含损伤智能结构的性能表征与细观分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能结构由于其兼具传统复合材料结构和功能复合材料结构的双重特性,已越来越受到人们的关注,并开始在航空航天、国防、建筑、医学等领域获得初步应用。尤其是SMA增强智能结构可用于结构的强度和形状自适应以及失效防范。围绕SMA智能结构,国内外学者做了许多研究工作,但基本上都是针对无损伤情况下的,而有关含损伤SMA增强智能结构的研究至今仍不多见。本文从细观角度出发,着重对含损伤智能结构的性能、力学行为表征及损伤检测进行研究,得到了一些有价值的结果,为智能结构的失效防范研究和完整性评估提供了相应的理论基础和实验准备。
     本文主要创新点:
     1)对NiTi合金性能进行了系统的实验研究,得出了一些有价值的结果。
     2)基于滞后元方法,对NiTi合金的拉伸σ-ε关系进行表征,建立了物理模型,并将数值模拟结果与实验结果相比较,两者吻合较好。
     3)基于对马氏体相变热流-温度实验曲线的唯象模拟,以及马氏体体积分数与热力势对温度偏导数之间的线性关系,建立了一种新的马氏体相变动力学模型,并与其他模型及实验结果进行了比较。比较结果表明,新模型的计算结果与实验结果最为接近。
     4)研究了SMA热力学非线性方程的求解方法。由于该方程中变量之间相互嵌套,给方程求解带来许多困难。本文根据SMA热力学非线性方程的特点,提出了一种以马氏体百分数为切入点的求解方法,并进行了实例验算。与实验结果的比较表明,计算结果与实验结果基本吻合,说明了该求解方法的可行性与正确性,可应用于实际问题。
     5)引入了纤维断裂损伤度ψ、纤维剥离损伤度η和界面影响系数C等表征损伤程度的物理量,并最终建立了考虑这些损伤影响的SMA增强智能结构的一维增量本构关系。用细观力学方法,研究了含损伤宿主材料的刚度退化和纵向热膨胀系数变化规律,并给出了相应的数学表达式。
     6)运用剪滞模型和变分原理,对含损伤SMA增强智能结构的热、力学行为进行了分析,给出了含损伤典型单元体的细观位移场、应力应变场的数学描述,建立了SMA增强智能结构界面的失效判据,并通过算例对失效判据进行了直观的几何描述。
Smart structures have attracted more and more attention due to their dual properties of conventional composite structures and of functional composite structures, and are applying or to be applied in some fields such as aeronautics & astronautics, national defense, architecture, medicine. Among them, shape memory alloy (SMA) reinforced smart structures could be used to do self-adaptive structural shape and strength and to prevent structure failures. Although many researches on SMA smart structures without damages have been made, however, researches on SMA smart structures with damages have rarely reported thus far. In this dissertation, researches on material property, meso-mechanical behavior characterization, and damages detection have been emphatically made, and some valuable results have been obtained, with the aim of providing a theoretical basis and experimental data for further studying on failure prevention and integrity evaluation of smart structures.
    The novel researches done in this dissertation include:
    1) Experimental methods for NiTi-SMA are proposed based on the SMA material evaluation technology and requirement of adaptive structures, and experiments on NiTi wires have been performed. Some useful experimental results are presented herein.
    2) Based on the method of hysteresis element, the a - e relation of NiTi-SMA has been obtained for tensile tests, and numerical simulations are in good agreement with experimental results.
    3) A novel Martensitic transformation kinetics model for SMA is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relationship between the partial derivatives with respect to the temperature of Martensite fraction and of Gbbis free energy. Numerical simulations by utilizing the proposed model are closer to experimental results than those from other models.
    4) As is noticed that the thermodynamics nonlinear equation of SMAs is very complicated and difficult to obtain the solution due to variables nested each other, a simple method starting from martensite fraction has been proposed to solve the equation. Numerical example indicates that the proposed method is simple and accurate, and may find its application in engineering applications.
    5) A one- dimensional meso-mechanical model is developed to describe the longitudinal stiffness reduction and thermo-dilatation variation of the composites caused by fiber breaking or by fiber peeling off the base material. Incremental
    
    
    constitutive relation is then established for SMA fiber reinforced smart structures with damages by introducing three parameters to describe the extents of fiber breaking, fiber peeling off the base material and interface weakening.
