海面盐度多源遥感协同反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面盐度是描述海洋状态的重要参数之一,研究其变化和分布规律对分析海洋自身特性以及了解海洋在海-气复杂系统中的作用有重要意义。海面盐度的获取也是气象学、生态学、水文学和渔业等其他学科与应用领域重点关注的研究对象。光学与微波遥感反演海面盐度各有优势与不足,有效协同利用两种遥感数据,将有助于提高海面盐度的反演精度。本文选取南海北部珠江口东岸香港海域为研究区,采用2009-2011年遥感数据和海面实测数据,研究海面盐度光学与微波遥感数据协同反演方法,提出基于ETM+与SAR数据的海面盐度协同反演模型,主要研究工作包括以下几个方面:
     (1)分别研究光学与微波遥感的海面盐度反演机理,提出基于单一遥感数据的海面盐度反演算法。利用改进型经验光谱指数与半经验半物理海面辐射传输模型提取黄色物质浓度,根据高光谱数据反演海面盐度算法,以黄色物质浓度为中介物,间接反演海面盐度;利用SAR数据散射系数获取海面亮温,根据K-S模型,可从反演得到的海面亮温中提取海面盐度。
     (2)从光学微波遥感数据级融合协同的角度,提出一种SAR插补ETM+缺失数据方法,利用SAR数据穿云透雾特性去除ETM+影像中云及其阴影影响,从而达到在云遮挡情况下提取海面盐度的目的。利用像元位置匹配转化算法,将SAR影像转化成为基于ETM+像元的无云无阴影影像,再将该无云影响影像像元与ETM+原影像有云影响像元做对应的像元替换,即可生成SAR插补ETM+缺失数据后的新ETM+影像。针对有云影响的光学影像,利用该缺失数据插补方法与高光谱数据反演海面盐度算法,可以获取得到一定精度的海面盐度。
     (3)从光学微波遥感模型级耦合协同的角度,提出一种ETM+与SAR数据协同反演海面盐度的方法。利用ETM+与SAR数据分别提取得到的海面亮温与海面发射率,通过海面温度反演算法获取海面温度,将其与从SAR数据中提取得到海水介电常数一并代入德拜方程,即可建立基于光学与微波遥感模型耦合的海面盐度协同反演模型。经实测海面盐度数据验证,基于光学与微波遥感模型级耦合的海面盐度协同反演模型的反演精度较其它方法更高(复相关系数达到R2=0.8672,均方根误差为RMSE=0.6253),其协同反演结果明显优于单一遥感数据的反演结果。
     本文的创新点是:(1)提出了光学微波遥感数据级融合协同反演的方法,可以推广应用到光学影像数据缺失(如云遮挡)情况下的海面盐度反演研究;(2)根据光学微波遥感模型级耦合协同反演方法,建立了基于ETM+与SAR数据的海面盐度协同反演模型,提高了海面盐度反演精度,增强了海面盐度反演模型的适应性。
Sea Surface Salinity is one of the important parameter to describe the state of theocean. It is significant to study the variation and distribution of sea surface salinity, sothat the characteristics of the ocean itself and the knowledge about the role it plays inthe complex ocean-atmosphere system could be better understood. Meanwhile,meteorology, ecology, hydrology, fishery and other disciplines also focus on theextraction of sea surface salinity. The sea surface salinity retrieved from optical ormicrowave remotely sensed data is of advantage and disadvantage respectively. Bycoordinating above two remote sensing data effectively, the retrieval of sea surfacesalinity could be improved in accuracy. In this article, the research area is located inthe Hong Kong waters, near the eastern Pearl River of the northern South China Sea;the sample data is remote sensing data and measured sea surface data which werecollected from the year of2009-2011; the experiment is carried out to study theretrieval of sea surface salinity by coordinating optical and microwave remote sensingdata. Ultimately, the coordinated retrieval model of sea surface salinity based onETM+and SAR data was proposed. The following main research work is conducted:
     (1) From the perspective of single remote sensing data, study the mechanism ofsea surface salinity retrieved from optical and microwave data, and propose the seasurface salinity retrieval algorithm based on single remote sensing data. First, yellowsubstance concentration is obtained from the improved empirical spectral index andthe half empirical and half physical sea surface radiation transfer model; with yellowsubstance concentration as mediator, sea surface salinity is indirectly retrieved fromhyperion data algorithm. Secondly, sea surface brightness temperature is obtainedfrom the scattering coefficient of SAR data; sea surface salinity is collected fromretrieved sea surface brightness temperature on the basis of K-S model.
