考虑大规模风电接入系统的发电优化调度模型及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电等可再生能源的大力发展有利于实现我国能源结构优化调整,促进电力系统的节能减排,然而风电的波动性、不确定性和逆调峰性也给系统的安全稳定运行带来了诸多问题。本文考虑风电对于系统AGC备用、旋转备用和调峰的影响,对大规模风电并网条件下的发电调度优化模型及方法进行了系统和深入的研究。
     针对风电并网导致系统AGC备用需求增加的问题,提出了风电并网引发的AGC备用需求预测方法。采用极大熵谱分析法对风电的波动性进行了频谱分析,并运用滚动平均法对关键时间尺度的风功率波动分量进行分离,结合实际算例数据对风电的AGC容量需求进行了计算和分析。为充分发挥风电并网条件下各类电源提供AGC的自身优势,进一步促进网内AGC机组之间的充分竞争,本文结合AGC机组调节性能指标,提出了考虑风电接入系统的AGC备用容量优化调度方法;以电能量成本和AGC备用容量成本最小为目标函数,兼顾AGC调节速度、AGC调节容量和AGC调节范围约束,建立了考虑风电接入系统的AGC备用优化调度模型。算例分析表明,所提模型和方法能够量化分析风电并网引发的AGC备用容量需求,优先调用AGC调节性能优良的机组,充分发挥水电、火电等不同电源提供AGC服务的自身优势。
     针对风电出力不确定性和系统N-1故障对于系统旋转备用容量优化分配的影响,提出了考虑风电和负荷波动及系统N-1故障的旋转备用优化调度方法。基于负荷和间歇式电源功率的预测误差分布,确定合理的区间数,采用区间数优化方法建立表述风电出力与负荷不确定性的数学模型。在对不确定性场景进行筛选的基础上,综合考虑线路传输容量约束、故障场景下的网络拓扑结构变化、连续波动场景与瞬时离散故障场景下的爬坡约束,建立了考虑多场景的旋转备用容量和发电出力计划一体化优化调度模型;并针对模型的复杂性,采用Benders分解降低模型的求解规模。算例分析表明本文方法能够将机组组合方案与旋转备用容量计划进行协调同步优化,保障了系统在各预想场景下的自愈校正能力。
     采用概率性方法处理风电出力和系统N-1故障的不确定性问题;基于风电的预测出力与预测误差分布,运用拉丁超立方抽样法生成风电场景,并运用同步回代法对场景进行削减。采用马尔科夫链预测未来时段机组和线路的N-1故障状态概率。在此基础上,兼顾机组组合、机组经济功率分配以及AGC备用和旋转备用容量分层协调优化配置等问题,建立了考虑风电与储能系统的随机柔性优化调度模型。所提模型及方法综合考虑了系统N-1故障和风电出力的不确定性概率与严重性、系统AGC备用与旋转备用容量辅助服务成本、储能装置剩余可充放电能力以及网络约束的影响。针对该模型的复杂性,将其线性化后采用商用混合整数线性规划求解器CPLEX进行求解。算例分析表明,所提方法可将系统AGC备用容量与旋转备用容量分层协调的配置到各个机组,能够考虑间歇式电源不同时间尺度的波动性和不确定性对于系统的影响,充分发挥了储能柔性灵活的优势。
     在我国,大规模风电并网引发了系统调峰困难和弃风问题,本文提出了促进风电跨省消纳的解决方案和促进风电就地消纳的风储联合运行模式。针对本文所提调节市场的平衡调节相对偏差量最小调度模式,建立了相应的优化调度模型,实例分析验证了本文所提模型的适用性和有效性。针对如何调用储能装置促进风电消纳的问题,本文分析了不同储能容量场景和不同风电渗透率场景下的风电接纳能力及系统经济性,提出了风电经济接纳和风电最大接纳两种调度模式,建立了相应的混合整数线性规划模型。算例分析表明,风电经济接纳模式下储能系统能够更加柔性灵活地平衡调峰和弃风的矛盾,系统能耗更低。
     论文提出的考虑风电接入系统的发电调度优化模型和促进风电消纳的调度模式,不仅具有学术价值,而且对于提高电力系统的安全经济运行和促进可再生能源的健康发展具有一定的现实意义。
The great development of wind power and other renewable energy is conducive to China's energy structure adjustment, the energy conservation and emission reduction of power system is also promoted. However, the volatility, uncertainty and inverse peaking character of wind power bring a lot of problems to the operation of the power system. The influence of AGC reserve, spinning reserve and peak regulation are considered in this dissertation, and the optimal scheduling model and algorithm of large-scale wind power integrated into power system are studied.
