Chemerin对心肌胰岛素抵抗的诱导作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(diabetes mellitus, DM)是一组以高血糖引起胰岛素抵抗为主要标志的代谢紊乱综合征,可导致多种并发症,比如糖尿病肾病,糖尿病视网膜病变,糖尿病心肌病。脂肪组织是一种内分泌器官,可分泌多种脂肪因子,如脂联素、瘦素、内脂素、IL-6等。大量的实验证据表明,脂肪因子影响多种组织的葡萄糖代谢。Chemerin又被称为维甲酸受体反应元件2(retinoicacid receptor responder protein2, RARRES2)或者他扎罗汀诱导基因2(Tazarotene-induced gene2, TIG2),是最近发现的一种脂肪因子,与炎症,脂肪代谢和胰岛素抵抗等具有相关性。已有研究证明,Chemerin及其受体—趋化因子样受体1(chemokine-like receptor1,CMKLR1或ChemR23)在许多组织中表达,特别是在白色脂肪组织、肝脏和肾脏中表达较。目前的研究显示,人类血浆chemerin的高表达是炎症和代谢综合症的标志物之一。因此,Chemerin可能参与了胰岛素抵抗和糖尿病的发生发展。
     然而,在不同的细胞中,chemerin在胰岛素抵抗中发挥的作用尚存争议。最近的一项研究发现人类骨骼肌细胞虽然不表达chemerin,但是表达chemerin的受体CMKL1。Chemerin通过破坏胰岛素信号,可诱导骨骼肌细胞产生胰岛素抵抗。但是,在体外3T3-L1细胞的研究中尚存争议。Takahashi等发现chemerin能够促进胰岛素刺激下的3T3-L1细胞对葡萄糖的摄取,而Kralisch S等发现chemerin抑制胰岛素刺激下3T3-L1细胞对葡萄糖的摄取率的增加。这种相反结果的产生可能与chemerin同时参与胰岛素作用的靶组织对胰岛素敏感性的负性调节有关。
     国外已有研究证实大鼠心脏组织表达chemerin及其受体CMKLR1,但是尚无体外实验报道心肌细胞表达chemerin以及chemerin在心肌细胞胰岛素抵抗中的作用。糖尿病心肌病是糖尿病的一个重要并发症,因此我们从细胞水平研究在心肌细胞中chemerin/ChemR23系统与胰岛素抵抗的关系。本实验体外培养SD乳鼠原代心肌细胞和心脏成纤维细胞,检测心肌细胞和心脏成纤维细胞是否表达chemerin,并探讨心肌细胞chemerin的表达与胰岛素抵抗的关系及其分子学机制。本研究主要包括以下四部分:
     第一部分Chemerin在乳鼠心肌细胞和心脏成纤维细胞中的表达
     目的:购买出生2~3天的SD乳鼠,成功提取并培养SD乳鼠原代心肌细胞和心脏成纤维细胞,观察其是否表达chemerin,为下一步研究奠定基础。
     方法:购买出生2~3天的SD乳鼠,提取并培养原代心肌细胞和心脏成纤维细胞,应用Real-Time-PCR、Western-Blot技术观察心肌细胞和心脏成纤维细胞是否表达chemerin。
     结果:Real-Time-PCR结果示乳鼠心肌细胞和心脏成纤维细胞均有chemerin mRNA的表达。Western-Blot结果示乳鼠心肌细胞和心脏成纤维细胞均有chemerin蛋白的表达
     结论:SD乳鼠心肌细胞和心脏成纤维细胞正常情况下均能够表达chemerin。
     第二部分高糖和炎症环境下乳鼠心肌细胞chemerin表达的变化
     目的:观察高糖和炎症因子TNF-α对乳鼠心肌细胞chemerin mRNA表达的影响
     方法:购买出生2~3天的SD乳鼠,提取并培养原代心肌细胞,培养48小时后换为无血清的低糖DMEM培养基(葡萄糖浓度为5.5mmol/L)继续培养24小时,然后分组后继续培养:
     1观察葡萄糖干预心肌细胞后chemerin mRNA表达的变化:(1)不同浓度的葡萄糖干预24小时:对照组(5.5mmol/L)组、10mmol/L组、20mmol/L组、30mmol/L、40mmol/L组和高渗组(5.5mmol/L葡萄糖+34.5mmol/L甘露醇)。应用Real-Time PCR技术检测各组心肌细胞chemerin mRNA的表达。(2)30mmol/L的葡萄糖干预不同时间:0小时、6小时、12小时、24小时和48小时。应用Real-Time PCR技术检测各组心肌细胞chemerin mRNA的表达。
     2观察TNF-α干预心肌细胞后chemerin mRNA表达的变化:(1)不同浓度的TNF-α干预24小时:空白对照组、5ng/ml组、10ng/ml组和20ng/ml组。应用Real-Time PCR技术检测各组心肌细胞chemerin mRNA的表达。(2)20ng/ml的TNF-α干预不同时间:0小时、6小时、12小时、24小时和48小时。应用Real-Time PCR技术检测各组心肌细胞chemerin mRNA的表达。
     结果:
     1高糖可诱导乳鼠心肌细胞chemerin mRNA的表达增加。(1)随着葡萄糖干预浓度的增加,心肌细胞chemerin mRNA的表达随之增加,在葡萄糖浓度30mmol/L组达到峰值,差异与对照组比较有统计学意义(P<0.05);40mmol/L组较30mmol/L组表达降低,但差异无统计学差异(P>0.05);与对照组相比,高渗组chemerin mRNA的表达并没有明显的变化,差异无统计学意义(P>0.05)。(2)随着葡萄糖干预时间的延长,心肌细胞chemerin mRNA的表达水平随之升高,在24小时达到峰值,差异有统计学意义(P<0.05);48小时组较24小时表达降低,差异有统计学意义(P<0.05)。
     2TNF-α也可诱导乳鼠心肌细胞chemerin mRNA的表达增加。(1)随着TNF-α干预浓度的增加,心肌细胞chemerin mRNA的表达随之增加,在TNF-α浓度20ng/ml组达到最高值。5ng/ml组与对照组比较差异无统计学意义(P>0.05),10ng/ml组、20ng/ml组与对照组比较差异有统计学意义(P<0.05)。(2)随着TNF-α干预时间的延长,心肌细胞chemerin mRNA的表达水平随之升高,在24小时达到峰值,差异有统计学意义(P<0.05);48小时组较24小时组表达略降低,差异有统计学意义(P<0.05)。
     结论:高糖环境中和炎症状态下乳鼠心肌细胞chemerin mRNA的表达均上调。
