白水地区套袋技术对苹果园中节肢动物群落影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是世界上栽培面积广、消费量大、经济效益较好的水果之一。由于使用大量化学农药进行防病治虫,致使环境污染严重、果品农药残留高、品质下降,严重威胁着人类健康,无公害栽培已成为必然方向。苹果园节肢动物群落变化规律是对苹果有害生物进行无公害生态控制和管理的基础,因此,本研究对渭北高原地区白水县无公害栽培套袋苹果园和无套袋苹果园的节肢动物群落变化状况进行了研究,结果如下:
     1白水地区苹果园内节肢动物群落物种丰富,优势种类突出
     该区果园节肢动物分属于两纲即昆虫纲和蛛形纲。其中无套袋果园共有节肢动物63种,分属2纲10目39科。其中植食性节肢动物共计7目30科,53种,37616头,优势种群为同翅目和蜱螨目,其相对丰盛度达0.7780055和0.1909153。天敌共计6目9科,10种,448头,优势种群为鞘翅目和膜翅目,其相对丰盛度达0.0067255和0.0037043;套袋果园共有节肢动物53种,分属2纲9目29科。其中植食性节肢动物共计6目24科,46种,33573头,优势种群为同翅目和蜱螨目,其相对丰盛度达0.553471和0.418846。天敌共计4目5科,7种,492头,优势种群为膜翅目和鞘翅目,其相对丰盛度达0.008337和0.005754。
     2套袋技术并没有改变节肢动物群落结构的主体
     套袋果园与无套袋果园对比研究表明:天敌亚群落的相对丰盛度远低于植食性节肢动物亚群落,由于植食性节肢动物亚群落在果园生态系统中是初级消费者,比天敌亚群落更低一层,在数量上构成了节肢动物群落的主体,其数量变动将会对整个节肢动物群落产生较大的影响,套袋果园并没有改变节肢动物群落结构的主体。综合分析套袋果园植食性节肢动物群落中,蚜虫、介壳虫、螨类在群落中占据优势地位,是群落结构变动的中心,对总群落整体和天敌亚群落都产生极大的影响;在天敌亚群落中瓢虫类、小蜂类等是较为优势的种群,其变化趋势仍然构成了天敌亚群落变化趋势的主体。
     3套袋果园植食性节肢动物群落生物多样性指数和均匀度均显著高于无套袋果园
     从套袋果园与无套袋果园节肢动物群落时空动态来看,在苹果的生长关键时期,前者的生物多样性指数和均匀度指数均显著高于后者,这说明套袋技术的使用增加了果园的生物多样性和均匀度,从而增加了果园节肢动物群落的稳定性。
     4从理论上证明了套袋技术可作为害虫综合治理的一项有效措施
     套袋技术是以阻隔害虫直接加害、减少化学农药使用、增加果园生物多样性和均匀度从而达到群落稳定而取得效益,该实验通过对比套袋果园和无套袋果园节肢动物群落构成和时空动态,为以上观点提供了理论依据。
Apple is one of the worldwide planting fruits with high consumption and economic benefit. The quality of apple products decreased because pesticides were widely used to control pests. Considering the health of ourselves, non-pollution cultivation has become inevitable. The changing law of insect community is the foundation of ecological control and management on apple pests without pollution.
     Continuous surveys had been taken on changing of insect community in non-pollution bagged apple orchard in Baishui county of Weibei plateau in 2007. The results are showed as follows:
     1. The arthropods community is abundant in species and the dominant species is prominent in Baishui area. The arthropods belong to insecta and arachnida in this area. In unbagged orchard,
     there are 63 species belonging to 39 families, 10 orders, 2 classes, in which there are 37616 arthropods belonging to 53 species, 30 families, 7 orders, of which the dominant population belong to Homoptera and acarina and the relative abundance respectively reach 0.7780055 and 0.1909153. The natural enemies’subcommunity includes 448 natural enemies belonging to 10 species, 9 families, 6 orders, of which the dominant population belong to Coleoptera and Hymenoptera and the relative abundance respectively reach 0.0067255 and 0.0037043.
     In bagged orchard, There are 53 species of arthropods belonging to 29 families, 9 orders, 2 orders, in which there are 33573 phytophagous arthropods belonging to 46 species, 24 families, 6 orders, of which the dominant population belong to Homoptera and acarina and the relative abundance respectively reach 0.553471 and 0.418846. There are 492 natural enemies belonging to 7 species, 5 families, of which the dominant population belong to Coleoptera and Hymenoptera and the relative abundance respectively reach 0.008337 and 0.005754.