     A forecast method of AGC reserve demand caused by wind power is proposed. The volatility of wind power is analyzed by maximum entropy spectral analysis method, and the wind power fluctuation components of critical time-scale are separated by the rolling average method. AGC reserve capacity demand caused by wind power is calculated and analyzed with practical case data.In order to take full advantages of various types of AGC unit and promote the full competition of AGC units, an optimal AGC reserve scheduling approach of wind power integrated system is proposed. The objective function is to minimize both the cost of electrical energy and AGC reserve capacity. AGC regulation speed constraint, AGC regulation capacity constraint and AGC regulation range constraint are taken into account. The unit commitment and AGC reserve scheduling model of wind power integrated system is established. Case study demonstrats that the proposed approach and model can quantify AGC reserve capacity demand which is caused by wind power, and distinguish AGC regulation performance of different units effectively.
     In order to analyze the impact of N-1contingency and wind power on spinning reserve capacity scheduling, an optimal spinning reserve scheduling approach considering wind power and load fluctuations and N-1contingency is proposed. A reasonable range for each time interval is determined based on the wind power forecast error distribution and load forecast error distribution. Firstly, the uncertainty scenarios are determined. Secondly, the line transmission capacity constraints, structural changes of network topology in single contingency scenarios, and the ramping constraints in continuous fluctuation scenarios and instantaneous discrete fault scenarios are considered. At last, an optimal spinning reserve scheduling model with the consideration of multi-scene is established. Meanwhile, Benders decomposition is used to reduce the scale of the model. Numerical example results show that this approach can co-optimize the unit commitment and spinning reserve scheduling, and its self-healing correction capability in each scenario is assured.
     This dissertation adopted the probabilistic approach to deal with the uncertainty of wind power and N-1contingency. The wind power scenarios are generated by Latin hypercube sampling method based on the prediction of wind power and its prediction error distribution, and these scenarios are reduced by simultaneous backward and fast forward reduction method. The probability of N-1contingency is forecasted by markov chain. On this basis, a flexible stochastic optimal scheduling model considering wind power and energy storage system is developed with the consideration of the unit commitment and hierarchical coordinated optimal dispatch of AGC and reserve capacity. The proposed approach and model consider the uncertainty and severity of N-1contingency and intermittent power resources, the cost of AGC and reserve capacity ancillary services, the remaining charge and discharge ability of energy storage devices as well as the network constraints. This complicated model is linearized and solved by commercial mixed-integer linear programming solver CPLEX. Numerical example results demonstrats that the proposed approach can hierarchical optimize the AGC reserve and spinning reserve of each unit. The impact of different time-scale's fluctuations and uncertainties of intermittent power are considered.
     In order to solve the consumptive problem caused by large-scale wind power in China, solutions to accommodate transprovincial wind power are proposed, and this dissertation studied the co-operation mode of wind power and energy storage system which is used to accommodate wind power locally. The wind power integration capacity under different peak regulation modes are analyzed. The minimum relative regulate deviation scheduling model of the regulation market is established. The applicability and effectiveness of the proposed model are verified. As for the scheduling mode of energy storage system which is used to accommodate wind power locally, the maximum wind power integration and economical wind power scheduling mode are proposed. The wind power integration capacity and system economy under different scenarios of wind power penetration and storage capacity are analyzed. Example shows that Energy Storage System(ESS) can balance the contradiction between peak regulation and abandoned wind power under economical wind power integrate mode.
     The optimal scheduling model of large-scale wind power integrated system and the scheduling model to accommodate wind power are proposed in this dissertation. It not only has academic value, but also has a practical value to promote the dispatch level of grid and the fast development of renewable energy.
引文
[1]吴集光,刘俊勇,牛怀平,等.电力市场环境下最优备用容量的确定[J].电力系统自动化,2005,(15):10-13+22.