    6) The thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages have been analyzed by utilizing the shear lag model and variational principle. Mathematical expressions on meso-displacement field, stress-strain field of typical element with damages have been presented, and a failure criterion of interface between SMA wires and base material is established. A geometric characterization on the failure criterion has also been made via an example.
引文
[1] Rogers C A. Intelligent Material Systems—The Dawn of a New Materials Ages. J. of Intell. Mater. Syst. and Struct., 1993, 4(1): 4~12
    [2] 陶宝祺等。智能材料结构。北京:国防工业出版社,1997
    [3] Takagi T.Recent Research on Intelligent Materials.Journal of Intelligent Material Systems and Structures,1996,V01.7(5):346~352
    [4] 黄尚廉,陶宝祺,沈亚鹏。智能结构系统——梦想、现实与未来。智能机械结构及系统基础论文选集,2000,1~4
    [5] 杨大智。智能材料与结构的发展大事记。智能材料与集成系统发展战略文集,大连,2000,41~46
    [6] Spillman W.B., Evolution of Smart Structures/Materials, In: Conference on Smart Structures and Materials, IOP Publishing Ltd, 1992, 97~113
    [7] Lochocki J.M. Smart Skins—A Development Roadmap. In: Eric.U., Fiber Optics Smart Structures and Skins II, SPIE ,1990, 1170:19-47
    [8] I.Chopra. Development of an Intelligent Rotor. Proc. Active Materials and Adaptive Structures, Bristol, U.K., 1992, pp: 271~275
    [9] Wada B.K., Fanson J.L. and Crawley E.F. Adaptive Structure. J. of Intell. Mater.
    
    and Struct., 1990, 1(2): 157~174
    [10] Housner G.W., et al. Recent Developments in Active Structural Control Research in the USA. The Proc. Of First European Conf. on Smart Materials and Structures, Glasgow, 1992: 201~206
    [11] Venneri S.L., Wada B.K. Overview of NASAs Adaptive Structures Program, IAF93-1.5.243
    [12] Sehol Otkr, Wada B.K. Adaptive Structures in Japan. J. of Intell. Mater. And Struct.,1993, 4(4): 437~451
    [13] Yoshida I., Kurose H., Fuhui S., et al. Parameter Identification on Active Control of a Structure Model. Smart Materials and Structures, 1995, 4:A82~A90
    [14] Toshinori Takagi. Concept of Smart Material and its Activities in Japan. In: Proc. Of First European Conf. on Smart Materials and Structures, Glasgow, 1992:367~371
    [15] Gardiner ET.. Activities of the Smart Structures Research Institute. SPIE Fiber Optic Smart Structures and Skins IV, 1991, 1588:314~324
    [16] 龚鑫茂。自适应结构的现状和发展方向。飞机工程,1995增刊,pp:2~7
    [17] 陶宝祺等。智能复合材料在未来飞机上的应用。航空学报,1992,13(12):642~650
    [18] 陶宝祺等。强度自适应复合材料结构。航空学报,1994,15(3):280-286
    [19] 袁慎芳。进行损伤评估的智能材料结构的研究[博士学位论文]。南京航空航天大学,1996
    [20] 熊克。形状记忆合金增强复合材料自适应力学研究[博士学位论文]。南京航空航天大学,1997
    [21] 万建国。压电复合材料及其在智能材料结构中的应用研究[博士学位论文]。南京航空航天大学,1997
    [22] 金江。形状变化自适应结构的力学研究[博士学位论文]。南京航空航天大学,1998
    [23] 周克印。具有疲劳状态自诊断功能的复合材料构件的研究[博士学位论文]。南京航空航天大学,1999
    [24] Hong Yang, et al. A Hollow-center Optical Fiber Sense Network for in-situ Strain Monitoring in Smart Structures. The First Asia-Pacific Workshop On Smart Materials and Structures. 2001
    [25] 黄尚廉。重庆大学在智能结构领域的研究进展。中国航空学会95智能(机敏)材料与结构研讨会论文集,1995,12,PP:1~8
    [26] 黄尚廉。智能结构系统——减灾防灾的研究前沿。智能机械结构及系统基础论文选集,2000,5~9