     2. The main structure of apple orchard hasn’t changed after been bagged. The contraction between unbagged and bagged orchard, the relative abundance of natural enemies’subcommunity is much lower than that of phytophagous arthropods’subcommunity. Because the phytophagous arthropods’subcommunity is primary consumer in orchard ecosystem and lower one rank than natural enemies’subcommunity, the amount of which constitute the main body of arthropod community, the change of that will affect greatly on the whole arthropods community.
     In phytophagous arthropods’community of bagged apple orchard, aphides, scale insects and mites are the dominant arthropods, and also the center of the community structure and will have great influence on the whole community and natural enemies’subcommunity while changing. In natural enemies’subcommunity, ladybirds and chalcids are the dominant arthropods, the changing trend of which is the main part of that of natural enemies’subcommunity.
     3. The biodiversity and evenness of phytophagous arthropods’community in bagged apple orchard are obviously higher than that of unbagged one.
     In view of spatial and temporal dynamic of arthropods community, the biodiversity and evenness in bagged apple orchard were much higher than that of unbagged one, which indicate that the biodiversity and evenness were increased by using of bagging technique, consequently, the arthropods community become more stable.
     4. It is theoretically prove that bagging technique can be a useful measure for integrated pest management.
     By building a barrier to prevent the damage of pests, decreasing the use of pesticides and increasing the biodiversity and evenness of creature, the bagging technique can contribute the stability of community and than a lot of benefit can be made from it.
引文
[1] 丁岩钦,戈峰.中国昆虫生态学五十年(1949-1999)昆虫知识[J].2000, 37(1):18-23.
    [2] 赵志模,郭依泉群落生态学原理与方法,科技文献出版社[M].1990.
    [3] 万方浩,陈常铭.综防区和化防区稻田害虫-天敌群落组成及多样性的研究.生态学报[J].1986, 6(2):159- 170.
    [4] 金翠霞,吴亚.稻田节肢动物群落的多样性.昆虫学报[J].1990, 33(3):287-295.
    [5] 刘波,冒乃和.病虫综合给理是德国植物保护的基本策略.生物学通报[J].2003,3 8(4): 10-11
    [6] 丁岩饮.昆虫种群数学生态学原理与应用,北京:科学出版社[M].1981,132-203
    [7] 刘亚君,迟胜起,张克勤.植物保护[J].2001, 27 (5):1-3
    [8] SimpsonE H .Measurement of diversity,Nature[J].1949, 163:68
    [9] Hulbert S H.The no concept of species diversity: A critique and alternative parameters Ecology [J].1971, 52(4):577-586.
    [10] Pielou E C .Ecological diversity, John Wiley Sons, New York[ M],1975.
    [11] MacArthur R. Environmental factors afecting bird species diversity, Amer. Nature[J].1964, 98 :387-397.
    [12] Hurtubia J. Trophic diversity measurement in sympatric predatory species,Ecology[J],1973,54 (4 ): 885-890.
    [13] Schering J F et al. Spatial and temporal paterns in Iowa shore fly diversity. Environ Entomol[J].1979, 8 (5):879-882
    [14] Pfadt R E .Density and diversity of grasshoppers(orthoptera:Acrididae)in an outbreak on Arizonarangland .Environ Entomol[J].1982,11(3):690-694.
    [15] 罗志义.上海佘山地区棉田节肢动物多样性分析及杀虫剂对多样性的影响.生态学报[J].1982, 2(3) :255- 266.
    [16] Heong K L et al. Arthropod community structure of rice ecosystem in the Philippines. Bull Entomol.Res [J ].1991,81:407.416.
    [17] 朱传经.棉田捕食性群落结构的研究.昆虫天敌[J].1994, 16(1):28-35.
    [18] 明谭.不同类型茶园昆虫、蜘蛛群落结构分析.生态学报[J].1998,18(3)289-294
    [19] 尤民生.福州郊区稻田节肢动物群落的结构和动态.福建农学院学报[J].1992, 21(1):56-62.
    [20] 吴亚.荒漠开垦与昆虫群落演替.昆虫学报[J].1978, 21 (4):393-406.
    [21] 吴亚.草甸昆虫群落及其空间和时间结构.昆虫学报[J].1980,23 (2 ):156-165.
    [22] 吴亚.高寒草甸土壤生态系统结构及昆虫群落的某些特征.生态学报[J].1982, 2(2):151-159.
