分布式电驱动车辆纵横向运动综合控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆在道路上的行驶状态可分为纵向运动与横向运动。纵横向运动综合控制技术能够通过协调纵向的驱动/制动系统与横向的转向系统,综合提高车辆行驶过程中的操纵稳定性及经济性等性能。目前对纵横向运动综合控制技术的研究主要聚焦于常规内燃机车辆和集中式电驱动车辆。针对现有分布式电驱动车辆纵横向运动综合控制研究中存在的控制体系不够完善、车辆状态估计算法准确性与鲁棒性不高、纵横向力分配算法优化目标单一、轮胎逆模型计算精度较低等问题,本文以装备有前轮主动转向系统的分布式电驱动车辆为研究对象,建立了以提高车辆操纵稳定性与经济性为目标的分布式电驱动车辆纵横向运动综合控制系统,并对其中涉及的车辆状态估计、纵横向力分配、纵横向力控制等相关问题开展了研究。
     为满足纵横向运动综合控制系统对车辆状态信息的需求,建立状态观测器,对纵向车速及质心侧偏角等难以直接测量的车辆关键状态参数进行估计。结合全球卫星定位系统(GPS)与惯性导航传感器(INS)的测量信息,并通过融合运动学与动力学状态估计方法,得到实时准确的纵向车速和质心侧偏角估计结果。
     为实现各子控制系统的控制目标分配,建立上位控制器,对四轮纵向力及前轮横向力进行优化分配。分别基于轮胎负荷率优化和耗散能优化的方法对各轮纵横向力进行分配,并设计了两种优化目标的动态调节方法,以综合提高车辆操纵稳定性和经济性。
     为实现对各子控制系统的控制,建立下位控制器,控制轮胎纵向及横向力达到目标值。通过轮胎逆模型将纵向力与横向力控制目标转换为更易观测及控制的轮胎滑移率与侧偏角控制目标,并可实现纵横向力间的解耦。分别建立应用滑模算法的滑移率控制器和基于前馈与反馈组合的侧偏角控制器以实现对轮胎滑移率及侧偏角的控制。
     为验证所提出的分布式电驱动车辆纵横向运动综合控制系统的有效性,基于搭建的仿真与实车实验平台对涉及的各项关键技术及整体控制系统进行了多工况验证。仿真及实验结果表明所提出的纵横向运动综合控制系统能够有效的提高分布式电驱动车辆的操纵稳定性及经济性。
The movement of vehicle on the road can be divided into longitudinal motion andlateral motion. Integrated longitudinal and lateral motion control system can improvethe vehicle handling stability and energy efficiency by controlling the drive/brakesystem and the active steering system. The existing researches mainly focus on theconventional ICE (Internal Combustion Engine) vehicles and centralized EV (ElectricVehicles). For the integrated longitudinal and lateral motion control of distributed EV,there are some problems in the existing researches, such as the control system isincomplete, the accuracy and robustness of the vehicle state estimation is not highenough, the performance index of tire force distribution is not optimal, and the accuracyof inverse tire model is limited. Considering these problems, for the distributed EVequipped with active front steering system, an integrated longitudinal and lateral motioncontrol system is proposed in order to improve the handling stability and energyefficiency. The key technologies, including vehicle state estimation, optimum tire forcedistribution and tire force control, are studied in this dissertation.
     The state estimator is established in order to estimate some key vehicle stateswhich are hard to measure directly, such as longitudinal velocity and vehicle sideslipangle. Combining the signals from GPS and INS, and integrating the kinematic anddynamic estimation method, real-time and accurate estimation result of longitudinalvelocity and vehicle sideslip angle can be obtained.
     The upper controller is used for the tire force distribution. Longitudinal and lateraltire forces are allocated based on the optimization of tire workload and tire energydissipation respectively. A dynamic regulation method between these two performanceindexes is proposed in order to improve the vehicle handling stability and energyefficiency.
     The lower controller is built for the tire force control. The desired tire forces aretransformed to tire slip ratio and sideslip angle, which are easier to measure and control.Meanwhile, the longitudinal force and lateral force are decoupled. A sliding modecontroller and a feedforward/feedback combined controller are established for thecontrol of the tire slip ratio and sideslip angle respectively.
     To verify the effectiveness of the integrated longitudinal and lateral motion control system of distributed EV, simulation and field test in different operating conditions arecarried out. The simulation and field test results show that the coordinated controlsystem can improve the vehicle handling stability and energy efficiency effectively.