     第三部分Chemerin诱导心肌细胞产生胰岛素抵抗
     目的:探讨chemerin是否破坏胰岛素信号,引起心肌细胞的胰岛素抵抗。
     方法:购买出生2~3天的SD乳鼠,提取并培养原代心肌细胞,培养48h后换为无血清的培养基继续培养24h,然后进行分组。首先以不同浓度的chemerin(对照组、10ng/ml组、100ng/ml组)干预24小时,然后以10-7mol/l胰岛素刺激30分钟。应用Western-Blot技术检测心肌细胞Akt、IRS-1和AMPKα的磷酸化水平,应用荧光酶标仪测定心肌细胞的葡萄糖摄取率(glucose uptake)。
     结果:无胰岛素刺激组和胰岛素刺激组,随着chemerin浓度的升高,Akt的磷酸化水平均随之降低,差异具有统计学意义(P<0.05);无胰岛素刺激组和胰岛素刺激组,随着chemerin浓度的升高,IRS-1的磷酸化水平均随之升高,差异具有统计学意义(P<0.05)。
     无胰岛素刺激组和胰岛素刺激组,随着chemerin浓度的升高,葡萄糖摄取率与AMPKα(Thr172)的磷酸化水平也随之降低,差异具有统计学意义(P<0.05)。
     结论:Chemerin诱导心肌细胞产生胰岛素抵抗。
     第四部分Chemerin诱导心肌胰岛素抵抗的分子机制
     目的:探讨chemerin诱导心肌细胞产生胰岛素抵抗的分子机制
     方法:购买出生2~3天的SD乳鼠,提取并培养原代心肌细胞,培养48h后换为无血清的培养基继续培养24h,然后进行分组。
     1探讨chemerin可激活哪些信号通路:首先以0ng/ml或者100ng/mlchemerin干预心肌细胞24小时,然后以10-7mol/l胰岛素刺激30分钟。应用Western-Blot技术检测心肌细胞p38MAPK、ERK-1/2和JNK的总蛋白水平和磷酸化水平。
     2ERK1/2信号通路在chemerin诱导心肌细胞产生胰岛素抵抗中的作用:应用ERK阻滞剂PD98059(50umol/l)预干预15分钟,之后Chemerin(100ng/ml)干预24小时,最后应用胰岛素(10-7mol/l)刺激30分钟,具体分组如下:①空白对照组;②胰岛素组;③Chemerin组;④Chemerin+胰岛素组;⑤PD98059+chemerin组;⑥PD98059+chemerin+胰岛素组。应用Western-Blot技术检测心肌细胞Akt和AMPKα的磷酸化水平;应用荧光酶标仪测定心肌细胞的葡萄糖摄取率。
     结果:
     1胰岛素刺激后,chemerin可激活ERK1/2与p38MAPK信号通路:
     无胰岛素刺激组,chemerin干预后, p38MAPK的磷酸化水平较对照组无明显升高,差异无统计学意义(P>0.05);但胰岛素刺激组,p38MAPK磷酸化水平较对照组升高,差异有统计学意义(P<0.05)。无胰岛素刺激组与胰岛素刺激组,chemerin干预后,ERK-1/2的磷酸化水平均较对照组升高,差异有统计学意义(P<0.05)。无胰岛素刺激组与胰岛素刺激组,chemerin干预后,JNK的磷酸化水平均较对照组无明显变化,差异无统计学意义(P>0.05)。
     2ERK1/2阻滞剂可部分逆转chemerin诱导的心肌细胞胰岛素抵抗:
     胰岛素刺激组,chemerin和PD98059干预后,Akt的磷酸化水平较单纯chemerin干预组升高,但仍较无chemerin干预的对照组降低,差异具有统计学意义(P<0.05);AMPKα的磷酸化水平和葡萄糖摄取率也有类似的变化,差异具有统计学意义(P<0.05)
     结论:胰岛素刺激后,chemerin可激活ERK1/2和p38MAPK信号转导通路;chemerin可部分通过激活ERK1/2信号传导通路诱导心肌细胞产生胰岛素抵抗。
Diabetes mellitus (DM) is a metabolic disorder characterized by elevatedblood glucose secondary to insulin resistance that results in many seriouscomplications,such as diabetic nephropathy, diabetic retinopathy and diabeticcardiomyopathy. A large body of experimental evidence supports the notionthat adipokines have a significant influence on glucose metabolism in varioustissues. As an endocrine organ,adipose tissue could secrete a variety of fatfactors, such as adiponectin, leptin, visfatin, IL-6, and so on. Chemerin (alsoknown as retinoicacid receptor responder protein2and tazarotene-inducedgene2) is a recently discovered adipokine that is associated with inflammation,adipogenesis, and insulin resisitance. Studies have previously shown thatchemerin and its receptor, chemokine-like receptor1(CMKLR1, or ChemR23)are expressed in many tissues and particularly highly expressed in whiteadipose tissue, liver and kidney. A high level of circulating chemerin inhumans is considered to be a marker of inflammation and metabolic syndrome.These observations suggest that chemerin may be involved in insulinresistance and the development of DM.