    [23] 吴亚.稻田蜘蛛群落结构及其动态的初步研究.生态学杂志[J].1986,5 (4) 6-11.
    [24] 石根生,张效羲等.单季稻区蜘蛛群落的研究-多样性、优势度、排序和聚类.中国水稻科学[J].1991 ,5 (3):114-120.
    [25] 郭依泉.桔园昆虫群落季节格局研究.西南农业大学学报[J].1987,9(1):27-32.
    [26] 王勇等.茶园蜘蛛、昆虫群落动态的研究.生态学报[J].1991,l l(2 ):135-138.
    [27] 高宝嘉.园林昆虫群落时间结构及动态研究.生态学报[J].1998, 18 (2):193-197.
    [28] Sandra .J W.How quality of host plant afects a predator-prey interaction in biological control.Ecology[J]. 1995, 76(4):1206-1219.
    [29] Holling C S. The functional response of invertebrate predators to prey density.Memoirs of the Entomology Society of Canada[J].1966,48:1-86.
    [30] 邹运鼎等.龟纹瓢虫成虫对棉蚜的捕食作用,生物数学学报[J].1986,1(1 ):64-69.
    [31] Goh B B et al.Optimal control of a prey-perdator system. Mathematical Biosciences[J]. 1974,19:163-286 .
    [32] Hassell M P. The dynamics of arthropod predator-prey systems .New Jersey Princeton University Press [M ].1978.
    [33] Beddington J R. Mutual interference between parasites or predators and its efect on searching efficiency. J. Anim.Ecol[J].1975,44:31-41.
    [34] Lawton J H. Plant architecture and diversity of phytophagous insects. Annual Review of Entomology[J].1983,28:23-39.
    [35] May M R.Qualitative stability in model ecosystems.Ecology[J],1973,54(3):638-641.
    [36] Hassell M P and R M May. Stability in insect host-parasite models. J. Anim. Ecol[J].1973,42:693- 736.
    [37] Hassell M P et al. Aggregation of predators and insect parasites and its effect on stability. Anim.Ecol[J]. 1974, 43:567-594.
    [38] 李超.草间小黑蛛对棉铃虫幼虫的捕食作用及其模拟模型的研究.捕食者-单种猎物系统的研究.生态学报[J].1982,2 (1):239-255.
    [39] 邹运鼎.干扰作用及空间异质性对七星瓢虫成虫捕食作用的影响.昆虫学报[J].1999,42 (1):52-56.
    [40] 周集中.捕食者对猎物选择性的数量测定方法.生态学报[J].1987,6 (3)238-247.
    [41] Beddington J R. Mutual interference between parasites of predators and its effect on searching efficiency.J. Anim.Ecol[J].1975,44:31-41.
    [42] Beddington J R .The components of arthropod predation .The predator rate of increase Anim.Ecol [J] .1976 ,45:165-185.
    [43] 赵鼎新.黑襟毛瓢虫对棉蚜的数值反应,生态学报[J].1987,7( 2):146-153.
    [44] 董应才等.七星瓢虫幼虫对两种麦蚜的数值反应.生态学报[J].1994,14 (4):387-391.
    [45] Hurlbert S H .The Measurment of niche overlap and some relatives.Ecology,1978,59:67-77
    [46] Hurtubia J.Trophic diversity measurement in sympatric predatory species.Ecology,1973,54 (4):885- 890
    [47] Pielou E C .Ecological diversity.John Wiley&Sons,New York,1975
    [48] PielouE C. The measurement of diversity in different types of biological collections.J.Th eor.Biol.1966(3) :131- 144
    [49] 丁兰平.两个新的群落多样性指数,海洋科学.1999.(1):25-28
    [50] 赵惠燕、汪世泽.农业病虫危害的突变理论及应用.西北农业学报.1993,2(4): 48-52
    [51] 赵惠燕.麦蚜防治决策过程中的尖角突变模型突变区域及防治指标的研究初报.系统工 程.1991,9(6): 30-35
    [52] 赵惠燕、张改生.突变理论在昆虫种群系统中的应用.昆虫知识.1995, 32(4):246-251
    [53] 张青.突变论模型在生态系统研究中的应用.北京林业大学学报.1997, 19 (4): 76-81
    [54] 王正军、李典漠、商略武、程家安.地学统计学理论与方法及其在昆虫生态学中的应用.昆虫知识.2002.39 (6): 405-411
    [55] 张润杰、周强、陈翠贤、王寿松.普通克立格法在昆虫生态学中的应用.应用生态学报.2003.14(1):90-92
    [56] Liebhold A M,Rossi W P.Geostatistics and geographic information systems in applied insect ecology. Annu .Rev.Entomol.1993,38:303-327.
