用关系式。针对所研究的航空整体结构件的主要截面特征为U型截面的结构特点,建立了U型截面工件弯曲变形校正的数学模型。为了生产操作方便,对于给定初始变形量和变形曲率的工件,给出了校正时压力机压头压下位移量的计算公式。为了验证所建立的数学模型,采用有限元方法对同一问题进行计算,理论值与有限元数值计算结果吻合得很好。
     第三章针对复杂结构零件,无法用解析表达式求得校正参数的工程难题,提出了采用二分法、基于有限元技术进行变形校正参数计算的方法。设计隔框比例件的三点压弯试验,验证有限元模型的正确性。通过大量有限元数值计算,获得了典型隔框零件弯曲变形校正的规律曲线,用于指导校形生产。对多弯曲点的变形零件,提出了考虑整体校正精度的分段校正方法。
     第四章给出了替代法快速建立扭转变形校正有限元模型的方法。在研究扭转变形校正基本理论的基础上,采用有限元技术,对隔框类零件扭转变形校正时各位移分量之间的量值关系进行了研究。通过大量有限元分析计算,对典型隔框零件扭转变形校正规律进行了研究。本章还对弯扭组合变形的校正理论和方法进行了研究。
     第五章建立了毛坯初始残余应力引起工件加工变形的预测模型。对残余应力引起结构复杂的隔框零件变形进行了有限元计算,并进行了试验验证,有限元计算结果与试验值吻合得很好。首次对残余应力对变形校正参数计算精度的影响进行了研究。为校正参数的精确计算提供了技术支持。
     第六章提出了U性截面工件安全校正极限参数的计算理论,给出了相应极限参数
Distortion correcting is a key process in semi and finished product manufacturing. It is also necessary in aeronautical monolithic component fabricating. At present, distortion correcting of aeronautical monolithic component basically remains at a lower level, which mainly depends on workers' experiences. Because of the complication of distortion and improper correcting operation, fail to meet the requirement of correction often occurs in the workshop of prototype airplane manufacturing. That ineluctably leads to the distorted components discarded as useless. This state of affairs reduces the productivity and lowers the precision of the finished products. Furthermore, production schedule and manufacturing costs of aeronautical product are influenced. In this dissertation, by coalescing theory analysis, finite element calculation and experiment, theory and method for correcting distorted aeronautical monolithic component are studied. Correlated key technologies are also researched. Seven chapters are included in this dissertation.Fundamental concept of distortion correcting is expounded firstly in chapter 1. Then, correcting theory and method with regard to different type of products and structures are summarized. According to the distortion characteristics of aeronautical monolithic components, some key correcting theories and methods are put forward. After that, background and significance of this research is pointed out. Finally, the main contents of this dissertation are summarized.In chapter 2, methods, to distinguish distortion type, to measure distortion value, are presented. Based on the methods, the relationship of several kinds of curvatures that a distorted part must be satisfied during its straightening process is studied. And then, by employing elastoplastic theory, a general expression between bending moment and reverse bending curvature is established when correcting bended distorted part. Considering most aeronautical monolithic components are U-section structure, a new mathematic model for correcting U-section bended part is founded. For operating convenience, a formula is obtained, and it is used to calculate the stroke of pressing down for straightening manufacturing distortion, while the original distortion value and curvature is given. To verify the mathematic model, finite element method is adopted to solve the same problem. The theoretical solution agrees well with the finite element result.For the complicated part, it is almost impossible to calculate correcting parameters by
引文
[1] 王先逵.制造技术的历史回顾与面临的机遇和挑战.机械工程学报,2002,38(8):1~8
    [2] 王道荫.迈向21世纪的航空科学技术.北京:航空工业出版社,1994.PP:285
    [3] 路甬祥.团结奋斗 开拓创新 建设制造强国.机械工程学报,2003,19(1):1~9
    [4] 梁福军,王治平.21世纪的制造技术.机械工程学报,2002,38(1):1~8)