     Although the evidence described above demonstrates the influence ofchemerin on glucose homeostasis, at present the precise role and significanceof chemerin is unclear in different cell types. A previous study showed thathuman skeletal muscle cells do not express chemerin but do express CMKLR1,and chemerin impairs insulin signaling and induces insulin resistance inskeletal muscle cells. However, there were conflicting results in3T3-L1adipocytes. One study showed that chemerin induces insulin resistance,whereas another study showed that high levels of chemerin enhance insulinsignaling and glucose uptake in3T3-L1adipocytes.
     Chemerin and CMKLR1have been shown to be expressed in rat heart tissue as well. However, no studies to date have described the presence ofchemerin in rat cardiomyocytes in vitro or the role of chemerin in insulinresistance. Diabetic cardiomyopathy is one of the serious cardiovascularcomplications of long-term DM. Therefore, we investigated the possibleinterplay between the chemerin/ChemR23system and insulin resistance in ratcardiomyocytes in vitro. The objective of this study was to clarify the role andmolecular biological mechanisms of chemerin on insulin resistance in ratcardiomyocytes. It follows by four parts:
     Part1The expression of chemerin in rat cardiomyocytes and cardiacfibroblasts
     Objectives: To explore whether cardiomyocytes and cardiac fibroblastscan express chemerin, lay the foundation for the further study.
     Methods: Primary cardiomyocytes and cardiac fibroblasts were isolatedfrom the ventricles of three-day-old neonatal Sprague-Dawley rats. Chemerinexpression in cardiomyocytes and cardiac fibroblasts were measured byreal-time PCR and Western-Blot.
     Results: The expression of chemerin mRNA were detected incardiomyocytes and cardiac fibroblasts. The expression of chemerin proteinwere detected in cardiomyocytes and cardiac fibroblasts.
     Conclusions: Rat cardiomyocytes and cardiac fibroblasts can expresschemerin.
     Part2Changes of chemerin expression in rat cardiomyocytes in highglucose and inflammatory environment
     Objectives: To observe the effects of high glucose and inflammatoryfactor TNF-α on chemerin mRNA expression in rat cardiomyocytes.
     Methods: Ventricular cardiomyocytes were dissociated from the2to3-day old neonatal SD rats.48hours after seeding, the cardiomyocytes werecultured with the serum-free culture medium for another24hours.
     1To test the variation of chemerin mRNA expression after glucosestimulation in cardiomyocytes:(1)The cells were treated with increasingconcentrations of D-glucose (5.5,10,20,30, and40mmol/L) and hypertonic control (5.5mmol/L D-glucose+34.5mmol/L mannitol) for24hours. Theexpression of chemerin mRNA were measured by real-time PCR.(2)Thecardiomyocytes were then treated with high glucose (30mmol/L) for differentdurations (0,6,12,24, and48hours). The expression of chemerin mRNAwere measured by real-time PCR.
     2To test the variation of chemerin mRNA expression afteradministration of TNF-α:(1)The cardiomyocytes were treated with TNF-α (0,5,10,20ng/ml) for24hours. The expression of chemerin mRNA weremeasured by real-time PCR.(2)The cardiomyocytes were then treated withTNF-α (20ng/ml) for different durations (0,6,12,24, and48hours). Theexpression of chemerin mRNA were measured by real-time PCR.
     Results:
     1Chemerin mRNA expression was upregulated by administration ofhigh glucose.(1)The expression of chemerin mRNA increased in adose-dependent manner up to30mmol/L glucose (P<0.05), and chemerinmRNA expression was slightly, but not significantly, lower with40mmol/Lglucose (P>0.05). Interestingly, compared with that the control (treated with5.5mmol/L D-glucose), chemerin expression was not significantly increasedin the hypertonic control group (P>0.05).(2)Chemerin mRNA levelsincreased in a time-dependent manner peaking at24hours of treatment andthen significantly decreasing by48hours (P<0.05).
     2Chemerin mRNA expression was upregulated by administration ofTNF-α.(1)The expression of chemerin mRNA increased in a dose-dependentmanner compared with the control, and the increases were significantly in thegroups of10g/ml and20ng/ml (P<0.05).(2)Chemerin mRNA levels increasedin a time-dependent manner peaking at24hours of treatment and thendecreasing by48hours (P<0.05).
     Conclusions: Chemerin mRNA expression was upregulated by highglucose and inflammatory environment in rat cardiomyocytes.Part3Chemerin induced insulin resistance in cardiomyocytes
     Objectives: To study whether chemerin can impaire insulin signaling and induce insulin resistance in cardiomyocytes
     Methods: Ventricular cardiomyocytes were dissociated from the2to3-day old neonatal SD rats.48hours after seeding, the cardiomyocytes werecultured with the serum-free culture medium for another24hours. Afterthat,cardiomyocytes were cultured with recombinant rat chemerin (0,10, and100ng/ml) for24hours, with chemerin still in the media, cardiomyocytes wereexposed insulin (10-7mol/L) for30min. The phosphorylation of Akt, IRS-1and AMPKα were measured by Western blot analysis. Glucose uptake wasevaluated using a fluorescence microplate reader.
     Results: The cardiomyocytes showed a marked and dose-dependentdecrease both in basal and insulin-stimulated phosphorylation of Akt uponadministration of chemerin (P<0.05). Upstream of Akt, chemerin significantlyand dose-dependently increased the basal and insulin-stimulated serinephosphorylation of IRS-1(P<0.05).
     Glucose uptake and phosphorylation of AMPKα (Thr172) weresignificantly decreased compared with basal levels and that of theinsulin-stimulated control (P<0.05).
     Conclusions: Chemerin induced insulin resistance in cardiomyocytes.
     Part4The possible molecular mechanism of chemerin on insulinresistance in cardiomyocytes.
     Objectives: Investigating the possible molecular mechanism of chemerinon insulin resistance in cardiomyocytes.
     Methods: Ventricular cardiomyocytes were dissociated from the2to3-day old neonatal SD rats.48hours after seeding, the cardiomyocytes werecultured with the serum-free culture medium for another24hours.