     (2) From the perspective of coordinating optical and microwave remote sensingdata fusion, put forward a method in which SAR data interpolates ETM+missing data,and remove the cloud and its shadow in ETM+images with SAR data, which has theinherent characteristic, that is, SAR data could penetrate through the cloud and fog. According to pixel position matching algorithm, SAR images can be converted tocloudless and shadow-free images based on ETM+pixels; replace the original ETM+cloud pixels by the corresponding cloudless pixels, then, the new ETM+images aregenerated after SAR interpolates ETM+missing data. In view of optical imagesaffected by cloud, the missing data interpolation method coordinates with the seasurface salinity retrieved from hyperion data algorithm, which could obtain seasurface salinity in some accuracy.
     (3) From the perspective of coordinating optical and microwave remote sensingmodel coupling, propose a method in which sea surface salinity is retrieved fromcoordinated ETM+and SAR data. The sea surface brightness temperature and seasurface emissivity are extracted from ETM+and SAR data respectively, the seasurface temperature is obtained from sea surface temperature retrieval algorithm, andthe sea water dielectric constant is extracted from SAR data; then, all above values areput into the Debye equation. Ultimately, the sea surface salinity coordinated retrievalmodel based on optical and microwave remote sensing model coupling is established.Verification analysis with the measured sea surface salinity shows that the coordinatedmodel displays higher multiple correlation coefficient (R2=0.8672) and smaller rootmean square error (RMSE=0.6253) than the other methods. The retrieved result ofcoordinated model is superior to any retrieved results using singe remote sensing data.
     The innovations of this article are:(1) the proposal of the retrieval methodcoordinating optical and microwave remote sensing data fusion. The method can beapplied to sea surface salinity retrieval research under the circumstance of shortage ofcloudless optical images;(2) the establishment of sea surface salinity coordinatedretrieval model based on ETM+and SAR data, according to coordinated retrievalmethod based on optical and microwave remote sensing model. It is not only increasethe retrieval accuracy of sea surface salinity, but also improve the adaptability of thesea surface salinity retrieval method.
引文
Ahn Y H, Shanmugam P and Moon J E, et al. Satellite remote sensing of a lowsalinity waterplume in the East China Sea. Ann. Geophys.,2008,26:2019-2035.
    Babin M, Stramski D, Ferrari G, et al. Variations in the light absorption coefficients ofphytoplankton, nonalgal particles, and dissolved organic matter in coastal waters aroundEurope. Geophysics Research,2003,108(C7).
    Blume H C and Kendall B M. Passive microwave measurements of temperature and salinity incoastal zones. IEEE Trans Geosci Rem Sens,1982, GE:394-404.
    Blume H C, Kendall B M and Fedors J C. Measurement of ocean temperature and salinity viamicrowave radiometry. Boundary-Layer Meteorol,1978,13:295-308.
    Blume H C, Kendall B M and Fedors J C. Multi-frequency radiometer detection of submarinefreshwater sources along the Puerto Rican coastline. J Geophys Res,1981,86:5283-5291.
    Binding C E and Bowers D G. Measuring the salinity of the Clyde Sea from remotely sensedocean colour. Estuarine, Coastal and Shelf Science,2003,57:605–611.
    Binding C E, Bowers D G and Mitchelson-Jacob E G. Estimating suspended sedimentconcentrations from ocean colour measurements in moderately turbid waters; the impact ofvariable particle scattering properties. Remote Sensing of Environment,2005,94(3):373-383.
    Bodineau L, Thoumelin G, Beghin V. Tidal time scale changes in the composition of particulateorganic matter within the estuarine turbidity maxmum zone in the macro tidal Seine estuary,France: the use of fatty acid and sterol biomarkers. Estuarine, Coastal and Shelf Science,1998,47(1):37-49.
    Bonan G B, Levis S and Kergoat L, et al. Landscapes as patches of plant functional types: Anintegrating concept for climate ecosystem models. Global Biogeochemical Cycles,2002,16(2):1021.
    Bowers D, Binding C. The optical properties of mineral suspended particles: A review andsynthesis. Estuarine, Coastal and Shelf Science,2006,67:219-230.
    Bowers D G and Brett H L. The relationship between CDOM and salinity in estuaries: Ananalytical and graphical solution. Journal of Marine Systems,2008,73:1-7.
    Bricaud A, Morel A and Prieur L. Absorption by dissolved organic matter of the sea (yellowsubstance) in the UV and visible domains. Limnology and Oceanography,1981,26(1):43-53.
    Brassington G B and Divakaran P. The theoretical impact of remotely sensed sea surface salinityobservations in a multi-variate assimilation system. Ocean Modelling,2009,27(1-2):70-81.