引文
[1] Satoshi Murata. Innovation by in-wheel-motor drive unit. Vehicle System Dynamics,2012,50(6):807–830.
    [2] Anton T. van Zanten, Rainer Erhardt, Georg Pfaff, et al. Control Aspects of the Bosch-VDC.International Symposium on Advanced Vehicle Control, Aachen, Germany,1996.
    [3] Anton T. van Zanten. Bosch ESP System:5Years of Experience. SAE AutomotiveDynamics&Stability Conference, Troy, Michigan. SAE2000-01-1633.
    [4]蒋励,余卓平,高晓杰.宝马主动转向技术概述.汽车技术,2006,(4):1-4.
    [5] Yutaka Aoyama, Kazunobu Kawabata, Shinnichi Hasegawa, et al. Development of the fullactive suspension by Nissan. Passenger Car Meeting and Exposition, Dearborn, Michigan.SAE901747.
    [6] Youseok Kou, Huei Peng, Dohyun Jung. Worst-case evaluation for integrated chassis controlsystems. Vehicle System Dynamics,2008,46(1):329–340.
    [7] Youseok Kou. Development and Evaluation of Integrated Chassis Control Systems [PhD.Thesis]. Ann Arbor: University of Michigan,2010.
    [8] Daofei Li, Shangqian Du and Fan Yu. Integrated vehicle chassis control based on direct yawmoment, active steering and active stabilizer. Vehicle System Dynamics,2008,46(1):341–351.
    [9]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[博士学位论文].上海:上海交通大学,2008.
    [10] Youssef A. Ghoneim, William C. Lin, David M. Sidlosky, et al. Integrated chassis controlsystem to enhance vehicle stability. International Journal of Vehicle Design,2000,23(1):124-144.
    [11] Junjie He, D A Crolla, M C Levesley, et al. Coordination of active steering, driveline, andbraking for integrated vehicle dynamics control. Proc. IMechE Part D: J. AutomobileEngineering,2006,220:1401-1421.
    [12] Chiaki Hamada, Katsumi Fukatani, Katsuyuki Yamaguchi. Development of VehicleDynamics Integrated Management.2006SAE World Congress, Detroit, Michigan. SAE2006-01-0922.
    [13] Wanki Cho, Jangyeol Yoon, Jeongtae Kim. An investigation into unified chassis controlscheme for optimised vehicle stability and manoeuvrability. Vehicle System Dynamics,2008,46(1):87–105.
    [14] Wanki Cho, Jaewoong Choi, Chongkap Kim. Unified Chassis Control for the Improvement ofAgility, Maneuverability, and Lateral Stability. IEEE Transactions on Vehicular Technology,2012,61(3):1008–1020.
    [15] Peter Zegelaar, Roger Graaf, Oliver Nehls. Integrated Vehicle Dynamics Controls. VehicleDynamics Expo, Stuttgart, Germany,2004.
    [16] Peter E. Rieth, Ralf Schwarz. ESC II–ESC With Active Steering Intervention.2004SAEWorld Congress, Detroit, Michigan. SAE2004-01-0260.
    [17] Takahiro Kojo, Masato Suzumura, Yoshiaki Tsuchiya. Development of Active Front SteeringControl System.2005SAE World Congress, Detroit, Michigan. SAE2005-01-0404.
    [18] Youssef A. Ghoneim. Control strategy for integrating the active front steering and theelectronic stability control system: analysis and simulation. International Journal VehicleAutonomous Systems,2010,8(2):106-125.
    [19] G. Burgio, P. Zegelaar. Integrated vehicle control using steering and brakes. InternationalJournal of Control,2006,79(5):534-541.
    [20] S. Caglar Baslamisli, I. Emre Kose, Gunay Anlac. Handling stability improvement throughrobust active front steering and active differential control. Vehicle System Dynamics,2011,49(5):657–683.
    [21] Said Mammar, Damien Koenig. Vehicle Handling Improvement by Active Steering. VehicleSystem Dynamics,2002,38(3):211–242.
    [22] J. Y. Wu, H. J. Tang, S. Y. Li, et al. Integrated Control System Design of Active Front WheelSteering and Four Wheel Torque to Improve Vehicle Handling and Stability. InternationalJournal of Automotive Technology,2007,8(3):299–308.