    [27] S.L.Huang, W.M.Chen. Overview of Health Monitoring for Civil Infrastructure System in China. Proceedings of ICHMCIS, 1999, 34~42
    
    
    [28] 沈亚鹏,王晓明,陈常青等。智能结构力学研究的最新进展。现代力学与科学进步(中国力学四十周年记念大会文集),1997
    [29] 陈常青。压电类机敏结构力学分析的基本理论及其应用[博士学位论文]。西安交通大学,1997
    [30] 王健。形状记忆合金的热力学特性及在智能复合结构中的应用[博士学位论文]。西安交通大学,1999
    [31] 王晓明,沈亚鹏。关于机敏材料和机敏结构的力学分析。力学进展,1995,(2):209~222
    [32] Yen Yinliang, Shen Yapeng, Chen Ru. Finite Element Analysis of Mechanical Properties of Shape Memory Alloys. Proc. Of ICCM-11, Coast, Australia, July,1997, Vol. Ⅵ: Composite Structures
    [33] 尹林,沈亚鹏。压电类智能结构的力学行为和工程应用。力学进展,1998,28 (2):163~172
    [34] Crawly E F. Intelligent Structures for Aerospace: A Technology Overview and Assessment. AIAA J, 1994, 32(2): 1689~1698
    [35] 张令弥。智能结构的进展与应用。振动、测试与诊断,1998,18(2):79~84
    [36] 阎云聚,姜节胜,顾松年。智能复合材料结构的应用发展前景。测控技术,1996,15(4):3~4
    [37] 黄尚廉。智能材料系统与结构——工程构造安全监控的一条崭新思路。智能材料与集成系统发展战略文集,大连,2000,117~122
    [38] Falk, S., Model Free Energy, Mechanics, and Thermodynamics of Shape Memory Alloys,Acta Metallurgical, 28:1773~1780, 1980
    [39] Ericksen, J.L., Introduction to the Thermodynamics of Solids, Chapman and Hall, London, 1991
    [40] Abeyaratne, R. and Knowles, J., A Continuum Model of a Thermoelastic Solid Capable of Undergoing Phase Transitions, J.Mech. Phy. Solids, 1993, 41:541~571
    [41] Miyazaki, S., Otsuka, K. and Suzuki, y., Transformation Pseudoelasticity and Deformation Behavior in a TiNi Alloy, Scripta. Metall., 1981, 15:287~292
    [42] Mukherjee, K., et al, Thermal Effects as Sociated with Stress-induced Martensitic Transformation in a NiTi Alloy. Mater. Sci. Eng., 1985, 74:467~478
    [43] Leo, P.H., Shield, T.W. and Bruno, O.P., Transient Heat Transfer Effects on the Pseudoelastic Behavior of Shape Memory Wires, Acta Metall. Mater., 1993, 41:2477~2485
    [44] Shaw, J.A. and Kyriakides, S., Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids., 1995, 43:1243~1281
    [45] Falk, S., One-dimensional model of shape memory alloy, Arch Mechanics, 1983, 35: 63~84
    [46] Falk, S., Pseuodoelastic Stress-strain Curves of Polycrystalline Shape Memory
    
    Alloys Caculated From Single Crystal Data, Int. J. Eng. Sci., 1989,27:277~284
    [47] Maugin and S. Cadet, Existence of Solitary Waves in Maetensitic Alloys, Int. J. Eng. Sci., 1991, 29(2): 243~258
    [48] Abeyaratne, R. and J, Knowles, Kinetic Relations and the Propagation of Phase Boundaries in Solids, Arch. Rational Mech., 1991, 114:119~154
    [49] Chien H. Wu, Stress-induced Phase Transformations in Solids and the Associated Double-well Potentials, Int. J. Solids Structures, 1995, 32(3/4): 525~542
    [50] Shahin A.R et al, Enhanced Cooling of Shape Memory Alloy Wires Using Semiconductor "Heat Pump" Modules. J. Intell. Mater. Sys. and Struc., 1994, 5(1):95~105
    [51] Ditman J. B, Bergman L. A and Tsu-Chin Tsao, The Design of Extended Bandwidth Shape Memory Alloy Actuators, J. Intell. Mater. Sys. and Struc., 1996, 7(6):635~645