    [2]国家电力监管委员会.美国电力市场[M].北京:中国电力出版社,2005:210-232
    [3]Salle C. Ancillary services:an overview[A]. Proceedings of the Pricing of Ancillary Services:an International Perspective (Digest No:1996/164)[C], IEE Colloquium on, London,28 Jun 1996,1996:1/1-1/7.
    [4]于尔铿,韩放,曹昉.电力市场[M].北京:中国电力出版社,1998
    [5]赵遵廉.电力系统运营系统[M].北京:中国电力出版社,2001
    [6]Suzuki D, Kita H, Sugihara H, etal. An evaluation of wheeling in power systems from system operation viewpoint[J]. Transactions of the Institute of Electrical Engineers of Japan, Part B, Dec.2000,120-B(12):1646-1655
    [7]崔杨,穆钢,刘玉,等.风电功率波动的时空分布特性[J].电网技术,2011,35(02):110-114.
    [8]韩小琪,宋璇坤,李冰寒,等.风电出力变化对系统调频的影响[J].中国电力,2010,(06):26-29.’
    [9]蒋大伟.大规模风电并网对系统频率影响分析[D].吉林:东北电力大学,2010.
    [10]林今,孙元章,P.SΦRENSEN,等.基于频域的风电场功率波动仿真(一)模型及分析技术[J].电力系统自动化,2011,(04):65-69.
    [11]林今,孙元章,P.SΦRENSEN,等.基于频域的风电场功率波动仿真(二)变换算法及简化技术[J].电力系统自动化,2011,(05):71-76.
    [12]鲁宗相,闵勇.基于功率预测的波动性能源发电的多时空尺度调度技术[J].电力科学与技术学报,2012,(03):28-33.
    [13]Wei L, Joos G, Abbey C. Wind Power Impact on System Frequency Deviation and an ESS based Power Filtering Algorithm Solution[A]. Proceedings of the Power Systems Conference and Exposition[C], Georgia,2006 PSCE'06 2006 IEEE PES, Oct.29 2006-Nov.1 2006,2006:2077-2084.
    [14]李雪峰.互联电力系统的AGC容量需求和控制策略研究[D].大连:大连理工大学,2010.
    [15]A.Sammut, Worksho Pon. Definitions and Requirements for Managing Unbundled IOS [S]. Palm Beach Gardens:Interconnected Operations(Ancillary) Services, FL, 1996, Junel 9-20.
    [16]林万菁,刘娆,李卫东,等.发电侧电力市场下的AGC容量确定与机组选择[J]. 电力系统自动化,2004,(19):17-21.
    [17]Hirst E, Kirby B. Separating and measuring the regulation and load-following ancillary services[J]. Utilities Policy,1999,8(2):75-81.
    [18]U.S. Federal Energy Regujatory Commission.Promoting Wholesale Competition Through Open Access Non-Diseriminatory Transnlission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitiing Utilities[S]. Washington, DC:FinalRule, Order888,1996, April,24.
    [19]李雪峰,李卫东,刘乐.AGC容量需求研究[J].电力自动化设备,2009,(06):40-43+47.
    [20]E.Hirst, B.Kirby. Defining intra-and interhour load swings[J]. IEEE Transactions on Power System,1998,13(4):1379-1385.
    [21]E.Hirst, B.Kirby. Generator response to intrahour load fluetions[J]. IEEE Transactions on Power System,1998,13(4):1373-1378.
    [22]汪德星.电力系统运行中AGC调节需求的分析[J].电力系统自动化,2004,(08):6-9.
    [23]谢亮.考虑AGC的机组组合问题研究[D].北京:华北电力大学,2005.
    [24]李卫东,吴海波,武亚光,等.电力市场下AGC机组调配的遗传算法[J].电力系统自动化,2003,(15):20-24.
    [25]叶剑斌.电力市场环境下计及AGC的机组组合问题[D].杭州:浙江大学,2003.
    [26]李媛媛.AGC机组调配经济性的混沌遗传算法研究[D].北京:北京交通大学,2008.
    [27]李璐.电力市场下AGC辅助服务优化调度理论与实证研究[D].北京:华北电力大学,2004.