     1To investigate which intracellular signaling pathways are important inchemerin-mediated insulin resistance, cardiomyocytes were pretreated with orwithout chemerin (100ng/ml) for24hours before acute stimulation withinsulin (10-7mol/l,30min). The phosphorylation of p38MAPK, ERK-1/2andJNK were measured by Western blot analysis.
     2To analyze the role of the ERK1/2pathway in the impairment of insulin signaling by chemerin, cardiomyocytes were pre-cultured with thespecific ERK inhibitor PD98059(50umol/l) for15min before startingadministration of chemerin (100ng/ml) for24hours. The groups were asfollows:①Blank control group;②10-7mol/l insulin stimulation for30min;③100ng/ml chemerin stimulation for24hours;④100ng/ml chemerinstimulation for24hours, then10-7mol/l insulin stimulation for30min;⑤PD98059(50umol/l) pre-stimulation for15min,100ng/ml chemerinstimulation for24hours;⑥PD98059(50umol/l) pre-stimulation for15min,100ng/ml chemerin stimulation for24hours, then10-7mol/l insulin stimulationfor30min. The phosphorylation of Akt and AMPKα were measured byWestern blot analysis. Glucose uptake was evaluated using a fluorescencemicroplate reader.
     Results:
     1Chemerin activated p38MAPK and ERK1/2signaling pathways ininsulin-stimulated cardiomyocytes:
     p38MAPK phosphorylation was not significantly increased in the basalstate (P>0.05) but still significantly increased in the insulin-stimulated state(P<0.05). However, chemerin increased both the basal and insulin-stimulatedphosphorylation of ERK1/2(P<0.05). Interestingly, chemerin had no effect onJNK activity (P>0.05).
     2ERK1/2inhibition partially restored insulin sensitivity inchemerin-treated cardiomyocytes:The phosphorylation of Akt was significantly increased compared with thosein the insulin-stimulated control with chemerin, but still significantlydecreased compared with those in the insulin-stimulated control withoutchemerin (P<0.05). Meanwhile, the phosphorylation of AMPKα and glucoseuptake had the similar changes.
     Conclusions: Chemerin activated p38MAPK and ERK1/2signalingpathways in insulin-stimulated cardiomyocytes, and chemerin induced insulinresistance part of by activating ERK1/2signaling pathway in cardiomyocytes.
引文
1Trayhum P and Beattie JH. Physiological role of adipose tissue: whiteadipose tissue as an endocrine and secretory organ. Proc Nutr Soc,2001,60:329-339
    2Goralski KB, McCarthy TC, Hanniman EA, et al. Chemerin, a noveladipokine that regulates adipogenesis and adipocyte metabolism. J BiolChem,2007,282(38):28175-88
    3Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulinsignaling and potentiates insulin-stimulated glucose uptake in3T3-L1adipocytes. FEBS Lett,2008,582(5):573-8
    4Bursac N, Parker KK, Iravanian S, et al. Cardiomyocyte cultures withcontrolled macroscopic anisotropy: a model for functionalelectrophysiological studies of cardiac muscle. Circ Res,2002,91:e45-54
    5Lang MJ, Guo M, Zeng QT, et al. Effects of repeatedly differentialattachment technique combined with5-BrdU on the purity and the activityof isolated cardiomyocytes. Chin Heart J,2008,20:566-569
    6Gantz I, Konda Y, Yang YK, et al. Molecular cloning of a novel receptor(CMKLR1) with homology to the chemotactic factor receptors. CytogenetCell Genet,1996,74(4):286-90
    7Wittamer V, Franssen JD, Vulcano M, et al. Specific recruitment ofantigen-presenting cells by chemerin, a novel processed ligand fromhuman inflammatory fluids. J Exp Med,2003,198(7):977-85.
    8Bozaoglu K, Bolton K, McMillan J, et al. Chemerin is a novel adipokineassociated with obesity and metabolic syndrome. Endocrinology,2007,148(10):4687-94
    9Nagpal S, Patel S, Jacobe H, et al. Tazarotene-induced gene2(TIG2), anovel retinoid-responsive gene in skin. J Invest Dermatol,1997,109(1):91-5
    10Wittamer V, Bondue B, Guillabert A, et al. Neutrophil-mediatedmaturation of chemerin: a link between innate and adaptive immunity. JImmunol,2005,175(1):487-93
    11Samson M, Edinger AL, Stordeur P, et al. ChemR23, a putativechemoattractant receptor, is expressed in monocyte-derived dendritic cellsand macrophages and is a coreceptor for SIV and some primary HIV-1strains. Eur J Immunol,1998,28(5):1689-700
    1Whiting DR1, Guariguata L, Weil C, et al. IDF diabetes atlas: globalestimates of the prevalence of diabetes for2011and2030. Diabetes ResClin Pract,2011,94(3):311-21
    2Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathyassociated with diabetic glomerulosclerosis. Am J Cardiol,1972,30(6):595-602
    3Murarka S and Movahed MR. Diabetic cardiomyopathy. J Card Fail,2010,16(12):971-9
    4Lehrke M, Becker A, Greif M, et al. Chemerin is associated with markersof inflammation and components of the metabolic syndrome but does notpredict coronary atherosclerosis. Eur J Endocrinol,2009,161(2):339-44
    5Phillips SA, Ciaraldi TP, Kong AP, et al. Modulation of circulating andadipose tissue adiponectin levels by antidiabetic therapy. Diabetes,2003,52:667-674
    6刘慧霞.3T3-Ll脂肪细胞中高糖诱导胰岛素抵抗的分子机制.湖南医科大学学报,2001,26:294-296
    7吴汉荣,向光盛,卢慧玲,等.高浓度葡萄糖诱导脂肪细胞产生胰岛素抵抗.中国科技大学学报(医学版),2006,35:66-67