    Burrage D M, Heron M L and Hacker J M, et al. Structure and influence of tropical river plumesin the Great Barrier Reef: application and performance of an airborne sea surface salinitymapping system. Remote Sensing of Environment,2003,85(2):204-220.
    Cox C, Munk W. Statistics of the sea surface derived from sun glitter. J Mar Res,1954,1(13):198-227.
    Cooper N S. The effect of salinity on tropical ocean models. Phys Ocean org,1988,18:697-707.
    Camps A, J.Font and Vall-llonssera M, et al. The WISE2000and2001Field Experiments inSupport of the SMOS Mission: Sea Surface L-Band Brightness Temperature Observationsand Their Application to Sea Surface Salinity Retrieval. IEEE Transactions on Geoscienceand Remote Sensing,2004,42(4):804-823.
    Camps A, I Corbella. RF interference analysis in aperture synthesis interferometric radiometers:application to L-band MIRAS instrument. IEEE Transactions on Geoscience and RemoteSensing,2000,38(2):942-950.
    Camps A, M. Vall-llossera and Ramon Villarino, et al. The emissivity of Foam-Covered watersurface at L-band: Theoretical modeling and experimental results from the frog2003fieldexperiment. IEEE Trans. Geosc. Rem. Sens,2005,43(5):925-937.
    Camps A, Vall-llossera M and Batres L, et al. Retrieving sea surface salinity with multiangularL-band brightness temperatures: Improvement by spatiotemporal averaging. Radio Science,2005,40(2):1-13.
    Camps V G, Gomez C L and Munoz M J, et al. Kernel-based framework for multitemporal andmultisource remote sensing data classification and change detection. IEEE Trans. Geoscienceand Remote Sensing,2008,46(6):1822-1835.
    Chen D, Tsang L, Zhou L. Microwave emission and scattering of foam based on Monte Carlosimulations of dense media. IEEE Trans. Geosci. Remote Sensing,2003,41(4):782-789.
    Chen X G, Wei E B, Song J B. Effective ac response of nonlinear spherical coated composites.Commun. Theor. Phys.,2004,44(5):771-774.
    Cooper N S. The effect of salinity on tropical ocean models. J.Phys. Oceanog.,1988,18:697-707.
    Claussen M. On coupling global biome models with climate model. Climate Research,1994,4:203-221.
    Claussen M, Brovkin V and Ganopolski A, et al. Modelling global terrestrial vegetation-climateinteraction. Philos. Trans. Roy. Soc.,1998,353:53-63.
    Cui T W, Zhang J and Groom S, et al. Validation of MERIS ocean-color products in the Bohai Sea:A case study for turbid coastal waters. Remote Sensing of Environment,2010,114(10):2326-2336.
    DeNoblet N, Prentice I C and Jousaume S, et al. Possible role of atmosphere-biosphereinteractions in triggering the last glaciation. Geophys. Res. Lett.,1996,23(22):3191-3194.
    Dickinson R E, Shaikh M and Graumlich L, et al. Interactive canopies for a climate model.Climate,1998,11:2823-2836.
    Dickinson R E, Berry J A and Bonan G B, et al. Nitrogen controls on climate modelevapotranspiration. Climate,2002,15(3):278-295.
    Dinnat E P, J.Boutin and G.Caudal. Influence of sea surface emissivity model parameters atL-band for the estimation of salinity. J. Remote Sensing,2002,23(23):5117-5122.
    Droppleman J D. Apparent microwave emissivity of sea foam. J.Geophysical Research,1970,75(3):696-698.
    David M L V and Saji A. Galactic Niose and Passive Microwave Remote Sensing. IEEETransaction On Geoscience and Remote Sensing,2004,42(1):119-129.
    David M L V and Saji A. The effect of the ionosphere on Remote Sensing of Sea Surface Salinityfrom space: Absorption and emission at L Band. IEEE Trans. Geosci. Remote Sensing,2002,40(4):771-782.
    Eilison W, Balana A, Delbos G, et al. New permittivity measurements of sea water. Radio Sci,1998,33:639-648.
    Eurico J D, Richard L M. Bio-optical properties in waters influenced by the Mississippi Riverduring low flow conditions. Remote Sensing of Environment,2003,84:538-549.
    Font J, Camps A and Ballabrera-Poy J. Microwave aperture synthesis radiometry: Paving the pathfor Sea Surface Salinity measurement from space. Remote Sensing of the European Seas,2008:223-238.
    Font J, Gary S, E Lagerloef, et al. The Determination of Surface Salinity With the EuropeanSMOS Space Mission. IEEE Trans Geosci and Remote Sensing,2004,42(10):2196-2204.