    [52] Berman J. B. and White S. R., A Three Phase Cylinder Model for Residual and Transformational Stresses in SMA Composites, Proc. 2nd Int. Conf. on Intelligent Materials(Williamsburg, VA, June 5~8, 1994), 155~166
    [53] Paine J.S.N., Rogers C.A. Review of Multi-functional SMA Hybrid Composite Materials and Their Applications, In: Garcia E., Cudney H., Dasgupta A. Adaptive Structures and Composite Materials: Analysis and Application, ASME,1994,37~45
    [54] Schetky L. Role of Shape Memory Alloys in Smart/Adaptive Structures, In: C.T. Liu et al, Shape-Memory Materials and Phenomena-Fundamental Aspects and Applications, Materials Research Society, 1992, Vol.246:299~307
    [55] Baz A. Active Control Using Shape Memory Alloys, In: Paper Presented at 4~(th) ESSM and 2~(nd) MIMR Conference, IOP Publishing Ltd., July 1998:755~766
    [56] Chen, Q. And Levy, C., Active Vibration Control of an Elastic Beam by Means of Shape Memory Alloy(SMA)Layers, In: Chopra I., Smart Structures and Materials 1995:Smart Structures and Integrated Systems, SPIE, 1995, Vol.2443:579
    [57] Rogers C.A., Liang C. Structural Modification of Simply Supported Laminated Plates Using Embedded Shape Memory Alloy Fibers, Computational Structures, 1991, Vol.38:569~580
    [58] Baz A., Iman K. Active Vibration Control of Flexible Beams Using Shape Memory Actuators, Journal of Sound Vibration. 1990, Vol. 146:33~45
    [59] Baz A, Ro J. Optimal Vibration Control of Nitinol-reinforced Composites, Composite Engineering, 1994, Vol.4:567~576
    [60] Rogers C.A., Fuller C.R. Active Control of Sound Radiation from Panels Using Embedded Shape Memory Alloy Fiber, Journal of Sound and Vibration, 1990, Vol,136(1):164
    
    
    [61] Anders W.S., Rogers C.A. Control of Sound Radiation from Shape Memory Alloy Hybrid Composite Panels by Active Alternate Resonance Tuning, AIAA, 1991, 1163
    [62] Paine J.S.N., Rogers C.A. The Response of SMA Hybrid Composite Materials to Low Velocity Impact, Journal of Intelligent Material Systems and Structure, 1994, 5(7):530
    [63] Paine J.S.N., Rogers C.A. High Velocity Impact Response of Composite with Surface Bonded Nitinol SMA Hybrid Layers, AIAA, 1995, 1409
    [64] Paine J.S.N., Rogers C.A. Adaptive Composite Materials with Shape Memory Actuators for Cylinders and Pressure Vessels, Journal of Intelligent Material Systems and Structure, 1995, 6(3): 210
    [65] Furuya Y. Design and Material Evaluation of Shape Memory Composites, Journal of Intelligent Material Systems and Structure, 1996, 7(3): 321
    [66] Anders W.S., Rogers C.A. Design of a Shape Memory Alloy Deployment Hinge for Reflector Facets, Proc. Of 32nd AIAA Structures, Structural Dynamics and Materials Conference Part Ⅰ, 1991, 148~158
    [67] Kudva J.N., Jardine A.P. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing Contract, in:Crowe C.R., Proceeding of the 1996 Smart Structures and Materials Conference, Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Vol.2721:10~16