    [5] SUN Jie, KE Ying-lin, KANG Xiao-ming, etal. Study on Technology Strategies for Guarantee Machining Precision of Large-Scale Integrated Aircraft Parts[A]. CHEN Dingchang, NARUTAKI Norihiko, etal. ICPMT'2002, Processing of Machining Technology[C]. Beijing: Aviation Industry press, 2002:695~701
    [6] 查治中,杨彭基等.数控技术在飞机制造中的应用.北京:国防工业出版社,1992
    [7] 顾诵芬.航空航天科学技术(航空卷)[M].济南:山东教育出版社,1998
    [8] 林胜 HSM在航空制造业中的应用.航空制造技术,2003,(3):25~28,76
    [9 康小明.大型整体结构件加工变形问题研究:[博士后出站报告].杭州:浙江大学.2002
    [10] 郭恩明.我国航空制造技术的现状及发展趋势.航空制造技术,2002(1):27~29,58
    [11] 郭诚志,孟凡新,付燕松.框接头的数控加工.航天工艺,1998(5):12-15
    [12] 吴恒温.整体结构件的机械加工.航天工艺,1989(4),1-6
    [13] 王炎.飞机整体结构件数控加工技术应用中的问题与策略.航空制造工程,1998(4):28-30
    [14] 刁成顺,王印凯.FT8大型薄壁环形件的加工.航空制造工程,1996,(6):10~12
    [15] 王力涛.关于航空框类结构件铣削加工残余应力和变形机理的研究:[博士论文].杭州:浙江大学.2003
    [16] Naotake Yoshihara, Yoshimichi Hino. Removal technique of residual stress in 7075 aluminum alloy. Tokushima, Japan:3th ICRS, 1991, Residual stressesⅢ:Science and Technology: 1140-1145
    [17] Heymes F., Commet B, Bost B Du, et al. Development of new Al alloys for distortion free machined aluminium aircraft comenents. Pro. of the 1st Inter. Non-Ferrous Processing and Tech. Conf. March 1997, St. Louis, Missouri, pp249-255
    [18] J. R. Davis, G. M. Davidnson, S. R. Lampman, etc. Heat treating of aluminum alloys [M]. ASM Handbook, Volume 4,1995: 841-879
    [19] 毛翔.铝合金预拉伸板残余应力的有限元数值模拟计算.轻金属,1999,(5):50~52
    [20] Walker, Donna. Residual stress measurement techniques. Advanced Materials & Processes, 2001, 159 (8): 30-33
    [21] 王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除.航空材料学报,2002,Vol.22(3):59-62
    [22] 王秋成,柯映林.深冷处理消除7050铝合金淬火残余应力的研究.浙江大学学报(工学版),2003,Vol.37(6):748-751
    [23] Edward C. De Meter. Fast support layout optimization. International Journal of Machine Tool & Manufacture 38 (1998) 1221-1239.
    [24] R. J. Menassa. Optimization methods applied to selecting support positions in fixture design. Transactions of the ASME. 412/vol. 113, November 1991.
    [25] K. Krishnakumar, Shreyes N. Melkote. Machining fixture layout optimization using the genetic algorithm. International Journal of Machine Tool & Manufacture 40(2000)579-598.
    [26] 董辉跃,柯映林.铣削加工中薄壁件装夹方案优选的有限元模拟.浙江大学学报(工学版),2003(已录用)
    [27] 林胜.HSM在航空制造业中的应用.航空制造技术,2003,(3):25~28,76
    [28] 朱从容,顾平灿.高速切削技术及高速切削机床.精密制造与机床,2002,(3):14~15
    [29] 崔甫.矫直原理与矫直机械.北京:冶金工业出版社,2002
    [30] [美]汉密尔顿B.鲍曼.高精度金属薄材手册.上海:上海科学技术出版社,1987
    [31] 唐啸波.轴类零件校正工艺理论研究:[硕士论文].合肥:合肥工业大学,1997
    [32] 李龙海.型钢最佳矫直规程的确定方法.重型机械.1983,(9):24~31
    [33] 王卫平.U74重轨材料力学性能的试验分析.包钢科技,1998(1):70~77
    [34] 杨海波,王卫平.重轨多辊矫直过程σ—ε关系的试验研究.冶金设备,1999(4):10~12,21
    [35] Zongyan He, Xiaowei He. A study on the deformation of metals. Journal of Materials Processing Technology 88(1999): 1~9
    [36] P. P. Date, K. A. Padmanabhan. Deformation behaviour of sheets aerospace AI-alloys. Journal of Materials Processing Technology 112(2001):68~77]
    [37] G. Ferran, M. A. de Almeida. Behavior of sheet metal submitted to cyclic bending and stationary drawing deformation. Journal of Materials Processing Technology 115(2001): 114~117
    [38] J. C. Ferreira. A note on a numerically controlled precision system for sheet metal bending tests. Journal of Materials Processing Technology 110(2001): 244~248