    Font J, Lagerloef G and Kerr Y, et al. Sea Surface Salinity mapping with SMOS space mission.Building the European Capacity in Operational Oceanography, Proceedings of the ThirdInternational Conference on EuroGOOS,2003,69:186-189.
    Font J, Camps A and Borges A, et al. SMOS: The challenging sea surface salinity measurementfrom space. Proceedings of the IEEE,2010,98(5):649-665.
    Fox M F, Kester D R and Yoder J A. Spatial and temporal distributions of surface temperature andchlorophyll in the Gulf of Maine during1998using SeaWiFS and AVHRR imager. MarineChemistry,2005,97(1-2):104-123.
    Gabarda S. Cloud Covering Denoising through Image Fusion. Image and Vison Computing,2007,25:523-530.
    Gabarro C, M. Vallossera and J.Font, et al. Determination of Sea Surface Salinity and wind speedby L-band microwave radiometry from a fixed Platform. Int. J. Remote Sens.,2003,25(1):111-128.
    Gary B, Brassington a, Prasanth Divakaran. The theoretical impact of remotely sensed sea surfacesalinity observations in a multi-variate assimilation system. Ocean Modelling,2009,27:70–81.
    Guillou C, Ellison W and Eymard L, et al. Impact of new permittivity measurements on seasurface emissivity modeling in microwaves. Radio Sci.,1998,33:641-667.
    Guo Jianjun, Leung Tsang and William Asher, et al. Application of dense media radiotive transfertheory for passive microwave Remote Sensing of foam covered ocean. IEEE Trans. Geosci.Remote Sensing,2001,39(5):1919-1927.
    Hale G M, Querry M R. Optical constants of water in the200nm to200μm wavelength region.Applied Optics,1973,12:555-563.
    Hollinger J P. Passive microwave measurements of sea surface roughness. IEEE Trans Geosci,1971,9:165-169.
    Hu C, Carder K L and Muller K, et al. Atomospheric correction of SeaWiFS imagery over turbidcoastat Waters. Remote Sensing of Environment,2000,74(2):195-206.
    Jaegle L, Quinn P K and Bates T S, et al. Global distribution of sea salt aerosols: new constraintsfrom in situ and remote sensing observations. Atmospheric Chemistry and Physics,2011,11(7):3137-3157.
    Jerlov N G. Optical oceanography. Amsterdam: Elsevier.,194.1968.
    Ji J J. A climate-vegetation interaction model: simulating physical and biological processes at thesurface. Journal of Biogeography,1995,22:445-451.
    Klein L A and Swift C T. An improved model for the dielectric constant of sea Water at microwavefrequencies. IEEE Trans on Antennas and Prop,1977, AP-25(1):104-111.
    Kim H and Swain P. A method for classification of multisource data using interval-valuedprobabilities and its application to HIRIS data. Workshop Multisource Data Integration inRemote Sensing,1990,6(1):75-82.
    Kowalczuk P, Darecki M and Olszewski J, et al. Empirical relationship between ColouredDissolved Organic Matter (CDOM) absorption and apparent optical properties in Baltic Seawaters. International Journal of Remote Sensing,2005,26:345-370.
    Kouts T, Sipelgas L and Savinits N, et al. Environmental monitoring of water quality in coastal seaarea using remote sensing and modeling. Environmental Research, Engineering andManagement,2007,1(39):8-13.
    Lerner R M and Hollinger J P. Analysis of1.4GHz radiometric measurements from Skylab.Remote Sensing Environment,1977,6:251-269.
    Lin C L, Su J L and Xu B R, et al. Long-term variations of temperature and salinity of the BohaiSea and their influence on its ecosystem. Progress in Oceanography,2001,49:7-19.
    Lukas R and Lindstrom E. The mixed layer of the western equatorial Pacific Ocean. J GeophysRes.1991,96:3343-3357.
    Lagerloef G S E. Satellite measurements of salinity, in encyclopedia of ocean sciences, Eds,Academic Press,2001:2511-2516.
    Larouche P and Boyer-Villemaire U. Suspended particulate matter in the St. Lawrence estuary andGulf surface layer and development of a remote sensing algorithm. Estuarine Coastal andShelf Science,2010,90(4):241-249.
    Lee Z P, Kendall L C and Curtis D M, et al. Hyperspectral remote sensing for shallow waters. Ⅰ.A semianalytical model. Applied Optics,1998,37(27):6329-6338.
    Lee Z P, Kendall L C and Curtis D M, et al. Hyperspectral remote sensing for shallow waters:2.Deriving bottom depths and water properties by optimization. Applied Optics,1999,38(18):3831-3843.
    Li Zhi and Wei E B. Dielectric response of graded spherical composites. CHIN. PHYS. LETT.2005,22(9):2360-2362.