    [68] Siler D.J. Demoret K.B. Variable Stiffness Mechanisms with SMA Actuators, in Crowe C.R., Proceeding of 1996 Smart Structures and Materials Conference, Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Vol.2721:427~435
    [69] August J.A., Joshi S.P. Smart Structures and Materials, in Crowe C.R., Proceeding of 1996 Smart Structures and Materials Conference, Industrial and Commercial Applications of Smart Structures Technologies,SPIE, Vol.2721:50~57
    [70] Straub F.K., King R.J. Application of Smart Materials to Control of a Helicopter Rotor, in Crowe C.R., Proceeding of 1996 Smart Structures and Materials Conference,Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Vol.2721:66~77
    [71] Walker J.A., Gabriel K.J. Thin Film Processing of NiTi Shape Memory Alloy, Sensors and Actuators, 1990, Vol.A21-A23:243~246
    [72] Kuribayashi K., Shimizu S. Trial Fabrication of Micron Sized Arm Using Conference of Intelligent Robots and Systems, Yokohama, Japan, 1993, 1697
    [73] Lim G., Part K. Future of Active Catheters, Sensors and Actuators, A:Physical 1996, Vol.56:113~121
    
    
    [74] Venkatesh A., Hilborn J. Active Vibration Control of Linkage Mechanisms Using Shape Memory Alloy Fiber Reinforced Composites, In:Culshaw B.,Gardiner RT. McDonach A., Proceeding of 1~(st) European Conference on Smart Structures and Materials, IP Publication and EOS/SPIE, 1991, SPIE, Vol. 1777:185~188
    [75] Baz A., Ro J. Active Deflection Control of Multi-segment Traversing Beams, in:Hagoud N.W., Knowless G.J., Proceeding of 1993 Smart Structures and Materials Conference, Smart Structures and Intelligent Systems, 1993, SPIE, Vol.1917:144~158
    [76] Lobitz D.W., Rice T. M. Shape Control of Solar Collectors Using Torsional Shape Memory Actuators, In:Crowe C., Vortex Wake Control Via Smart Structures Technology, Smart Structures and Materials 1997:Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Vol.2721:394~403
    [77] Quackenbush T.R., Bilanin A.J. Implementation of Vortex Wake Control Using SMA-actuated Devices,In:Sater J.M.,Smart Structures and Materials 1997:Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Vol.3044:134~146
    [78] 沈文罡。形状记忆合金扭力驱动器基本力学性能研究[硕士学位论文]。南京航空航天大学,2002
    [79] 胡自力,熊克,杨红。基于智能材料结构的几种损伤评价方法。航空学报,2002,23(1),1-5
    [80] 陶宝祺。智能材料结构。北京:国防工业出版社,1997
    [81] 杨建良,郭照华,黄德修。光纤机敏复合材料与结构及其信号处理的研究进展。力学进展,1998,28(2):189~196
    [82] 杨红,梁大开等。空心光纤传感技术在断裂测量中的应用。传感技术学报,2001,14(1):18~23
    [83] 朱世国,付克祥。纤维光学原理与实验研究。四川:四川大学出版社,1992
    [84] 杨红,陶宝祺,梁大开等。空心光纤用于机敏结构自诊断、自修复的研究。材料导报,2000,14(11):25~28
    [85] Vary A. Acousto-ultrasonic in Nondestructive Testing of Tiber Reinforced Plastic Composites. Ed. J. Summerscales, Elsevier Applied Science, london, UK. 1990, 2:1~54
    [86] 童谷生,孙良新。应力波因子技术中一些问题的回顾和展望。振动、测试与诊断,1999,19(4):320~324
    [87] Williams J H, Karagulle J H, Lee S S. Ultrasonic Input-output for Transmitting and Receiving Longitudinal Tranducers Coupled to Same Face of Isotropic Elastic Plate. Materials Evaluation, 1982, 40:655~662
    [88] Liu Tierang. Ultrasonic Input-Output Characteristics for Transmitting and Receiving Contact-Type Transducers Coupled to a Timoshenko Beam.