    8Liuzzo G, Santamaria M, Biasucci LM, et al. Persistent activation ofnuclear factor kappa-B signaling pathway in patients with unstable anginaand elevated levels of C-reactive protein evidence for a directproinfammatory effect of azide and lipopolysaccharide-free C-reactiveprotein on human monocyte via nuclear factor kappa-B activation. J AmColl Cardiol,2007,49:195-197
    9Hotamisligil GS1, Murray DL, Choy LN, et al. Tumor necrosis factoralpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci,1994,24(3):4854-4858
    10Ruan H, Miles PD, Ladd CM, et al. Profiling gene transcription in vivoreveals adipose tissue as an immediate target of tumor necrosisfactor-alpha: implications for insulin resistance. Diabetes,2002,51(11):3176-88
    11Ruan H, Hacohen N, Golub TR, et al. Tumor necrosis factor-alphasuppresses adipocyte-specific genes and activates expression ofpreadipocyte genes in3T3-L1adipocytes: nuclear factor-kappaBactivation by TNF-alpha is obligatory. Diabetes,2002,51(5):1319-36
    12Ruan H, Pownall HJ, Lodish HF, et al. Troglitazone antagonizes tumornecrosis factor-alpha-induced reprogramming of adipocyte geneexpression by inhibiting the transcriptional regulatory functions ofNF-kappaB. J Biol Chem,2003,278(30):28181-92
    13Miles PD, Romeo OM, Higo K, et al. TNF-alpha-induced insulinresistance in vivo and its prevention by troglitazone. Diabetes,1997,46(11):1678-83
    14Parlee SD, Ernst MC, Muruganandan S, et al. Serum chemerin levels varywith time of day and are modified by obesity and tumor necrosisfactor-{alpha}. Endocrinology,2010,151(6):2590-602
    15Kaur J, Adya R, Tan BK, et al. Identification of chemerin receptor(ChemR23) in human endothelial cells: chemerin-induced endothelial
    angiogenesis. Biochem Biophys Res Commun,2010,391:1762-1768
    1Ernst MC, Issa M, Goralski KB, et al. Chemerin exacerbates glucoseintolerance in mouse models of obesity and diabetes. Endocrinology,2010,151(5):1998-2007
    2Ouwens DM, Bekaert M, Lapauw B, et al. Chemerin as biomarker forinsulin sensitivity in males without typical characteristics of metabolicsyndrome. Arch Physiol Biochem,2012,118(3):135-8
    3Chakaroun R, Raschpichler M, Kloting N, et al. Effects of weight loss andexercise on chemerin serum concentrations and adipose tissue expressionin human obesity. Metabolism,2012,61(5):706-14
    4Goralski KB, McCarthy TC, Hanniman EA, et al. Chemerin, a noveladipokine that regulates adipogenesis and adipocyte metabolism. J BiolChem,2007,282(38):28175-88
    5Ouwens DM, Bekaert M, Lapauw B, et al. Chemerin as biomarker forinsulin sensitivity in males without typical characteristics of metabolicsyndrome. Arch Physiol Biochem,2012,118(3):135-8
    6Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulinsignaling and potentiates insulin-stimulated glucose uptake in3T3-L1adipocytes. FEBS Lett,2008,582(5):573-8
    7Kralisch S, Weise S, Sommer G, et al. Interleukin-1beta induces the noveladipokine chemerin in adipocytes in vitro. Regul Pept,2009,154(1-3):102-6
    8Sell H, Laurencikiene J, Taube A, et al. Chemerin is a noveladipocyte-derived factor inducing insulin resistance in primary humanskeletal muscle cells. Diabetes,2009,58(12):2731-40
    9Becker M, Rabe K, Lebherz C, et al. Expression of human chemerininduces insulin resistance in the skeletal muscle but does not affect weight,lipid levels, and atherosclerosis in LDL receptor knockout mice onhigh-fat diet. Diabetes,2010,59(11):2898-903
    10Ruun JM, Helge JW, Richelsen B, et al. Diet and exercise reduce lowgrade inflammation and macrophage infiltration in adipose tissue but notin skeletal muscle in severely obese subjects. Am J Physiol,2006,290:E961-E967
    11Uptas S, Geiss HC, Otto C, et al. Effect of atorvastatin (10mg/day) onglucose metabolism in patients with the metabolic syndrome. Am J Cardiol,2006,98:66-69
    12Bai D, Ueno L and Vogt PK. Akt-mediated regulation of NF kappa B andthe essentialness of NF kappa B for the oncogenicity of PI3K and Akt [J].Int J Cancer,2009,125(12):2863-2870
    13Iu YM, Lacorte JM, Viguerie N, et al. Adiponectin gene expression insubcutaneous adipose tissue of obese women in response to short termvery low calorie diet and refeeding. Clin Endocrinol Metab,2003(88):5881-5886
    14Saltiel AR and Pessin J E. Signaling pathways in insulin action: moleculartargets of insulin resistance [J]. J Clin Invest,2000,2(106):165-169
    15Cusi K, Maezono K, Oaman A, et al. Insulin resistance differentiallyaffects the PI3-kinase and MAP kinase-mediated signaling in humanmuscle [J]. J Clin Invest,2000,3(105):311-320
    16Wiedmann M, Tamaki S, Silberman R, et al. Constitutive over expressionof the insulin receptor substrate1causes functional up regulation of Fasreceptor [J]. J Hepatol,2003,38(6):803-810
    17Aspinwall CA, Qian WJ, Roper MG, et al. Roles of insulin receptorsubstrate-1, phosphatidylinositol3-kinase, and release of intracellular Ca2+storesin insulin stimulated insulin secretion in cells[J]. J Biol Chem,2000,275(29):22331-22338
    18Allemand MC, Irving BA, Asmann YW, et al. Effect of testosterone oninsulin stimulated IRS1Ser phosphorylation in primary rat myotubes--apotential model for PCOS-related insulin resistance. PLoS One,2009,4(1):e4274