    [39] Mattias Widmark, Ame Melander, Fredrik Meurling. Low cycle constant amplitude fully reversed strain controlled testing of low carbon and stainless sheet steels for simulation of straightening operations. International Journal of Fatigue 22(2000): 307~317
    [40] J. Chakrabarty, W. B. Lee, K. C. Chan. An exact solution for the elastic/plastic bending of anisotropic sheet metal under conditions of plane strain. International Journal of Mechanical Sciences 43(2001): 1871~1880
    [41] M. Hua, K. Baines, I. M. Cole. Continuous four-roll plate bending: a production for the manufacture of single seamed tubes of large and medium diameters. International Journal of Machine Tools & Manufacture 39(1999): 905~935
    [42] Y. H. Lin, M. Hua. Influence of strain hardening on continuous plate roll-bending process. International Journal of Non-Linear Mechanics 35(2000):883~896
    [43] K. M. Zhao, J. K. Lee. Finite element analysis of the three-point bending of sheet metals. Journal of Materials Processing Technology 122(2002):6~11
    [44] Yoshisulce MISAKA. Shape correction of steel strip by tension leveler. Journal of Japan Society for Technology of plasticity, 1976, 17:968~974
    [45] 曾田长一朗.最新的板带材矫正法.塑性加工,1967,10:853~862
    [46] T. Sheppard. Stress-strain relationship for strip-shape correction process. Journal of the Institute of metal. 1971, 99:223~228
    [47] Mattias Widmark, Arne Melander, Fredrik Meurling. Low cycle constant amplitude fully reversed strain controlled testing of low carbon and stainless sheet steels for simulation of straightening operations. International Journal of Fatigue, 22(2000): 307~317
    [48] 戴有涛.拉弯矫直技术在高精度铝板带材中的应用.有色金属加工,2000(3):14~17
    [49] N. K. Das Talukder, W. Johnson, On the arrangement of rolls in cross-roll straighteners, Int. J. Mech. Sci. 23 (1981) 213±220.
    [50] 王国栋.板形控制和板形理论.北京:冶金工业出版社,1986.
    [51] 肖林.金属带材连续拉伸弯曲矫直变形机理研究:[博士学位论文].北京:北京科技大学,1999
    [52] 陈先霖.高技术宽带钢轧制机的板形控制.北京科技大学学报,1997,19:1~5
    [53] G. Schleinzer, F. D. Fishcher. Residual stress formation during the roller straightening of railway rails. International Journal of Mechanical Sciences 43(2001)2281~2295
    [54] G. Schleinzer, F. D. Fishcher. Residual stress in new rails. Materials Science and Engineering A288(2000): 280~283
    [55] 王卫平.以多次反复弯曲试验所得应力应变关系为依据研究U74重轨的合理矫正变形方案:[硕士学位论文].北京:北京科技大学,1996
    [56] 王彦贞 高强重型钢轨矫直的理论研究及应用.[硕士学位论文].北方交通大学,1997
    [57] 周炳沂.钢轨复合矫直新工艺的推广应用.钢铁钒钛,1992,13(1):29~36
    [58] A. M. Maskileison, V. A. Moskalev, D. S. Levitskii, Yu. L. Khotimskii, Machines for accurate tubes straightening, Steel in the USSR 19(1989)224±226.
    [59] 高树增.锅合金管棒材矫直的新技术.轻金属.1998,(10):47~48
    [60] 李文刚.新型高精度管材矫直机.钢管.1999,28(5):16~19
    [61] B. J. Wu, L. C. Chan, T. C. Lee, L. W. Ao. A study on the precision modeling of the bars produced in two cross-roll straightening. Journal of Materials Processing Technology. 99(2000):202~206
    [60] N. K. Das Talukder, A. N. Singh. Mechanics of bar straightening. ASME 113(1991):224~232
    [63] E. N. Dvorkin, F. M. Medina. Finite element models for analyzing the straightening of steel seamless tubes, Trans. ASME 111(1989): 351~355
    [64] Ke-Yang Li, Cha'o-Kuang Chen, Shyue-Chen Yang. Profile determination of a tube-straightening roller by envelope theory. Journal of Materials Processing Technology 94(1999):157~166
    [65] N. K. Das Talukder, A. N. Singh, Mechanics of bar straightening, PartⅠ: General analysis of straightening process, ASME J. Eng. Ind. 113(2) (1991) 224±227.