    [28]贾晋.基于改进遗传算法的AGC功率调配和机组优化组合研究[D].南京:南京理工大学,2007.
    [29]耿艳.自动发电控制(AGC)调度计划优化模型研究[D].北京:华北电力大学,2009.
    [30]Restrepo JF, Galiana FD. Unit commitment with primary frequency regulation constraints[J]. IEEE Transactions on Power Systems,2005,20(4):1836-1842.
    [31]Ge J, Zhang L, Geng Y. Study on Optimization Model of AGC Dispatch Schedule in the Energy Saving Dispatch[A]. Proceedings of the Power and Energy Engineering Conference (APPEEC) [C], Chengdu,2010 Asia-Pacific,28-31 March 2010,2010:1-4.
    [32]Chang, Lu TK, Wu CC. Frequency-Regulating Reserve Constrained Unit Commitment for an Isolated Power System[J]. IEEE Transactions on Power Systems,2013,28(2):578-586.
    [33]王乐.电力市场下的备用容量获取[D].杭州:浙江大学,2006.
    [34]范文帅.含风电场电力系统旋转备用的条件风险方法研究[D].长沙:长沙理工大学,2012.
    [35]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,(06):129-137.
    [36]Chattopadhyay D, Baldick R. Unit commitment with probabilistic reserve[A]. Proceedings of the Power Engineering Society Winter Meeting[C],2002 IEEE, 2002:280-285 vol.281.
    [37]艾欣,刘晓,孙翠英.含风电场电力系统机组组合的模糊机会约束决策模型[J].电网技术,2011,(12):202-207.
    [38]Wang Q, Guan Y, Wang J. A Chance-Constrained Two-Stage Stochastic Program for Unit Commitment With Uncertain Wind Power Output[J]. IEEE Transactions on Power Systems,2012,27(1):206-215
    [39]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,(04):41-47.
    [40]苏鹏,刘天琪,李兴源.含风电的系统最优旋转备用的确定[J].电网技术,2010,(12):158-162.
    [41]杨朋朋,韩学山,王静,等.用拉格朗日松弛法求解概率备用解析表达的机组组合[J].山东大学学报(工学版),2007,(02):58-62+108.
    [42]Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity[J]. IEEE Transactions on Power Systems, 2005,20(2):587-595.
    [43]Gouveia EM, Matos MA. Operational reserve of a power system with a large amount of wind power[A].2004 International Conference on Proceedings of the Probabilistic Methods Applied to Power Systems[C], Ames, IA,16-16 Sept.2004, 2004:111-122.
    [44]蒋小亮.风电并网对电力系统可靠性和备用影响研究[D].上海:上海交通大学,2011.
    [45]Tuohy A, Meibom P, Denny E, et al. Unit Commitment for Systems With Significant Wind Penetration[J]. IEEE Transactions on Power Systems,2009, 24(2):592-601.
    [46]Pappala VS, Erlich I, Rohrig K, et al. A Stochastic Model for the Optimal Operation of a Wind-Thermal Power System[J]. IEEE Transactions on Power Systems,2009,24(2):940-950.
    [47]颜拥,文福拴,杨首晖,等.考虑风电出力波动性的发电调度(英文)[J].电力系统自动化,2010,(06):79-88.
    [48]Ruiz P A, Philbrick C R, Sauer P W. Wind power day-ahead uncertainty management through stochastic unit commitment policies [A]. power sysytems conference and exposition[C], Seattle, WA,2009. PSCE'09. IEEE/PES,Pages 1-9. March 2009.
    [49]Yang W, Qing X, Chongqing K. Unit Commitment With Volatile Node Injections by Using Interval Optimization[J]. IEEE Transactions on Power Systems,2011, 26(3):1705-1713.
    [50]Lei W, Shahidehpour M, Zuyi L. Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC[J]. IEEE Transactions on Power Systems,2012,27(2):913-921.
    [51]J. Zhao, Z. Dong, Z. Xu, and K. Wong. A statistical approach for interval forecasting of the electricity price[J]. IEEE Trans on Power Systems,2008 23(2): 267-276.