    Liu Y G, Su M Y and Yan X H, et al. The mean-square slope of ocean surface waves and itseffects on radarbackscatter. Journal of Atmospheric and Oceanic Technology,2000,17(8):1092-1105.
    Lorrain P and Corson D R. Electromagnetic Fields and Waves, San Francisco: W H Freeman,1980,504-535.
    Maalouf A. A Bandlet-based In painting Technique for Clouds Removal from Remotely SensedImages. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2363-2371.
    Mao X Y, Jiang W S and Zhao P, et al. A3-D numerical study of salinity variations in the BohaiSea during the recent years. Continental Shelf Research,2008,28:2689-2699.
    Masuda K, Takashima T, Takayama Y. Emissivity of pure and sea waters for the model sea surfacein the infrared window regions. Remote Sensing Environ,1988,24:313-329.
    Moorcroft P R. Recent advances in ecosystem-atmosphere interactions: An ecological perspective.Proc. Roy. Soc.,2003b,270:1215-1227.
    Moran M A, Zepp R G. Role of photoreaction in the formation of biologically labile compoundsfrom dissolved organic matter. Limnology and Oceanography,1997,42(6):1307-1316.
    Moran M S, Hymer D C, Qi J. Soil moisture evaluation using multi-temporal synthetic apertureradar (SAR) in semiarid rangeland. Agricultural and Forest Meteorology,2000,105:69-80.
    Morel A, Prieur L. Analysis of variations in ocean color. Limnology and Oceanography,1977,22:709-722.
    Murtugudde R and Busalacchi A J. Salinity effects in a tropical ocean model. J Geophys Res,1998,103:3283-3300.
    Njoku E G, Rahmat-Samii Y. Evaluation of an inflatable antenna concept for microwave sensingof soil moisture and ocean salinity. IEEE Trans. Geoscience and Remote Sensing,1999,37(1):63-78.
    Palacios S L, Peterson T D and Kudela R M. Development of synthetic salinity from remotesensing for the Columbia River plume. JGR.2009,114:1-14.
    Petus C, Chust G and Gohin F, et al. Estimating turbidity and total suspended matter in the AdourRiver plume (South Bay of Biscay) using MODIS250m imagery. Continental Shelf Research,2010,30:379-392.
    Pleskachevsky A, Gayer G and Horstmann J, et al. Synergy of satellite remote sensing andnumerical modeling for monitoring of suspended particulate matter. Ocean Dynamics,2005,55:2-9.
    Pope R M and Fry E S. Absorption spectrum (380-700nm) of pure water: Ⅱ integrating cavitymeasurements. Applied Optics,1997,36:8710-8723.
    Prentice I C, Cramer W and Harrison S P, et al. A global biome model based on plant physiologyand dominance, soil properties and climate. Journal of Biogeography,1992,19:117-134.
    Raut B A. Wavelet-based Technique to Extract Convective Clouds from Infrared Satellite Images.IEEE Geoscience and Remote Sensing Letters,2008,5(3):328-330.
    Reul N and B. Chapron. A model of sea-foam thickness distribution for passive microwave remotesensing applications. J. Geophys. Res.,2003,108(C10):3321,19-1~19-14.
    Reynolds R W, Rayner N A, Smith T M, et al. An Improved In Situ and Satellite SST Analysis forClimate. Climate,2002,15:1609–1625.
    Reynolds R W. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures. JClimate,1993,6:768-774.
    Roderick E W, Winfried W C, Sandor Van Laar. Regional and seasonal differences in lightabsorption by yellow substance in the southern bight of the North Sea. Journal of Research,1999,42:169-178.
    Sano E. Sensitivity analysis of C-and Ku-band synthetic aperture radar data to soil moisturecontent in semiarid regions. Ph. D. Dissertation. University of Arizona,1997.
    Schwarz J N, Kowalcazuk P, Kaczmarek S. Two models for absorption by coloured dissolvedorganic matter. Oceanologia,2002,44(2):209-241.
    Sellers P J, Dickinson R E and Randall D A, et al. Modeling the exchanges of energy, water andcarbon between continents and the atmosphere. Science,1997,275:502-509.
    Sengur A, Turkoglu A and Ince M C. Wavelet packet neural networks for texture classification.Expert Systems with Applications,2007,32(2):527-533.
    Shi J C, Jeff Dozier, Helmut Rott. Snow mapping in alpine regions with synthetic aperture rader.IEEE Trans. Geoscience and Remote Sensing,1994,32(1):152-158.
    Solberg A H S, Taxt T and Jain A K. A Markov random field model for classification ofmultisource satellite imagery. IEEE Trans. Geoscience and Remote Sensing,1996,34(1):100-113.