    [23] Nenggen Ding, Saied Taheri. An adaptive integrated algorithm for active front steering anddirect yaw moment control based on direct Lyapunov method. Vehicle System Dynamics,2010,48(10):1193–1213.
    [24] Yifan Dai, Yugong Luo, Wenbo Chu, et al. Optimum tire force distribution forfour-wheel-independent drive electric vehicle with active front steering. InternationalSymposium on Advanced Vehicle Control, Seoul, Korea,2012.
    [25] Kihong Park, Seung-Jin Heo, Taehun Hwang. Unified Vehicle Dynamic Control System ofESP and AFS Based on Characteristic Locus Method. International Symposium on AdvancedVehicle Control, Kobe, Japan,2008.
    [26]喻凡,李道飞.车辆动力学集成控制综述.农业机械学报,2010,39(6):1-7.
    [27] Junmin Wang, Raul G. Longoria. Coordinated and Reconfigurable Vehicle Dynamics Control.IEEE Transactions on Control System Technology,2009,17(3):723-732.
    [28]刘力,罗禹贡,江青云.基于广义预测理论的AFS/DYC底盘一体化控制.汽车工程,2011,33(1):52-55.
    [29] Anton T. van Zanten. Evolution of Electronic Control Systems for Improving the VehicleDynamic Behavior. International Symposium on Advanced Vehicle Control, Hiroshima,Japan,2002.
    [30] David M. Bevly. Global Positioning System (GPS): A Low-Cost Velocity Sensor forCorrecting Inertial Sensor Errors on Ground Vehicles. Journal of Dynamic Systems,Measurement, and Control,2004,126(6):255-264.
    [31] Jong-Hwa Yoon, Huei Peng. Vehicle Sideslip Angle Estimation Using Two Single-AntennaGPS Receivers. ASME2010Dynamic Systems and Control Conference, Cambridge, USA,2010.
    [32] W.J. Manning, D.A. Crolla. A review of yaw rate and sideslip controllers for passengervehicles. Transactions of the Institute of Measurement and Control,2007,29(2):117-135.
    [33] King Tin Leung, James F. Whidborne, David Purdy, et al. A review of ground vehicledynamic state estimation utilizing GPS/INS. Vehicle System Dynamics,2011,49(1):29–28.
    [34] Liang Li, Jian Song, Hongzhi Li, et al. A variable structure adaptive extended Kalman filterfor vehicle slip angle estimation. International Journal of Vehicle Design,2011,56(1):161-185.
    [35] Liang Li, Hongzhi Li, Xiaolong Zhang, et al. Real-time Tire Parameters Observer for VehicleDynamic Stability Control. Chinese Journal of Mechanical Engineering,2010,23(5):620-626.
    [36] Bruce P. Gibbs. Advanced Kalman Filtering, Least-Squares and Modeling. Hoboken: JohnWiley&Sons, Inc.,2011.
    [37] H. Wang and C. Goh. Fuzzy Logic Kalman Filter Estimation for2-wheel Steerable Vehicles.1999IEEE International Conference on Intelligent Robots and Systems, Kyongju, Korea,1999.
    [38] B. He, D. Wang, M. Phain, et al. Position and Orientation Estimation with High Accuracy fora CarLike Vehicle.2002IEEE International Conference on Intelligent TransportationSystems, Singapore,2002.
    [39] B. Chen, F. Hsieh. Sideslip angle estimation using extended Kalman filter. Vehicle SystemDynamics,2008,46(1):353–364.
    [40] K. Leung, J. Whidborne, D. Purdy, et al. A Study on the Effect of GPS Accuracy on aGPS/INS Kalman Filter. UKACC2008International Conference on Control, Manchester,UK,2008.
    [41] H. H. Kim, J. Ryu. Sideslip Angle Estimation Considering Short-Duration LongitudinalVelocity Variation. International Journal of Automotive Technology,12(4):545-553.
    [42] Yifan Dai, Yugong Luo, Wenbo Chu, et al. Vehicle State Estimation Based on the Integrationof Low-Cost GPS and INS. International Forum on Advanced Vehicle Technologies andIntegration, Changchun, China,2012.
    [43] T. A. Wenzel, K. J. Burnham, M. V. Blundell, et al. Dual extended Kalman filter for vehiclestate and parameter estimation. Vehicle System Dynamics,2006,44(2):153–171.