    [66] N. K. Das Talukder, A. N. Singh, Mechanics of bar straightening, PartⅡ: Straightening in cross-roll straighteners, ASME J. Eng. Ind. 113(2) (1991 ) 224±227.
    [67] 唐啸波.轴类零件校直工艺理论研究:[硕士论文].合肥:合肥工业大学.1997
    [68] 刘学平,刘光复、刁常龙.数控校正的机床司法控制.合肥工业大学学报(自然科学版),1998,21(2)):18~21
    [69] 张向军,蒋守仁,桂长林.轴类零件校直设计理论和计算的修正研究.机械设计,1997,(11):9~11
    [70] 蒋守仁,翟华,蒋叶青.基于行程控制的校直工艺理论研究.合肥工业大学学报(自然科学版),1997,20(5):1~6
    [71] 翟华,韩春明,蒋守仁.轴类零件精密校直行程算法研究.重型机械,2001(5):35~38
    [72] 王权,李春龙,付学义,等.钢种、轨型及生产工艺对钢轨矫后残余应力的影响.金属热处理,2002,27(9):35~37
    [73] 罗亚军,杨建华,何丹农.残余应力测试法在分析薄壁起拱缺陷中的应用.重型机械,2001(2):57~59.
    [74] 崔甫,施东成.矫直机压弯量计算法的探讨.冶金设备,1999,Vol.1,P:1~6
    [75] 潘积惠.船用机械轴类零件弯曲变形的矫直工艺.船电通讯,1994,56(2):31~32,33
    [76] 白兰平.关于轴的热矫直的探讨及应用.川化,1992(4):13~16
    [77] A S M Y Munsi, A J Waddell, C A Walker. Vibratory stress relief—An investigation of the torsional stress effect in welded shafts. Journal of Strain Analysis, 2001, 36(5):453~464
    [78] 孙丰华,房德馨.振动时效消除金属构件残余应力效果检测.大连理工大学学报,1994,34(4):390~393
    [79] 卢亚萍.振动消除残余应力机理分析及试验研究.[学位论文].浙江大学,2002
    [80] 刘之生,黄纯颍.反求工程技术.北京:机械工业出版社,1992
    [81] 王国瑾,王国昭,郑建民.计算机辅助几何设计[M].北京高等教育出版社,2001
    [82] 吴其江.校直多级离心泵泵轴时轴端弯点的确定.石油机械,1997,25(3):25~26,33
    [83] 钦明浩,柯尊忠,张向军.精密矫直机中轴类零件矫直工艺理论研究.机械工程学报,1997,33(2):48~53
    [84] 张勇.用正交多项式回归方法构造用于矫直电梯导轨模型.物理测试,32~34
    [85] A. A. EL-DOMINATY, A. A. ELSHARKAWY. Stretch-bending analysis of U-section beams. Int. J. Mach. Tools Manufac. 1997, 38(1-2): 75~95
    [86] 陆严清.塑性变形理论及应用.北京:国防工业出版社,1998
    [87] Jenn-Terng Gau, Gary L. Kinzel. A new model for springback prediction in which the Bauschinger effect is considered. International Journal of Mechanical Sciences 43(2001): 1813~1832
    [88] 崔甫.矫直理论与参数计算.北京:机械工业出版社,1994
    [89] 崔甫.论弹塑性弯曲与曲率关系.重型机械,1994,(3):23~28
    [90] 官英平,赵军.板料弹塑性弯曲应力应变中性层位置关系探讨.塑性工程学报,2002,9(2):39~41
    [91] B. J. Wu, L. C. Chan, T. C. Lee, etl. A study on the precision modeling of bars produced in two corss-roll straightening. Journal of Material Processing 99(2000): 202~206
    [92] 刘鸿文.材料力学(上册)(M).北京:高等教育出版社,1982年第2版
    [93] 余同希,章亮炽.塑性弯曲理论及其应用.北京:科学出版社,1992
    [94] 孙杰,柯映林,吴群等.大型整体结构件数控加工变形校正的关键技术研究.机械工程学报,2003,39(8):120~124
    [95] W. Johnson, T. X. Yu. On springback after the pure bending of beams and plates of elastic work-hardening materials-Ⅲ. Int. J. Mech. Sci. 1981, 23(11): 687~695
    [96] W. Johnson, T. X. Yu. Springback after the biaxial elastic-plastic pure bending of a rectangular plate. Int. J. Mech. Sci. 1981, 23(11):619~630
    [97] 谢贻权,何福保.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1981
    [98] 孙炳楠,洪滔,杨骊先.工程弹塑性力学.杭州:浙江大学出版社,1998
    [99] 夏志皋.塑性力学.上海:同济大学出版社,1999
    [100] 朱伯芳著.有限单元法原理与应用(第二版).北京:中国水利水电出版社,2000.8
    [101] 王勖成 邵敏编著.有限单元法基本原理和数值方法.北京:清华大学出版社,1998.4
    [102] 谢配良,薛海,盛伟.ANSYS软件的二次开发在大容量缓冲器模锻件上的用于.机车车辆工艺,2000,(6):26~28,41
    [103] 蓝宇,张连杰.大型有限元分析软件ANSYS.应用科技,2000,27(6):11~12,15
    [104] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学,1999.