    19Langlais P, Yi Z, Finlayson J, et al. Global IRS-1phosphorylation analysisin insulin resistance. Diabetologia,2011,54(11):2878-89
    20Kerouz NJ, Horsch D, Pons S, et al. Differential regulation of insulinreceptor substrates-1and-2(IRS-1and IRS-2) and phosphatidylinositol3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse.J Clin Invest,1997,100:3164-3172
    21Pratipanawatr W, Pratipanawatr T, Cusi K, et al. Skeletal muscle insulinresistance in nor moglycemic subjects with a strong family history of type
    2diabetes is associated with decreased insulin-stimulated insulin receptorsubstrate-1tyrosine phosphorylation. Diabetes,2001,50:2572-2578
    22Lee ES1, Uhm KO, Lee YM, et al. CAPE (caffeic acid phenethyl ester)stimulates glucose uptake through AMPK (AMP-activated protein kinase)activation in skeletal muscle cells. Biochem Biophys Res Commun,2007,361(4):854-8
    23Viollet B, Horman S, Leclerc J, et al. AMPK inhibition in health anddisease.Crit Rev Biochem Mol Biol,2010,45(4):276-95
    24Morris DL and Rui L. Recent advances in understanding leptin signalingand leptin resistance. Am J Physiol Endocrinol Metab,2009,297(6):E1247-59
    25Lele RD. Pro-insulin,C peptide, glucagon, adiponectin, TNF alpha, AMPK:neglected players in type2diabetes mellitus.J Assoc Physicians India,2010,58(30):35-40
    26Viollet B, Lantier L, Devin-Leclerc J, et al. Targeting the AMPK pathwayfor the treatment of type2diabetes. Frontiers in Bioscience,2009,14:3380-3400
    27Pandzi and Jaksi V. Adipocytokines as mediators of metabolic role ofadipose tissue. Acta Med Croatica,2010,64(4):253-62
    1Ouwens DM, Bekaert M, Lapauw B, et al. Chemerin as biomarker forinsulin sensitivity in males without typical characteristics of metabolicsyndrome. Arch Physiol Biochem,2012,118(3):135-8
    2Chakaroun R, Raschpichler M, Kloting N, et al. Effects of weight loss andexercise on chemerin serum concentrations and adipose tissue expressionin human obesity. Metabolism,2012,61(5):706-14
    3Bruun JM, Helge JW, Richelsen B, et al. Diet and exercise reducelow-grade inflammation and macrophage infiltration in adipose tissue butnot in skeletal muscle in severely obese subjects. Am J Physiol,2006,290:E961-E967
    4Qiangrong L, Anderew C, Elson BS, et al. P38MAP Kinase Activity IsCorrelatedWith Angiotensin II Type1Receptor BlockereInduced LeftVentricular Reverse Remodeling in Spontaneously Hypertensive HeartFailure Rats. Journal of Cardiac Failure,2006,12:479-486
    5Tomas A, Yermen B, Min L, et al. Regulation of pancreatic bet a-cellinsulin secretion by action cytoskeleton remodeling: role of gelsolin andcooper ation with the MAPK signaling pathway [J]. J Cell Sci,2006,119(10):2156-2157
    6Brennan CS, Blake DE, Ellis PR, et al. In vitro and in vivo studies of theeffects of digestibility of guar galactomannan on wheat breadmicrostructure and rate of digestibility of starch in wheat bread. J CerealSci,1996,24:121-130
    7Li Y, Batra S, Sassano A, et al. Activation of mitogen activated protein kinase kinase (MKK)3and MKK6by type I interferons. J Biol Chem,2006,281(15):106-51
    8Abell AN, Granger DA and Johnson GL. MEKK4stimulation of p38and JNK activity is negatively regulated by GSK3b eta. J Biol Chem J,2007,282(42):3047-3048
    9Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur CytokineNet w,2006,17(1):42-21
    10Kumar AP, Piedrafita FJ and Reynolds WF. Peroxisome proliferatoractivated receptor gamma-ligands regulate myeloperoxidase expression inmacrophages by an estrogen-dependent mechanism involving the463GApromoter polymorphism. J Biol Chem,2004,279:8300-8315
    11Costanzo BV, Trischilta V, Di Paola R, et al. The Q allele (GLN) ofmembrane glycoprotein PC1interacts with the insulin receptor and inhibitsinsulin signaling more efficiently than the common K allele variant(LYS121). Diabetes,2001,50:831-836
    12Hirosumi J, Tuncman G, Chang L, et al. Acentral role for JNK in obesityand insulin resistance. Nature,2002,420:3332-3361
    13Kaneto H, Matsuoka TA, Katakami N, et al. Oxidative stress and the JNKpathway are involved in the developmen to type1and type2diabetes.Curr Mol Med,2007,7(7):6742-6861
    14Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulinsignaling and potentiates insulin-stimulated glucose uptake in3T3-L1adipocytes. FEBS Lett,2008,582(5):573-8
    15Roh SG, Song SH, Choi KC, et al: Chemerin--a new adipokine thatmodulates adipogenesis via its own receptor. Biochem Biophys ResCommun,2007,362:1013-1018
    16Kralisch S, Weise S, Sommer G, et al. Interleukin-1beta induces the noveladipokine chemerin in adipocytes in vitro. Regul Pept,2009,154:102-106
    17Sell H, Laurencikiene J, Taube A, et al. Chemerin is a noveladipocyte-derived factor inducing insulin resistance in primary humanskeletal muscle cells. Diabetes,2009,58:2731-2740
    18Becker M, Rabe K, Lebherz C, et al. Expression of human chemerininduces insulin resistance in the skeletal muscle but does not affect weight,lipid levels, and atherosclerosis in LDL receptor knockout mice onhigh-fat diet. Diabetes,2010,59(11):2898-903
    19Yang H, Li F, Kong X, et al. Chemerin regulates proliferation anddifferentiation of myoblast cells via ERK1/2and mTOR signalingpathways. Cytokine,2012,60:646-652