    [44] David M. Bevly, J. Christian Gerdes, Christopher Wilson, et al. The Use of GPS BasedVelocity Measurements for Improved Vehicle State Estimation.2000American ControlConference, Chicago, USA,2000.
    [45] David M. Bevly, Robert Sheridan, J. Christian Gerdes. Integrating INS sensors with GPSvelocity measurements for continuous estimation of vehicle sideslip and tire corneringstiffness.2001American Control Conference, Arlington, USA,2001.
    [46] Jihan Ryu, Eric J. Rossetter, and J. Christian Gerdes. Vehicle Sideslip and Roll ParameterEstimation using GPS. International Symposium on Advanced Vehicle Control, Hiroshima,Japan,2002.
    [47] David M. Bevly, J. Christian Gerdes, Christopher Wilson. The Use of GPS Based VelocityMeasurements for Measurement of Sideslip and Wheel Slip. Vehicle System Dynamics,2002,38(2):127–147.
    [48] Jihan Ryu, Eric J. Rossetter, J. Christian Gerdes. Road Grade and Vehicle ParameterEstimation for Longitudinal Control Using GPS. IEEE Conference on IntelligentTransportation Systems, Oakland, USA,2001.
    [49] Gebre-Egziabher D. Design and Performance Analysis of a Low-Cost AidedDead-Reckoning Navigator [PhD. Thesis]. Stanford: Stanford University,2001.
    [50] Rusty Anderson, David M. Bevly. Estimation of Tire Cornering Stiffness Using GPS toImprove Model Based Estimation of Vehicle States.2005IEEE Intelligent VehiclesSymposium, Las Vegas,2005.
    [51] Rusty Anderson, David M. Bevly. Using GPS with a model-based estimator to estimatecritical vehicle states. Vehicle System Dynamics,2010,48(12):1413–1438.
    [52] K. Rock, S. Beiker, S. Laws, et al. Validating GPS Based Measurement for Vehicle Control,2005ASME International Mechanical Engineering Congress and Exposition, Orlando, USA,2005.
    [53] Damrongrit Piyabongkarn, Rajesh Rajamani, John A. Grogg, et al. Development andexperimental evaluation of a slip angle estimator for vehicle stability control.2006AmericanControl Conference, Minneapolis, USA,2006.
    [54] Damrongrit Piyabongkarn, Rajesh Rajamani, John A. Grogg, et al. Development andexperimental evaluation of a slip angle estimator for vehicle stability control. IEEETransactions on Control Systems Technology,2009,17(1):78-88.
    [55] Y. Shibahata, K. Shimada, T. Tomari. Improvement of Vehicle Maneuverability by DirectYaw Moment Control. Vehicle System Dynamics,1993,22(5):465–481.
    [56] K. Shimada, Y. Shibahata. Comparison of Three Active Chassis Control Methods forStabilizing Yaw Moments. International Congress&Exposition, Detroit, Michigan. SAE940870.
    [57]刘力.基于AFS和DYC的车辆运动稳定性协调控制方法[博士学位论文].北京:清华大学,2009.
    [58] Motoki Shino, Masao Nagai. Yaw-moment Control of Electric Vehicle for ImprovingHandling and Stability. JSAE Review,2001,22:473–480.
    [59] Pongsathorn Raksincharoensak, Motoki Shino, Masao Nagai. Enhancing Active Safety ofSmall-Scale Electric Vehicle NOVEL by Utilizing In-Wheel-Motors. The20th InternationalBattery, Hybrid and Fuel Cell Electric Vehicle Symposium&Exposition, California, USA,2003.
    [60] Motoki Shino, Pongsathorn Raksincharoensak, Minoru Kamata. Independent wheel torquecontrol of small-scale electric vehicle for handling and stability improvement. JSAE Review,2003,24:449-456.
    [61] Motoki Shino, Naoya Miyamoto, Yuqing Wang, et al. Traction control of electric vehiclesconsidering vehicle stability. The6th International Workshop on Advanced Motion Control,Nagoya, Japan,2000.
    [62] Pongsathorn Raksincharoensak, Motoki Shino, Masao Nagai. Motion Control of Micro-ScaleElectric Vehicle by DYC Considering Lane Marker Information. The8th InternationalWorkshop on Advanced Motion Control, Kawasaki, Japan,2004.