    
    Transaction of Nanjing University of Aeronautics and Astronautics, 1996, 13(1):46~53
    [89] 朱晓荣。复合材料损伤监测技术及压电作动筒的研究:[博士学位论文]。南京:南京航空航天大学,2000
    [90] Giurgiutiu, Victor; Rogers, Craig A. The Electro-mechanical (E/M) Impedance Method for Structural Health Monitoring and Non-destructive Evaluation. Proceedings of the Intelnational Workshop on Structural Health Monitoring, Standford University, CA, September 18~20, 1997
    [91] Gyuhae Park, Kazuhisa Kabeya. Impedance-based Structural Health Monitoring for Varying Applications. JSME Int. Journal, 1999; Series A, 42(2): 249~258
    [92] V. Giurgiutiu, C.A. Rogers. Recent Progress in the Application of Electromechanical(E/M) Impedance Method to Structural Health Monitoring, Damage Detection, and Failure Prevention. Proceedings of Structural Health Monitoring: Current Status and Perspectives. Technomic Publishing Company, Inc. 851 New Holland Avenue, U.S.A. 1999, 298~307
    [93] Li Yinong, Seij Chonan and Wen Bangchun, Impedance-based Technique and Wave Propagation Measurement for Non-Destructive Evaluation. In: Proc. Int. Conf. on Vibration Engineering, Dalian, China, 1998, 476~481
    [94] 李以农,闻邦椿等。一维构件中的波传播模型及其在结点的能量损耗。东北大学学报,1999,20(3):275~278
    [95] Rose J L, Jiao D, Spanner J. Ultrasonic Guided Wave NDE for Piping. Material Evaluation, 1996, 54(11): 1310~1313
    [96] Brook M V, Ngoc T D K, Eder J E. Ultrasonic Inspection of Steam Generator Tubing by Cylindrical Guided Waves. Review of Progress in Quantitative Nondestructive Evaluation, 1990, 9:243~249
    [97] 罗翌。灵巧蒙皮与灵巧结构。飞航导弹,1999,第2期,25~29
    [98] Spillman Jr W B. The Field of Smart Structures as Seen by Those Working in It: Survey Results. SPIE, 1995, 2444:18~29
    [99] Lu L., Aernoudt E., Wollants P. Simulation of Transformation Hysteresis. Z Metallkde, 1990, 81:613~622
    [100] Yoko Yamada. Strengthening of Metal Matrix Composite by Shape Memory Effect. Materials Transactions JIM, 1993, 34(3): 254
    [101] Minoru Taya. Analytical Study on Dimensional Changes in Thermally Cyaled Metal Matrix Composites. Materials Science and Engineering, 1991,Al43:143
    [102] Yasubumi Furuya. Design and Material Evaluation of Shape Memory Composites. Journal of Intelligent Material Systems and Structures, 1996, 7:71
    [103] Stalmans, R., Delaey L., Van Humbeeck J. Modeling of Adaptive Composite
    
    Materials With Embedded Shape Memory Alloy Wires, Materials Research Society Symposium Proceedings, 1996, Vol.459:119~130
    [104] Stalmans, R. Modeling of Thermomechanical Behaviour of Shape Memory Wires Embedded in Matrix Materials. The Third ICIM/ECSSM'96, Lyon'96:511
    [105] Sullivan B.J. Analysis of Properties of Fiber Composites with Shape Memory Alloy Constituents. Journal of Intelligent Material Systems and Structures,1994,5(6):825~832
    [106] Wei Z.G., Sandstrom R., Miyazaki S. Shape Memory Materials and Hybrid Composites for Smart Systems. Part Ⅱ. Shape-memory Hybrid Composites. Journal of Materials Science, 1998, 33(15): 3763~3783
    [107] Song Guquan, Sun Qingping, Cherkaoui M. Role of Microstructure in the Thermo-mechanical Behaviour of SMA Composites. Transactions of the ASME,1999, 121(1): 86~92
    [108] Birman V. Review of Mechanics of Shape Memory Alloy Structures. Applied Mechanics Review, 1997, 50(11): 629~645
    [109] Boyd G., Lagoudas D.C. A Thermodynamical Constitutive Model for Shape Memory Materials. Part Ⅱ. The SMA Composite Material. Int. J. Plasticity, 1996,12(7): 843~873
    [110] Bo Z., Lagoudas D.C. Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading. Part Ⅰ: Theoretical Derivations. International Journal of Engineering Science, 1999, 37(9): 1089~1140
    [111] Armstrong W.D., Kina H. Martensitic Transformations in a TiNi Fiber Reinforced 6061Aluminum Matrix Composite. Journal of Intelligent Material Systems and Structures, 1995, 6(11): 809~816
    [112] Baz A, Ro J. Optimal Vibration Control of Nitinol- reinforced Composites.Composite Engineering,1994, 4:567~576
    [113] 胡自力,熊克。智能材料结构中的几种无损检测新技术。振动工程学报,2002,2002,15(4),373~378
    [114] Liberatore.S and Carman.G.R Damage Detection of Structures Based on Spectral Methods Using Piezoelectric Materials. Structural Health Monitoring, 2003, 606~614
    [115] Dolye.C, Staveley.C and Henderson.R Structural Health Monitoring Using Optical Fibre Strain Sensing Systems. Structural Health Monitoring, 2003,944~951
    [116] Park.G, Inman.D.J and Farrar.C.R. Recent Studies in Piezoelectric Impedance-Based Structural Health Monitoring. Structural Health Monitoring,2003, 1423~1430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700