    [52]Yu Z, Nderitu D G, Sparrow F T, et al. Optimal and Reliable Dispatch of Supply and Demand Bids for Competitive Electricity Markets[A]. Proeeedings of IEEE Power Engineering Society Summer Meeting[C], Seattle, USA,2000, Vol.4:2138-2143.
    [53]Aganagie M, Abdul-Rahman K H, Waight J G. Spot Pricing of Capacities for Generation and Transmission of Reserve in an Extended Poolco Model[J]. IEEE Transactions on power Systems,1998,13(3):1125-1135
    [54]Moya OE. A spinning reserve, load shedding, and economic dispatch solution by bender's decomposition[J]. IEEE Transactions on Power Systems,2005,20(1): 384-388.
    [55]张宏宇,印永华,申洪,等.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31.
    [56]孙亮.大规模风电并网条件下提高电力系统调峰能力的研究[D].大连:大连理工大学,2010.
    [57]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,(01):152-158.
    [58]刘德伟,黄越辉,王伟胜,等.考虑调峰和电网输送约束的省级系统风电消纳能力分析[J].电力系统自动化,2011,(22):77-81.
    [59]张粒子,周娜,王楠.大规模风电接入电力系统调度模式的经济性比较[J].电力系统自动化,2011,(22):105-110.
    [60]韩小琪,孙寿广,戚庆茹.从系统调峰角度评估电网接纳风电能力[J].中国电力,2010,(06):16-19.
    [61]衣立东,朱敏奕,魏磊等.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,(02):129-132.
    [62]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,(04):70-76.
    [63]静铁岩,吕泉,郭琳,等.水电—风电系统日间联合调峰运行策略[J].电力系统自动化,2011,(22):97-104.
    [64]杨宏,刘建新,苑津莎.风电系统中常规机组负调峰能力研究[J].中国电机工程学报,2010,(16):26-31.
    [65]Ming-Shun L, Chung-Liang C, Wei-Jen L, et al. Combining the Wind Power Generation System With Energy Storage Equipment[J]. IEEE Transactions on Industry Applications,2009,45(6):2109-2115.
    [66]Forcos A, Marinescu C, Teodorescu R, et al. Efficiency improvement for wind energy pumped storage systems[A].2011 IEEE International Symposium on Industrial Electronics (ISIE) [C], Gdansk,27-30 June 2011,2011:579-584.
    [67]Esmaili A, Nasiri A. Energy storage for short-term and long-term wind energy support[A]. Proceedings of the IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society[C], Glendale, AZ,7-10 Nov.2010,2010:3281-3286.
    [68]Khatibi M, Jazaeri M. An Analysis for Increasing the Penetration of Renewable Energies by Optimal Sizing of Pumped-Storage Power Plants[M]. New York:Ieee, 2008:195-199.
    [69]刘波,郭家宝,袁智强,等.风光储联合发电系统调度策略研究[J].华东电力,2010,(12):1897-1899.
    [70]王鹏,任冲,彭明侨.西北电网风电调度运行管理研究[J].电网与清洁能源,2009,25(11):80-84
    [71]张明理,李青春,张楠.基于多目标经济调峰模型的区域电网风电接纳能力评估方法研究[J].东北电力技术,2011,(09):23-26.
    [72]黄怡,张琳,刘建琴,等.我国风电大规模集中并网的消纳市场和消纳策略[J].电力建设,2012,(10):9-12.
    [73]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(01):152-158.
    [74]袁越,周建华,余嘉彦.含风电场电力系统调峰对策综述[J].电网与清洁能源,2010,(06):1-4.
    [75]李丰,张粒子,舒隽,等.含风电与储能系统的调峰与经济弃风问题研究[J].华东电力,2012,(10):1695-1700
    [76]刘新东,方科,陈焕远,等.利用合理弃风提高大规模风电消纳能力的理论研究[J].电力系统保护与控制,2012,(06):35-39.
    [77]Lee F N. Short-Term Thermal Unit Commitment-A New Method[J]. IEEE Trans on PWRS,1988,3(2):421-428.
    [78]Fan J Y, Zhang L, Mcdonald J D.Enhanced Techniqueson Sequential Unit Commitment with Interchange Transactions[J]. IEEE Trans on PWRS,1996, 11(1):93-100.