    [63] Pongsathorn Raksincharoensak, Masao Nagai. Adaptive Direct Yaw Moment Control Basedon Driver Intention. International Symposium on Advanced Vehicle Control, Taipei, China,2006.
    [64]邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法.清华大学学报(自然科学版),2009,49(5),719–722.
    [65] Ossama Mokhiamar, Masato Abe. Effects of optimum cooperative chassis control from theviewpoint of tire workload. JSAE Transactions,2004,35(3),215–221.
    [66] Ossama Mokhiamar, Masato Abe. Simultaneous optimal distribution of lateral andlongitudinal tire forces for the model following control. Journal of Dynamics Systems,Measurement, and Control,2004,126,753-763.
    [67] Ossama Mokhiamar, Masato Abe. How the four wheels should share forces in an optimumcooperative chassis control. Control Engineering Practice,2006,14,295–304.
    [68] Ossama Mokhiamar, Masato Abe. Experimental verification using a driving simulator of theeffect of simultaneous optimal distribution of tyre forces for active vehicle handling control.Proc. IMechE Part D: J. Automobile Engineering,2005,219:135-149.
    [69] Masato Abe, Ossama Mokhiamar. An integration of vehicle motion controls for fulldrive-by-wire vehicle. Proc. IMechE Part K: Journal of Multi-body Dynamics,2007,221:117-127.
    [70] Osamu Nishihara, Hiromitsu Kumamoto. Minimax Optimizations of Tire WorkloadExploiting Complementarities between Steering and Traction/Braking Force Distributions.International Symposium on Advanced Vehicle Control, Taipei, China,2006.
    [71] Osamu Nishihara, Shimpei Higashino. Exact Solution to Four-wheel IndependentDriving/Braking Force Distribution and Direct Yaw-moment Optimization with MinimaxCriterion of Tire Workload. International Symposium on Advanced Vehicle Control, Seoul,Korea,2012.
    [72] Peng He, Yoichi Hori. Improvement of EV Maneuverability and Safety by DisturbanceObserver Based Dynamic Force Distribution. The22nd International Battery, Hybrid andFuel Cell Electric Vehicle Symposium&Exposition, Yokohama, Japan,2006.
    [73] Eiichi Ono, Yoshikazu Hattori, Yuji Muragishi, et al. Vehicle Dynamics Integrated Controlfor Four-Wheel-Distributed Steering and Four-Wheel-Distributed Traction/Braking Systems.Vehicle System Dynamics,2006,44(2):139–151.
    [74] Eiichi Ono, Yoshikazu Hattori, Yuji Muragishi, et al. Vehicle Dynamic Control Based onTire Grip Margin. International Symposium on Advanced Vehicle Control, Arnhem,Netherlands,2004.
    [75] Huei Peng, Rahman Sabahi, Shih-Ken Chen, et al. Integrated Vehicle Control Based on TireForce Reserve Optimization Concept. ASME International Mechanical Engineering Congressand Exposition, Denver, USA,2011.
    [76] Peng He, Yoichi Hori, Kamachi Makoto, et al. Future Motion Control to be Realized byIn-Wheel Motored Electric Vehicle. Industrial Electronics Society32nd Annual Conferenceof IEEE, Paris, France,2005.
    [77] Peng He, Yoichi Hori. Resolving Actuator Redundancy for4WD Electric Vehicle bySequential Quadratic Optimum Method. The19th Japan Industry Applications SocietyConference, Fukui, Japan,2005.
    [78] Peng He, Yoichi Hori. Optimum Traction Force Distribution for Stability Improvement of4WD EV in Critical Driving Condition. The9th IEEE International Workshop on AdvancedMotion Control, Istanbul, Turkey,2006.
    [79]余卓平,张立军,熊璐.四轮电动车经济性改善的最优转矩分配控制.同济大学学报:自然科学版,2005,33(10):1355–1360.
    [80]王博,罗禹贡,范晶晶,等.基于控制分配的四轮独立电驱动车辆驱动力分配算法.汽车工程,2010,32(2):128-132.
    [81] Johannes Tjonnas, Tor Arne Johansen. Adaptive Optimizing Dynamic Control AllocationAlgorithm for Yaw Stabilization of an Automotive Vehicle using Brakes. The14thMediterranean Conference on Control and Automation, Ancona, Italy,2006.