    Sumner M D, Michael, K J and Bradshaw C J A, et al. Remote sensing of Southern Ocean seasurface temperature: implications for marine biophysical models. Remote Sensing ofEnvironment,2003,84(2):161-173.
    Stedmon C A, Osburn C L, Kragh T. Tracing water mass mixing in the Baltic-North Sea transitionzone using the optical properties of coloured dissolved organic matter. Estuarine, Coastal andShelf Science,2010,87:156-162.
    Stewart R H. Methods of Satellite Oceanography. Berkely: University of California Press,1985.
    Stogryn A. The emissivity of sea foam at microwave frequencies. J. Geophys. Res.1972,77:1658-1666.
    Swift C T and McIntosh R E. Considerations for microwave remote sensing of ocean-surfacesalinity. IEEE Trans Geosci Rem Sens,1983, GE-21:480-491.
    Talone M, Sabia R and Camps A, et al. Sea surface salinity retrievals from HUT-2D L-bandradiometric measurements. Remote Sensing of Environment,2010,114(8):1756-1764.
    Tang J W, Ma C F and Niu S L, et al. The primary results of quantitative ocean color retrieval inChina coastal area with CBERS CCD data. Science in China (Ser E),2005,48(Supp.Ⅰ):161-176.
    Thomann G C. Experimental results of the remote sensing of sea-surface salinity at21cmwavelength. IEEE Trans Geosci Electron,1976,14:198-214.
    TiwariI S P, Shanmugam P. An optical model for the remote sensing of coloured dissolved organicmatter in coastal/ocean waters. Estuarine, Coastal and Shelf Science,2011,93:396-402.
    Tseng D C. Automatic Cloud Removal from Multi-temporal SPOT Images. Applied Mathematicsand Computation,2008,205:584-600.
    Ulaby F T, More P K and Fung A K. Microwave Remote Sensing Active and Passive.Addison-Wesley Publishing Company,1981.
    Ulaby F T, Li R Y and Shanmugan K S. Crop classification using airborne radar and landsat data.IEEE Trans. Geoscience and Remote Sensing,1982,20(1):42-51.
    Vermote E F, Tanre D and Deuz J L, et al. Second simulation of the satellite signal in the solarspectrum,6S: An overview. IEEE Trans. Geoscience and Remote Sensing,1997,35(3):675-686.
    Wang C Z. Soil moisture estimation in a semiarid rangeland using ERS-2and TM imagery.Remote Sensing of Environment,2004,90:178-189.
    Wang F G and Xu Y J. Development and application of a remote sensing-based salinity predictionmodel for a large estuarine lake in the US Gulf of Mexico coast. Journal of Hydrology,2008,360:184-194.
    Wang J J and Lu X X. Estimation of suspended sediment concentrations using Terra MODIS: Anexample from the Lower Yangtze River, China. Science of the Total Environment,2010,408(5):1131-1138.
    Wei E B and Gu G Q. An effective medium approximation of nonlinear composites with sphericalparticle. Chin. Phys. Lett.,2001,18(7):960-962.
    Wei E B, Yong Z D and Gu G Q. Effective ac response in weakly nonlinear composites. J. Phys. D:Appl. Phys.,200437:107-111.
    Wei E B and Ge Y. A microwave emissivity model of sea surface under wave breaking. ChinesePhysics,2005,14:1259-1264.
    Wemmert C, Puissant A, and Forestier, et al. Multiresolution remote sensing image clustering.IEEE Transactions on Geoscience and Remote Sensing,2009,6(3):533-537.
    Williams D, Wang C P and Liao X P, et al. Classification of unexploded ordnance usingincomplete multisensor multiresolution data. IEEE Trans. Geoscience and Remote Sensing,2007,47(7):2364-2373.
    Wilson W J, Yueh S H and Dianardo S J, et al. Passive Active L-and S-band (PALS) microwavesensor for ocean salinity and soil moisture measurements. IEEE Trans Geosci RemoteSensing,2001,39(5):1039-1048.
    Wilson W J, Yueh S H and Dinardo S J, et al. High-stability L-band radiometer measurements ofsaltwater. IEEE Trans. Geoscience and Remote Sensing,2004,42(9):1829-1835.
    Wilson D. An method of computing ship contrast temperatures. US: NTIS,1979.
    Witte W G, Whitlock C H, Harris R C. Influence of dissolved organic materials on turbid wateroptical properties and remote sensing reflectance. Geophysical Research,1982,87:441-446.
    Wong M, Kwan S H L and Young J K, et al. Modelling of suspended solids and Sea SurfaceSalinity in Hong Kong using Aqua/MODIS satellite images. Korean Journal of RemoteSensing,2007,23(3):161-169.