    [79]Senjyu T, Shimabukuro K, Uezato K, et al.A fast technique for unit commitment problem by extended priority list[J]. IEEE Trans on Power Systems,2003,18 (2):882-888.
    [80]Srinivasan D, Chazelas J. A priority list-based evolutionary algorithm to solve large scale unit commitment problem[A]. International Conference on Power System Technology[C]. New York,2004,32(12):1746-1751.
    [81]Mantawy A H, Abdel Magid Y L, Selim S Z. Unit commitment by Tabu search [J]. IEE Proceedings Generation, Transmission and Distribution,1998,145(1):56-64.
    [82]Simopoulos D N, Kavatza S D, Vournas C D. Unit commitment by an enhanced simulated annealing algorithm[J]. IEEE Trans on Power Systems,2006,21(1):68-76.
    [83]Simon S P, Padhy N P, Anand R S. An ant colony system approach for unit commitment problem[J]. IEEE Trans on Power Systems,2006,28(5):315-323.
    [84]Pang C K, Sheble G B, Albuyyeh F. Evaluation of dynamic programming based method and multiple area representation for thermal unit commitment[J]. IEEE Transactions on PAS,1981,100(3):1212-1218.
    [85]Snyder W L, Powell H D Jr, Rayburn J G. Dynamic Programming Approach to Unit Commitment[J]. IEEE Trans on PWRS,1987,2(2):339-348.
    [86]Hobbs W J, Warner G H S, Sheble G B. An enhanced dynamic programming approach for unit commitment[J]. IEEE Trans on PWRS,1988,3(3):1201-1205.
    [87]Ouyang Z, Shahidehpour S M. An intelligent dynamic programming for unit commitment application[J]. IEEE Trans on Power Systems,1991,6(3):1203-1209.
    [88]Cohen A I,Wan S H.A Method for Solving the Fuel Constrained Unit Commitment Problem[J]. IEEE Trans on PWRS,1987,2(3):608-614.
    [89]Wang S J, Shahidehpour S M, Kirshen D S, et al. Short-Term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagrangian Relaxation[J]. IEEE Trans on PWRS,1995,10(3): 1294-1301.
    [90]Redondo N J, Edondo, Conejo A J. Short term hydro thermal coordination by Lagrangian relaxation[J]. IEEE Trans on Power Systems,1999,14(2):89-95.
    [91]Borghettia A, Frangioni A, Lacalandra F. Lagrangian heuristic on disaggregate buddle methods for hydrothermal unit commitment[J]. IEEE Transaction on Power Systems,2003,18(1):313-323.
    [92]刘宁宁.优化旋转备用配置的机组组合研究[D].济南:山东大学,2010.
    [93]Senthil Kunmar V, Mohan M R. Solution to security constrained unit commitment problem using genetic algorithm[J]. International Journal of Electrical Power& Energy Systems,2010,32(2):117-125.
    [94]汪峰,朱艺颖,白晓民.基于遗传算法的机组组合研究[J].电力系统自动化,2003,(06):36-41.
    [95]顾锦汶,杨佰新.电力系统机组组合优化的快速模拟退火算法[J].中国电机工程学报,1992(06):69-73
    [96]Mantawy A H, Abdel-Magid Y L, Selim S Z. A simulated annealing algorithm for unit commitment[J]. IEEE Transactions on Power Systems,1998,13(1):197-204.
    [97]王楠,张粒子,舒隽.基于粒子群修正策略的机组组合解耦算法[J].电网技术,2010,(01):79-83.
    [98]赵波,曹一家.电力系统机组组合问题的改进粒子群优化算法[J].电网技术,2004,(21):6-10.
    [99]郝晋,石立宝,周家启.一种求解最优机组组合问题的随机扰动蚁群优化算法[J].电力系统自动化,2002,(23):23-28.
    [100]Guan X, Luh P B, Yan H. An optimization-based method for unit commitment[J]. Electrical Power & Energy Systems,1992,14(1):23-27.
    [101]Zhuang F, Galiana F D. Toward a more rigorous and practical unit commitment by Lagrangian relaxation[J]. IEEE Transactions on Power Systems,1988, 3(2):763-772
    [102]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,(12):10-14+41.