    20Bozaoglu K, Curran JE, Stocker CJ, et al. Chemerin, a novel adipokine inthe regulation of angiogenesis. J Clin Endocrinol Metab,2010,95:2476-2485
    21Kaur J, Adya R, Tan BK, et al. Identification of chemerin receptor(ChemR23) in human endothelial cells: chemerin-induced endothelialangiogenesis. Biochem Biophys Res Commun,2010,391:1762-1768
    22Hart R and Greaves DR. Chemerin contributes to inflammation bypromoting macrophage adhesion to VCAM-1and fibronectin throughclustering of VLA-4and VLA-5. J Immunol,2010,185(6):3728-39
    23Corbould A, Kim YB, Youngren JF, et al. Insulin resistance in the skeletalmuscle of women with PCOS involves intrinsic and acquired defects ininsulin signaling. Am J Physiol Endocrinol Metab,2005,288(5):1047-54
    1Gantz I, Konda Y, Yang YK, et al. Molecular cloning of a novel receptor(CMKLR1) with homology to the chemotactic factor receptors. CytogenetCell Genet,1996,74(4):286-90
    2Samson M, Edinger AL, Stordeur P, et al. ChemR23, a putativechemoattractant receptor, is expressed in monocyte-derived dendritic cellsand macrophages and is a coreceptor for SIV and some primary HIV-1strains. Eur J Immunol,1998,28(5):1689-700
    3Wittamer V, Franssen JD, Vulcano M, et al. Specific recruitment ofantigen-presenting cells by chemerin, a novel processed ligand fromhuman inflammatory fluids. J Exp Med,2003,198(7):977-85
    4Bozaoglu K, Bolton K, McMillan J, et al. Chemerin is a novel adipokineassociated with obesity and metabolic syndrome. Endocrinology,2007,148(10):4687-94
    5Goralski KB, McCarthy TC, Hanniman EA, et al. Chemerin, a noveladipokine that regulates adipogenesis and adipocyte metabolism. J BiolChem,2007,282(38):28175-88
    6Zabel BA, Silverio AM and Butcher EC. Chemokine-like receptor1expression and chemerin-directed chemotaxis distinguish plasmacytoidfrom myeloid dendritic cells in human blood. J Immunol,2005,174(1):244-51
    7Martensson UE, Bristulf J, Owman C, et al. The mouse chemerin receptorgene, mcmklr1, utilizes alternative promoters for transcription and isregulated by all-trans retinoic acid. Gene,2005,350(1):65-77
    8Nagpal S, Patel S, Jacobe H, et al. Tazarotene-induced gene2(TIG2), anovel retinoid-responsive gene in skin. J Invest Dermatol,1997,109(1):91-5
    9Wittamer V, Bondue B, Guillabert A, et al. Neutrophil-mediatedmaturation of chemerin: a link between innate and adaptive immunity. JImmunol,2005,175(1):487-93
    10Zabel BA, Zuniga L, Ohyama T, et al. Chemoattractants, extracellularproteases, and the integrated host defense response. Exp Hematol,2006,34(8):1021-32
    11Yang D, Chertov O and Oppenheim JJ. The role of mammalianantimicrobial peptides and proteins in awakening of innate host defensesand adaptive immunity. Cell Mol Life Sci,2001,58(7):978-89
    12De Yang, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule-andepithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like1(FPRL1) as a receptor to chemoattract human peripheral blood neutrophils,monocytes, and T cells. J Exp Med,2000,192(7):1069-74
    13Salvesen G, Parkes C, Abrahamson M, et al. Human low-Mr kininogencontains three copies of a cystatin sequence that are divergent in structureand in inhibitory activity for cysteine proteinases. Biochem J,1986,234(2):429-34
    14Zabel BA, Allen SJ, Kulig P, et al. Chemerin activation by serine proteasesof the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem,2005,280(41):34661-6
    15Kulig P, Zabel BA, Dubin G, et al. Staphylococcus aureus-derivedstaphopain B, a potent cysteine protease activator of plasma chemerin. JImmunol,2007,178(6):3713-20
    16Du XY and Leung LL. Proteolytic regulatory mechanism of chemerinbioactivity. Acta Biochim Biophys Sin,2009,41(12):973-9
    17Wittamer V, Gregoire F, Robberecht P, et al. The C-terminal nonapeptideof mature chemerin activates the chemerin receptor with low nanomolarpotency. J Biol Chem,2004,279(11):9956-62
    18Du XY, Zabel BA, Myles T, et al. Regulation of chemerin bioactivity byplasma carboxypeptidase N, carboxypeptidase B (activatedthrombin-activable fibrinolysis inhibitor), and platelets. J Biol Chem,2009,284(2):751-8
    19Parolini S, Santoro A, Marcenaro E, et al. The role of chemerin in thecolocalization of NK and dendritic cell subsets into inflamed tissues.Blood,2007,109(9):3625-32
    20Cash JL, Hart R, Russ A, et al. Synthetic chemerin-derived peptidessuppress inflammation through ChemR23. J Exp Med,2008,205(4):767-75
    21Arita M, Bianchini F, Aliberti J, et al. Stereochemical assignment,antiinflammatory properties, and receptor for the omega-3lipid mediatorresolvin E1. J Exp Med,2005,201(5):713-22
    22Campbell EL, Louis NA, Tomassetti SE, et al. Resolvin E1promotesmucosal surface clearance of neutrophils: a new paradigm forinflammatory resolution. FASEB J,2007,21(12):3162-70
    23Roh SG, Song SH, Choi KC, et al. Chemerin--a new adipokine thatmodulates adipogenesis via its own receptor. Biochem Biophys ResCommun,2007,362(4):1013-8
    24Barnea G, Strapps W, Herrada G, et al. The genetic design of signalingcascades to record receptor activation. Proc Natl Acad Sci USA,2008,105(1):64-9