    Xu Q and Liu Y G. A new formula on the fresnel reflectance and its application in microwaveremote sensing. Science in China(Series D),2004,47(11):1045-1052.
    Yin X, Liu Y and Wang Z, et al. A new algorithm for microwave radiometer remote sensing ofsea surface salinity and temperature. Science in China Series D-Earth Sciences,2006a,49(11):1204-1211.
    Yin X, Liu Y and Zhang H. Removing the impact of wind direction on remote sensing of seasurface salinity. Chinese Science Bulletin,2006b,51(11):1368-1373.
    Yueh S H, West R and Wilson W J, et al. Error sources and feasibility for microwave remotesensing of ocean surface salinity. IEEE Trans Geosci Remote Sens,2001,39(5):1049-1060.
    You Y. Rain-formed barrier layer of the western equatorial pacific warm pool: A case study. JGeophys Res,1998,103:5361-5378.
    Zhou B T, Liu X N and Wu L, et al. The retrieval algorithm of the Sea Surface Salinity based onthe improved K-S model in Hong Kong Waters.1stInternational Conference on ComputerVision in Remote Sensing,2012,323-328.
    Zinc S, Boutin J and Waldteufel P, et al. Issues about retrieving sea surface salinity in coastalareas from SMOS data. IEEE Trans. Geoscience and Remote Sensing,2007,45(7):2061-2072.
    Zine S, Boutin J and Font J, et al. Overview of the SMOS sea surface salinity prototype processor.IEEE Transactions on Geoscience and Remote Sensing,2008,46(3):621-645.
    Zine S, Boutin J, Waldteufel P. Issues about retrieving sea surface salinity in coastal areas fromSMOS data. IEEE Trans. Geoscience and remote sensing,2007,45(7):2061-2072.
    曹文熙,杨跃中,许晓强,等.珠江口悬浮颗粒的吸收光谱及其区域模式.科学通报,2003,48(17):1876-1882.
    陈成钧(译).电磁场与电磁波.劳兰、考森(著),北京:人民出版社,1980. P481.
    陈楚群,潘志林,施平.海水光谱模拟及其在黄色物质遥感反演中的应用.热带海洋学报,2003,22(5):33-39.
    陈楚群,施平.应用水色卫星遥感技术估算珠江口海域溶解有机碳浓度.环境科学学报,2001,21(6):715-719.
    陈莉琼,田礼乔,邱凤,等. HJ-1A/B卫星CCD影像的武汉市东海水色三要素遥感研究,武汉大学学报,2011,36(11):1280-1283.
    冯士笮,李凤歧,李少菁.海洋科学导论.北京:高等教育出版社,1999.
    龚绍琦,黄家柱,李云梅,等.水体氮磷高光谱遥感实验研究初探.光谱学与光谱分析,2008,28(4):839-842.
    郭治安,沈小峰.协同论.山西:山西经济出版社,1991.
    侯世昌,马锡冠等(译).微波遥感,第一卷(微波遥感基础和辐射测量学). F.T.乌拉比,R.K.穆尔,冯健超(著).北京:科学出版社,1988. P322.
    贾永红,李德仁.基于Bayes融合法的多源遥感影像分类.武汉测绘科技大学学报,1997,22(3):248-251.
    江蓓洁,鲍献文,吴德星.北黄海冷水团温、盐多年变化特征及影响因素.海洋学报,2007,29(4):1-10.
    金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社,1993.
    雷震东,曾原,林士杰,等.航空微波遥感海水盐度的研究.宇航学报,1992,13(2):62-67.
    雷震东.海洋无源微波遥感的研究.华中理工大学学报,1995,23(4):59-63.
    刘良明等.卫星海洋遥感导论.湖北:武汉大学出版社,2005, P265.
    刘玉光.卫星海洋学.山东:中国海洋大学出版社,2003.
    李露锋,刘湘南,李致博,等.珠江口海域叶绿素a质量浓度SAR反演模型.海洋学研究,2012,2:66-73.
    李致博,刘湘南,李露锋.基于多极化后向散射系数的海洋悬浮物反演研究.海洋技术,2011,31(4):68-73.
    李青侠,张靖,郭伟,等.微波辐射计遥感海洋盐度的研究进展.海洋技术,2007,26(3):58-63.
    李微,李德仁.基于HSV色彩空间的MODS云检测算法研究,中国图象图形学报,2011,16(9):1696-1701.
    李志,魏恩泊,天纪伟.一个L波段海表盐度遥感反演的新经验模式.物理学报,2007,56(5):3028-3030.
    梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社,2001,14-30.