    [82] Junya Yamakawa, Keiji Watanabe. A method of optimal wheel torque determination forindependent wheel drive vehicles. Journal of Terramechanics,2006,43:269-285.
    [83] Junya Yamakawa, Akira Kojima, Keiji Watanabe. A method of torque control forindependent wheel drive vehicles on rough terrain. Journal of Terramechanics,2007,44:371-381.
    [84]李亮,宋健,于良耀,等.低附路面汽车动力学稳定性控制系统控制策略.机械工程学报,2007,44(11):371-381.
    [85]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制.上海交通大学学报,2008,42(6):229-235.
    [86] Daofei Li, Bin Li, Fan Yu, et al. A Top-down Integration Approach To Vehicle StabilityControl. IEEE International Conference on Vehicular Electronics and Safety, Beijing. China,2007.
    [87] Daofei Li, Fan Yu. A Novel Integrated Vehicle Chassis Controller Coordinating Direct YawMoment Control and Active Steering.14th Asia Pacific Automotive Engineering Conference,Hollywood, USA. SAE2007-01-3642.
    [88]赵梓含.基于滑移率的汽车制动集成控制研究[硕士学位论文].长春:吉林大学,2009.
    [89]李亮,宋健,韩宗奇.用于电子稳定程序(ESP)在线控制的液压模型和反模型.机械工程学报,2008,44(2):139-144.
    [90]李亮.汽车动力学稳定性控制系统状态观测和控制方法研究[博士学位论文].北京:清华大学,2008.
    [91] H.-Z. Li, L. Li, L. He, et al. PID Plus Fuzzy Logic Method For Torque Control In TractionControl System. International Journal of Automotive Technology,2012,13(3):441-450.
    [92] Jong Hyeon Park, Chan Young Kim. Wheel Slip Control in Traction Control System forVehicle Stability. Vehicle System Dynamics,1999,31(4):263–278.
    [93] Masataka Yoshimura, Hiroshi Fujimoto. Slip Ratio Control of Electric Vehicle withSingle-rate PWM Considering Driving Force. The11th IEEE International Workshop onAdvanced Motion Control, Nagaoka, Japan,2010.
    [94]李亮,康铭鑫,宋健.汽车牵引力控制系统的变参数自适应PID控制.机械工程学报,2011,47(12):92-98.
    [95]王国业,刘昭度,胡仁喜,等.基于等效滑移率变化率的汽车防抱制动系统模糊直接自适应控制.机械工程学报,2008,44(11):242-247.
    [96] Wei-Yen Wang, I-Hsum Li, Ming-Chang Chen, et al. Dynamic Slip-Ratio Estimation andControl of Antilock Braking Systems Using an Observer-Based Direct AdaptiveFuzzy–Neural Controller. IEEE Transactions on Industrial Electronics,2009,56(5):1746-1756.
    [97] Seongho Choi, Dong-Woo Cho. Design of Nonlinear Sliding Mode Controller with PulseWidth Modulation for Vehicular Slip Ratio Control. Vehicle System Dynamics,2001,36(1):57-72.
    [98] Taketoshi Kawabe, Masao Nakazawa, Ikuro Notsu, et al. A Sliding Mode Controller forWheel Slip Ratio Control System. Vehicle System Dynamics,1997,27(5):393-408.
    [99] Kanghyun Nam, Sehoon Oh, Hiroshi Fujimoto, et al. Design of Adaptive Sliding ModeController for Robust Yaw Stabilization of In-wheel-motor-driven Electric Vehicles. The26th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium&Exposition,Los Angeles, USA,2012.
    [100] J.J.E. Slotine, W. Li. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall,1991.
    [101]刘力,罗禹贡,李克强.基于动态目标调整的汽车全轮纵向力分配的研究.汽车工程,2010,32(1):60-72.
    [102] Junmin Wang, Raul G. Longoria. Combined Tire Slip and Slip Angle Tracking Control forAdvanced Vehicle Dynamics Control Systems. IEEE Conference on Decision&Control, SanDiego, USA,2006.
    [103] Junmin Wang, Raul G. Longoria. Coordinated Vehicle Dynamics Control with ControlDistribution.2006American Control Conference, Minneapolis, USA,2006.
    [104] Pradeep Setlur, John R. Wagner, Darren M. Dawson. A Trajectory Tracking Steer-by-WireControl System for Ground Vehicles. IEEE Transactions on Vehicular Technology,2006,55(1):76-85.