    25Yoshimura T and Oppenheim JJ. Chemerin reveals its chimeric nature. JExp Med,2008,205(10):2187-90
    26Bal Y, Adas M and Helvaci A. Evaluation of the relationship betweeninsulin resistance and plasma tumor necrosis factor-alpha, interleukin-6and C-reactive protein levels in obese women. Bratisl Lek Listy,2010,111(4):200-4
    27Ernst MC, Issa M, Goralski KB, et al. Chemerin exacerbates glucoseintolerance in mouse models of obesity and diabetes. Endocrinology,2010,151(5):1998-2007
    28Ouwens DM, Bekaert M, Lapauw B, et al. Chemerin as biomarker forinsulin sensitivity in males without typical characteristics of metabolicsyndrome. Arch Physiol Biochem,2012,118(3):135-8
    29Chakaroun R, Raschpichler M, Kloting N, et al. Effects of weight loss andexercise on chemerin serum concentrations and adipose tissue expressionin human obesity. Metabolism,2012,61(5):706-14
    30Tan BK, Chen J, Farhatullah S, et al. Insulin and metformin regulatecirculating and adipose tissue chemerin. Diabetes,2009,58(9):1971-7
    31Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulinsignaling and potentiates insulin-stimulated glucose uptake in3T3-L1adipocytes. FEBS Lett,2008,582(5):573-8
    32Kralisch S, Weise S, Sommer G, et al. Interleukin-1beta induces the noveladipokine chemerin in adipocytes in vitro. Regul Pept,2009,154(1-3):102-6
    33Sell H, Laurencikiene J, Taube A, et al. Chemerin is a noveladipocyte-derived factor inducing insulin resistance in primary humanskeletal muscle cells. Diabetes,2009,58(12):2731-40
    34Becker M, Rabe K, Lebherz C, et al. Expression of human chemerininduces insulin resistance in the skeletal muscle but does not affect weight,lipid levels, and atherosclerosis in LDL receptor knockout mice onhigh-fat diet. Diabetes,2010,59(11):2898-903
    35Stejskal D, Karpisek M, Hanulova Z, et al. Chemerin is an independentmarker of the metabolic syndrome in a Caucasian population--a pilot study.Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2008,152(2):217-21
    36Dong B, Ji W and Zhang Y. Elevated serum chemerin levels are associatedwith the presence of coronary artery disease in patients with metabolicsyndrome. Intern Med,2011,50(10):1093-7
    37Lin X, Tang X, Jiang Q, et al. Elevated serum chemerin levels areassociated with the presence of coronary artery disease in patients withtype2diabetes. Clin Lab,2012,58(5-6):539-44
    38Xiaotao L, Xiaoxia Z, Yue X, et al. Serum chemerin levels are associatedwith the presence and extent of coronary artery disease. Coron Artery Dis,2012,23(6):412-6
    39Yan Q, Zhang Y, Hong J, et al. The association of serum chemerin levelwith risk of coronary artery disease in Chinese adults. Endocrine,2012,41(2):281-8
    40Hah YJ, Kim NK, Kim MK, et al. Relationship between Chemerin Levelsand Cardiometabolic Parameters and Degree of Coronary Stenosis inKorean Patients with Coronary Artery Disease. Diabetes Metab J,2011,35(3):248-54
    41Gao X, Mi S, Zhang F, et al. Association of chemerin mRNA expression inhuman epicardial adipose tissue with coronary atherosclerosis. CardiovascDiabetol,2011,10:87
    42Spiroglou SG, Kostopoulos CG, Varakis JN, et al. Adipokines in periaorticand epicardial adipose tissue: differential expression and relation toatherosclerosis. J Atheroscler Thromb,2010,17(2):115-30
    43Hart R and Greaves DR. Chemerin contributes to inflammation bypromoting macrophage adhesion to VCAM-1and fibronectin throughclustering of VLA-4and VLA-5. J Immunol,2010,185(6):3728-39
    44Parolini S, Santoro A, Marcenaro E, et al. The role of chemerin in thecolocalization of NK and dendritic cell subsets into inflamed tissues.Blood,2007,109(9):3625-32
    45Cash JL, Hart R, Russ A, et al. Synthetic chemerin-derived peptidessuppress inflammation through ChemR23. J Exp Med,2008,205(4):767-75
    46Bal Y, Adas M and Helvaci A. Evaluation of the relationship betweeninsulin resistance and plasma tumor necrosis factor-alpha, interleukin-6and C-reactive protein levels in obese women. Bratisl Lek Listy,2010,111(4):200-4
    47Kaur J, Adya R, Tan BK, et al. Identification of chemerin receptor(ChemR23) in human endothelial cells: chemerin-induced endothelialangiogenesis. Biochem Biophys Res Commun,2010,391(4):1762-8
    48Bozaoglu K, Curran JE, Stocker CJ, et al. Chemerin, a novel adipokine inthe regulation of angiogenesis. J Clin Endocrinol Metab,2010,95(5):2476-85
    49Roh SG, Song SH, Choi KC, et al. Chemerin--a new adipokine thatmodulates adipogenesis via its own receptor. Biochem Biophys ResCommun,2007,362(4):1013-8
    50Bozaoglu K, Cummings N, Shields KA, et al. Chemerin is associated withmetabolic syndrome phenotypes in a Mexican-American population. J ClinEndocrinol Metab,2009,94(8):3085-8
    51Yang M, Yang G, Dong J, et al. Elevated plasma levels of chemerin innewly diagnosed type2diabetes mellitus with hypertension. J InvestigMed,2010,58(7):883-6
    52Lehrke M, Becker A, Greif M, et al. Chemerin is associated with markersof inflammation and components of the metabolic syndrome but does notpredict coronary atherosclerosis. Eur J Endocrinol,2009,161(2):339-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700