    [57] Liehold A M,Zhang X,Hohn M E,Elkinton J S,Ticehurst M,Benzon G L,Campbell R W.199 1. Enviorn .Entomol.20(5):1407-1417.
    [58] Kemp W P,Kalaris T M,Quimby W F.J.Econ.Entomo1.1989,82(5):1270-1276.
    [59] Kemp W P.1987.J.EconEntomo1.80(6) :1100-1105.
    [60] Liebhold A M,Elkinton J S,Zhou G H,Hohn M E,Rossi R E,Boettner G H,Boettemer C W,Bumham C,Memanus M L .1995.J.Econ.Entomol.,24(2):193-203.
    [61] Liebhold A M,Luzader E,Reardon R ,Robters A,Ravlin F W,Shaorv A,Zhou G J.Econ.Ent omol,1998,91(2):464-472
    [62] Hohn M E,Liebhold A M,Gribko L S.Environ.Entomol.1993,22(5):1066-1075.
    [63] GribkoL S ,Liebhold A M ,Hohn M E .Enviorn.Entomol.,1995,24(3):529-537.
    [64] 吴咏蓓、张恩迪.2000.地理信息系统(GIS)在动物生态学中的应用.生态科学.19(4): 51-56.
    [65] 李建荣,石万成,刘旭.苹果园昆虫群落生态优势度研究[J].生态学杂志.1996, 15(l): 20-23.
    [66] 牟吉元、李照会,郑方强等.苹果园主要害虫及天敌群落结构和生态控制的研究[J].山东农业大学学报.1997, 28 (3):253-262.
    [67] 张笠楠等.苹果生长前期昆虫群落空间结构分析[J].昆虫知识.2002, 39 (5): 353-357.
    [68] 石万成,刘旭,谢辉.苹果园昆虫群落时间结构的研究[J].昆虫知识.1991, 5:279-224.
    [69] 石万成.苹果园昆虫群落时间格局及防治研究.1990,12( 2): 145-147.
    [70] 石万成等.苹果叶片—害虫种群生态位研究.西南农业大学学报.1990,12 (2): 148-151.
    [71] 唐春生,黄可训等.苹果园害虫—天敌群落优势种组成及变化和果园IPM决策的研究.植物保护学报.1991, 18(4):345-350.
    [72] 俞晓平,胡萃.Heong K L.非作物生境对农田害虫及其天敌的影响.中国生物防治,1996, 12(3): 130-133.
    [73] 俞晓平,胡萃.非稻田生境与稻飞虱卵期主要寄生蜂的关系[J].浙江农业大学学学报.1996, 22 (2) :115-120.
    [74] 孔建,王海燕,赵白鸽等.苹果园主要害虫生态调控体系的研究[J].生态学报.2001,21(5):789-794.
    [75] 于毅,孟宪水,严毓骅.苹果园植被多样化对金纹细蛾寄生蜂自然控制作用的影响[J].山东农业科学. 1997,4:23-25.
    [76] 于毅,严毓骅.苹果园植被多样化在果树害虫持续治理中的作用[J].昆虫学报,1998,41:82-90.
    [77] 于毅,张安盛,严毓骅.东亚小花蝽的发生和扩散与苹果园和邻近农田植被的关系[J].中国生物防治,1998, 14(4) :148-151.
    [78] 湛有光.我国苹果害虫(螨)的研究与防治回顾与展望.昆虫知识,2000,37(2):107-110.
    [79] 国家自然科学基金委员会.生态学.北京科学出版社.1997, 1-139.
    [80] 戈峰.害虫生态调控的原理与方法.生态学杂志.1998,17 (2): 38-42.
    [81] 戈峰,苏建伟.21世纪害虫管理的一些特征展望.昆虫知识.2002, 39 (4): 241-246.
    [82] 戈峰.害虫区域性生态调控的理论、方法及实践.昆虫知识.2001, 38 (5): 337-341.
    [83] 盛承发、苏建伟、宣维建等.关于害虫生态防治若干概念的讨论.生态学报.2002,22(4):597-602.
    [84] 丁岩钦、戈峰.中国昆虫生态学五十年(1949-1999).昆虫知识.2000, 37 (1): 18-23.
    [85] 谢寿安、吕淑杰、袁锋、赵惠燕.我国昆虫生态学的研究与展望.西北林学院学报.2002,17(1):51-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700