    [105] Paul Yih, Christian Gerdes. Modification of vehicle handling characteristics via steer-by-wire.IEEE Transactions on Control System Technology,2005,13(6):965-976.
    [106] Ryo Minaki, Yoichi Hori. Experimental Verification of Driver-Friendly Reactive TorqueControl Based on Driver Sensitivity to Active Front Steering.35th Annual Conference of theIEEE Industrial Electronics Society, Porto, Portugal,2009.
    [107]陈德玲,殷承良,陈俐.基于状态反馈的主动转向控制.机械科学与技术,2008,27(4):503-511.
    [108] Tilman Bunte, Dirk Odenthal, Bilin Aksun-Guven, et al. Robust Vehicle Steering ControlDesign Based on the Disturbance. Annual Reviews in Control,2002,26(1):139-149.
    [109]李一染,陈慧,高博麟.自抗扰控制在前轮主动转向控制中的应用.汽车工程,2011,33(5):388-391.
    [110] Wenbo Chu, Yugong Luo, Yifan Dai, et al. Vehicle State Estimation for In-Wheel MotorElectric Vehicle Using Unscented Particle Filter. International Forum on Advanced VehicleTechnologies and Integration, Changchun, China,2012.
    [111]刘昶.微机电系统基础.北京:机械工业出版社,2007.
    [112]张海,常艳红,车欢.基于GPS/INS不同测量特性的自适应卡尔曼滤波算法.中国惯性技术学报,2010,18(6):696-701.
    [113]卞鸿巍,金志华,王俊璞,等.组合导航系统新息自适应卡尔曼滤波算法.上海交通大学学报,2006,40(6):1000-1003.
    [114]戴一凡,罗禹贡,李克强,等.单电机强混合动力电动车辆的动态协调控制.汽车工程,2011,33(12):1007-1012.
    [115] Hans B. Pacejka. Tyre And Vehicle Dynamics. Butterworth-Heinemann,2006.
    [116] H. Dugoff, P. S. Fancher, L. Segel. An analysis of tire traction properties and their influenceon vehicle dynamic performance. SAE Transactions,1970,79:341-366.
    [117] Lin-Hui Zhao, Zhi-Yuan Liu, Hong Chen. Design of a Nonlinear Observer for VehicleVelocity Estimation and Experiments. IEEE Transactions on Control Systems Technology,2011,19(3):664-672.
    [118] Sangoh Han, Kunsoo Huh. Monitoring System Design for Lateral Vehicle Motion. IEEETransactions on Vehicular Technology,2011,60(4):1394-1403.
    [119] Javad Ahmadi, Ali Khaki Sedigh, Mansour Kabganian. Adaptive Vehicle Lateral-PlaneMotion Control Using Optimal Tire Friction Forces With Saturation Limits Consideration.IEEE Transactions on Vehicular Technology,2009,58(8):4098-4107.
    [120] Unsal C, Kachroo P. Sliding mode measurement feedback control for antilock brakingsystems. IEEE Transactions on Control System Technology,1999,7(2):271-281.
    [121] Baek S, Song J, Yun D, et al. Application of a sliding mode control to anti-lock brake system.International Conference on Control, Automation and Systems, Seoul, Korea,2008.
    [122] Choi S, Cho D W. Design of nonlinear sliding mode controller with pulse width modulationfor vehicular slip ratio control. Vehicle System Dynamics,2001,36(1):57-72.
    [123] Kachroo P, Tomizuka M. Chattering reduction and error convergence in the sliding-modecontrol of a class of nonlinear systems. IEEE Transactions on Automatic Control,1996,41(7):1063-1068.
    [124] Hailin Zhang, Yugong Luo, Qingyun Jiang, et al. Lane Keeping System Based on Electric PowerSteering System. FISITA2012World Automotive Congress, Beijing, China,2012.
    [125] Changsun Ahn, Huei Peng, H. Eric Tseng. Estimation of Road Friction for Enhanced ActiveSafety Systems: Algebraic Approach. American Control Conference, St. Louis, US,2009.
    [126] Changsun Ahn, Huei Peng, H. Eric Tseng. Estimation of Road Friction for Enhanced ActiveSafety Systems: Dynamic Approach. American Control Conference, St. Louis, US,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700