    [105] G. J. Turvey, M. Saleni. Large deflection analysis of eccentrically stiffened sector plates. Computers and Structures 68(1999): 191~205
    [106] 吴学仁.飞机结构金属材料力学性能手册(第1卷).北京:航空工业出版社,1996
    [107] 孙杰,柯映林.隔框类航空整体结构件变形校正关键技术研究.浙江大学学报(工学版),2003(录用)
    [108] 蔡洪能,孟繁森,史耀武.焊接扭转变形的试验研究.焊接技术,1994,(2):16~17
    [109] 孟繁森,汤慕尧,蔡洪能.箱形箱装配焊接过程中的扭转判据及其应用.西安交通大学,1994, 28(4): 91~96
    [110] G. Brabie. The effects of torsion on the initial geometry of bars having non-circular cross-sections. Journal of Materials Processing Technology 106(2000):8~12
    [111] 曹富新,杨春秋.工程薄壁结构计算.北京:中国铁道出版社,1991
    [112] Hyong Seop Kim. Finite element analysis of high pressure torsion processing. Journal of Materials Processing Technology 113(2001): 617~621
    [113] 蔡洪能.焊接扭转变形的力学机制研究[博士学位论文].西安:西安交通大学,1994.
    [114] Laszlo P. Kollar. Flexural-torsional buckling of open section composite colums with shear deformation. International Journal of Solids and Structures 38(2001):7525~7541
    [115] Rosen A. Theoretical and experimental investigation of the nonlinear torsion and extension of initially twisted bars. JAM, 1983, (50): 321~326
    [116] 程伟,刘电子,诸德超.考虑非线性扭转影响的薄壁梁扭转特性分析.航空学报,2002,23(1):13~16
    [117] 蔡洪能,王雅生,史耀武,等.焊接扭转变形分析方法研究.应用力学学报,13(4):137~141
    [118] 杨康乐.铝合金型材矫直过程的扭转机理研究.上海工业大学学报,1989,10(4):347~352
    [119] 康小明.大型整体结构件加工变形问题研究[博士后出站报告].杭州:浙江大学.2002.
    [120] Wen-Guang Jiang, J. L. Henshall. Torsion-extension coupling in initially twisted beam by finite element. Eur. J. Mech. A/Solids 20(2001): 501~508
    [121] 袁发伍,伍尚礼.残余应力测试与计算.长沙:湖南大学出版社,1987
    [122] [日]米谷茂.残余应力的产生和对策.北京:机械工业出版社,1983
    [123] S. Rasouli Yazdi, D. Retraint, J. Lu. Study of through-thickness residual stress by numerical and experimental technique. J. Strain Analysis Eng. Design, 1998, 33(6): 449-458
    [124] B. Jaensson, S. E. Larsson. Control and use of residual stresses in aircraft structural parts. Journal of Aircraft, 1988, 25(1): 48-54
    [125] Tan Z, Li W B, Persson B. On analysis and measurement of residual stress in the bending of sheet metals. Int. J. Mech. Sci. 1994, 36(5): 483~491
    [126] Bhattacharyya D, Thorpe W R, Painter M J. Residual stress prediction in large auto body panels. J. Mater. Shaping technology. 1998, (5): 221~229
    [127] Tang F, Lu A L, Mei J F, et al. Research on residual stress reduction by low frequency alternating magnetic field. 1998, 74:255~258
    [128] R. Schro der. Some influences on the development of thermal and residual stresses in quenched steel cylinders with different dimension. Proc. SCIS, Vol. 1:1~22, 1984.
    [129] A. J. Fletcher. The effect of a free edge on the thermal stresses in quenched steel plates. Proc. SCIS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700