    [103]Merlin A, Sandrin P. A new method for unit commitment at electricite De France[J]. IEEE Transactions on Power Systems,1983,102:1218-1225.
    [104]Virmani S, Imhof K, Jee S H. Implementation of a Lagrangian relaxation based unit commitment problem[J]. IEEE Transactions on Power Systems,1989,4(4): 1373-1380.
    [105]Cheng C P, Liu C W, Liu C C. Unit commitment by Lagrangian relaxation and genetic algorithms[J]. IEEE Transactions on Power Systems,2000,15(2):707-714.
    [106]Streiffert D, Philbrick R, Ott A. A mixed integer programming solution for market clearing and reliability analysis[A]. Power Engineering Society General Meeting[C]. Toronto, Canda,2005,3:2724-2731
    [107]苏济归,舒隽,谢国辉,等.大规模机组组合问题计及网络约束的线性化求解方法[J].电力系统保护与控制,2010,(18):135-139.
    [108]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005.432-436.
    [109]Dillon T S, Edwin K W, Kochs H D, et al. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination [J]. IEEE Trans on Power Apparatus and Systems,1978,97(6):2154-2166.
    [110]Chang G W, Tasi Y D, Lai C Y, et al. A Practical Mixed Integer Linear Programming Based Approach for Unit Commitment[A]. Proceedings of IEEE PES General Meeting[C]. Denver, USA,2004,1:221-225.
    [111]Miguel Carrion, Jose M. A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem[J]. IEEE Transactions on Power Systems,2006,21(3):1371-1378.
    [112]Naidoo, R D. A Mixed Integer Programming formulation of generator startup costs[A]. International Power Engineering Conference[C], Singapore,2007: 173-176.
    [113]G. W. Chang, Aganagic, J. G. Waight, et al. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling[J]. IEEE Trans on Power Systems,2001,16(4):743-749.
    [114]G. W. Chang, C. T. Su. A practical mixed integer linear programming-based short-term hydro scheduling[J]. IEEE Transmission and Distribution Conference and Exhibition.2002,3:1606-1610.
    [115]徐帆,姚建国,耿建,等.机组耗量特性的混合整数模型建立与分析[J].电力系统自动化,2010,34(10):45-50.
    [116]Venkatesh B, Jamtsho T, Gooi H B. Unit commitment -a fuzzy mixed linear programming solution[J]. Generation Transmission & Distribution IET,2007, 5(1):836-846.
    [117]朱道立.大系统优化理论和应用[M].上海:上海交通大学出版社,1987.
    [118]Ma H, Shahidehpour SM. Transmission-constrained unit commitment based on Benders decomposition[J]. International Journal of Electrical Power & Energy Systems,1998,20(4):287-294.
    [119]Yong Fu, Zuyi Li. Security-constrained unit commitment with AC constraints[J]. IEEE Transactions on Power Systems,2005,20(3):1538-1550.
    [120]Askarpour M, Zeinadini V. Security-constrained unit commitment reaction to load and price forecasting errors[A]. Proceedings of the Energy Market,2009 EEM 2009 6th International Conference on the European[C], Leuven,27-29 May 2009, 2009:1-7.
    [121]王楠,张粒子,袁喆,等.基于奔德斯算法的安全约束机组组合方法[J].电网技术,2012,(10):203-208.
    [122]Jianhui W, Shahidehpour M, Zuyi L. Security-Constrained Unit Commitment With Volatile Wind Power Generation[J]. IEEE Transactions on Power Systems,2008, 23(3):1319-1327.
    [123]Habibollahzadeh H, Bubenko J A. Application of decomposition techniques to short-Term operation planning of hydrothermal power system[J]. IEEE Transactions on Power Systems,1986 1(1):41-47.
    [124]Norbiato dos Santos T, Diniz A L. A New Multiperiod Stage Definition for the Multistage Benders Decomposition Approach Applied to Hydrothermal Scheduling[J]. IEEE Transactions on Power Systems,2009,24(1):494-495.
    [125]Li Y, Mccalley J D. Decomposed SCOPF for Improving Efficiency[J]. IEEE Transactions on Power Systems,2009,24(1):494-495.