    马泳,梁琨,林宏,等.基于布里渊后向散射的海水温度与盐度同步测量研究.光学学报,2008,28(8),2008.
    沈文水,周新志.基于同态滤波的遥感图像薄云去除算法.强激光和粒子束,2010,22(1):45-48.
    史久新,朱大勇,赵进平,等.海水盐度遥感反演精度的理论分析.高技术通讯,2004,23(7):101-105.
    侍茂崇.物理海洋学.山东:山东教育出版社,2004.12.
    覃志豪,张明华.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-465.
    覃志豪, Li-Wenjuan, Zhang-Minghua,等.单窗算法的大气参数估计方法.国土资源遥感,2003,56(2):37-43.
    王杰,矫玉田,曹勇,等.海表面盐度遥感技术的发展与应用.海洋技术.2006,25(3):76-81.
    王江涛,于志刚,张经,等.鸭绿江口溶解有机碳的研究.青岛海洋大学学报,1998,28(3):471-475.
    王桂芬,曹文熙,许大志.南海北部海区非藻类颗粒物吸收系数的变化特性.海洋技术,2007,26(1):45-49.
    王永红, Heron M L and Ridd P.航空微波遥感观测海水表层盐度的研究进展.海洋地质与第四纪地质,2007,27(1):139-145.
    吴德星,牟林,李强,等.渤海盐度长期变化特征及可能的主导因素.自然科学通报,2004b,14(2):191-195.
    吴大进等.协同学原理与应用.湖北:华中理工大学出版社,1990.
    吴永森,孙培光,张振生,等.胶州湾黄色物质反演模式建立及在黄、东海海域的适应性检验.海洋与湖沼,2006,37(6):505-510.
    谢强,李海洋,王东晓.热带太平洋盐含量的年际变化.海洋科学进展,2009,27(2):155-165.
    邢小罡,赵冬至,刘玉光,等.渤海非色素颗粒物和黄色物质的吸收特性研究.海洋环境科学,2008,27(6):595-598.
    徐德伦,于定勇.随机海浪理论.北京:北京出版社,2001.
    殷晓斌,刘玉光,张汉德,等.海表面盐度的微波遥感-平静海面的微波辐射机理研究.高技术通讯,2005,15(8):90.
    殷晓斌,刘玉光,王振占.一种用于微波辐射计遥感海表面盐度和温度的反演算法.中国科学D辑,地球科学,2006,36(10):968-976.
    杨顶田,曹文熙,杨跃中.珠江口水体的光学特征及分析.生态科学,2004,23(1):1-4.
    杨静学,王云鹏,杨勇.基于高程或气溶胶厚度与6S模型校正参数回归方程的遥感图像大气校正模型,遥感技术与应用,2009,24(3):331-340.
    杨婷,张慧,王桥,等.基于HJ-1A卫星超光谱数据的太湖叶绿素a浓度及悬浮物浓度反演,环境科学,2011,32(11):3207-3214.
    杨锦坤,陈楚群.珠江口二类水体水色三要素的优化反演.热带海洋学报,2007,26(5):15-20.
    杨秀春,曹云刚,徐斌,等.多源遥感数据协同的我国草原积雪范围全天候实时监测.地理研究,2009,28(6):1704-1712.
    闫娜娜,吴炳方,李强子,等. HJ-1A/B卫星在干旱应急监测中的应用,遥感技术与应用,2010,25(5):675-681.
    余凡,李海涛,万紫,等.结合贝叶斯理论和MRF的主被动遥感数据协同分类.遥感学报,2012,16(4):809-825.
    赵鹏,江文胜,毛新燕,等.2000-2005年莱州湾盐度的变化及其主要影响因素.海洋与湖沼,2010,41(1):12-23.
    张洪亮,杨建强,崔文林.莱州湾盐度变化现状及其对海洋环境与生态的影响.海洋环境科学,2006,25:11-14.
    张祖荫,林士杰.微波辐射测量及技术应用.北京:电子工业出版社,1995.
    张春桂,曾银东,张星.海洋叶绿素a浓度反演及其在赤潮监测中的应用.应用气象学报,2007,18(6):821-831.
    张海龙,蒋建军,吴宏安,等. SAR与TM影像融合及在BP神经网络分类中的应用.测绘学报,2006,35(8):229-239.
    周博天,刘湘南,吴伶,等.基于海面辐射传输模型参数优化的黄色物质浓度遥感反演.海洋技术,2012,31(4):45-49.
    周博天,刘湘南,吴伶,等.基于水色遥感的香港海域黄色物质浓度反演模型.海洋环境科学,2013,32(1):115-119.
    周秀骥等.大气微波辐射及遥感原理.北京:科学出版社,1982. P178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700