    [126]Yuan L, McCalley JD. Risk-based optimal power flow and system operation state[A]. Proceedings of the Power & Energy Society General Meeting[C], Calgary, AB,2009 PES'09 IEEE,26-30 July 2009,2009:1-6.
    [127]张德丰.MATLAB数字信号处理与应用[M].北京:清华大学出版社,2010:264-277
    [128]鲍爱霞.大规模风电场容量可信度的分析及对华东电网备用的影响[J].中国电机工程学报,2009,(S1):34-38.
    [129]王丹平,陈之栩,涂孟夫.考虑大规模风电接入的备用容量计算[J].电力系统自动化,2012,(21):24-28.
    [130]Xue Zhiying, Li Gengyin, Zhou Ming. Credibility theory applied for estimating operating reserve considering wind power uncertainty[A]. Proceedings of the PowerTech,2011 IEEE [C], Trondheim,2011:1-8.
    [131]王乐,余志伟.基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,(20):14-19.
    [132]Bunn DW. Forecasting loads and prices in competitive power markets[J]. Proceedings of the IEEE,2000,88(2):163-169.
    [133]Ortega-Vazquez M A, Krischen D S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration[J]. IEEE Transactions on Power System,2009,24(1):114-124.
    [134]Matos MA, Bessa RJ. Setting the Operating Reserve Using Probabilistic Wind Power Forecasts[J]. IEEE Transactions on Power Systems,2011,26(2):594-603.
    [135]Halamay DA, Brekken TKA, Simmons A, et al. Reserve Requirement Impacts of Large-Scale Integration of Wind, Solar, and Ocean Wave Power Generation [J]. IEEE Transactions on Sustainable Energy,2011,2(3):321-328.
    [136]Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity[J]. IEEE Transactions on Power Systems, 2005,20(2):587-595.
    [137]张粒子,李丰,叶红豆,等.考虑风电和负荷波动及N-1故障的发电备用优化方法研究[J].太阳能学报,2014,35(1):64-73
    [138]CARPENTIER P, GOHEN G, CULIOLI JC, et al. Stochastic optimization of unit commitment:a new decomposition framework[J]. IEEE Transactions on Power Systems,1996,11(2):1067-1073.
    [139]S. Takriti, J.R. Birge and E. Long. A stochastic model for the unit commitment problem[J]. IEEE Trans on Power Systems,1996,11(3):1497-1508.
    [140]丁晓莺,刘林,王锡凡,等.考虑灵活运行机组的随机机组组合模型[J].电力系统自动化,2009,(18):23-27.
    [141]Lei W, Shahidehpour M, Tao L. Stochastic Security-Constrained Unit Commitment[J]. IEEE Transactions on Power Systems,2007,22(2):800-811.
    [142]Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems,2008, 23(2):306-316.
    [143]Botterud A, Zhou Z, Wang J, et al. Unit commitment and operating reserves with probabilistic wind power forecasts [A]. Proceedings of the PowerTech[C], Trondheim,2011,19-23 June 2011,2011:1-7.
    [144]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,(06):32-36.
    [145]舒隽,李春晓,苏济归,等.复杂预想场景下电力系统备用优化模型[J].中国电机工程学报,2012,(10):15+105-110.
    [146]陈之栩,谢开,张晶,等.电网安全节能发电日前调度优化模型及算法[J].电力系统自动化,2009,(01):10-13+98.
    [147]YUAN Y, LI Q, WANG W. Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming[J]. Renewable Power Generation, IET,2011,5(2):194-201.
    [148]DANESHI A, KHEDERZADEH M, SADRMOMTAZI N, et al. Integration of wind power and energy storage in SCUC problem [A]. Proceedings of the World Non-Grid-Connected Wind Power and Energy Conference (WNWEC)[C], Nanjing, 2010,5-7 Nov.2010,2010:1-8.
    [149]李文沅.电力系统风险评估:模型、方法和应用[M].北京:科学出版社,2006:62-66
    [150]高亚静,周明,李庚银,等.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,(19):41-46.
    [151]王楠.发电调度优化模型与方法研究[D].北京:华北电力大学,2011.
    [152]KAZARLIS S A, BAKIRTZIS A G, PETRIDIS V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Trans on Power Systems,1996,11(2): 83-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700