用远场体波反演震源破裂过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一章简要地回顾了地震矩张量概念产生的历史背景,介绍了地震矩张量反演和震源破裂过程反演的研究进展和研究现状。
     第二章对用远场体波反演地震矩张量的基本理论和基本方法作了系统地阐述。并用IRIS全球地震台网的远场体波资料反演了1998年3月25日南极M_w8.1(据IRIS)地震的矩张量和2000年6月4日印度尼西亚苏门答腊南部M_s8.0地震的矩张量
     对1998年3月25日南极地震的研究结果表明:这次地震的矩张量的最佳双力偶分量为3.7×10~(21)N·m。矩震级为M_w8.3。补偿线性矢量偶极分量为-1.5×10~(20)N·m,约为最佳双力偶分量的-4%。 爆炸分量为1.1×10~(20)N·m,约为最佳双力偶分量的3%。节面Ⅰ:走向为194°,倾角为89°,滑动角为-177°。节面Ⅱ:走向为104°,倾角为87°,滑动角为-1°。P轴:方位角为59°,倾角为3°。T轴:方位角为329°,倾角为2°。B轴:方位角为206°,倾角为87°。这次地震的震源机制基本上是左旋走滑,带有微小的正断层滑动分量。走向为104°的节面Ⅱ是断层面。总体上说,主震是由东向西破裂的。余震发生在主震的断层面上(或其附近),是由主震断层面附近介质的应力调整造成的。
     对2000年6月4日苏门答腊南部地震的研究结果表明:这次地震的震源机制主要是左旋走滑,带有很小的逆冲倾滑分量。地震矩张量的最佳双力偶分量为1.5×10~(21)N·m。矩震级M_w=8.1。地震矩张量的补偿线性矢量偶极分量为1.2×10~(20)N·m,约为最佳双力偶分量的8%。爆炸分量为-5.9×10~(19)N·m,约为最佳双力偶分量的4%。节面Ⅰ:走向为199°,倾角为82°,滑动角为5°。节面Ⅱ:走向为109°,倾角为85°,滑动角为172°。P轴:方位角为154°,倾角为2°。T轴:方位角为64°,倾角为10°。B轴:方位角为256°,倾角为80°。P波显示的方向性效应表明:走向为199°的节面Ⅰ是断层面。破裂传播方向为自东北向西南方向,几乎垂直于爪哇海沟走向。左旋走滑断裂的这次地震,可能是由消减板块上不对称分布的障碍体使左边的消减运动受阻造成的。北北东—南南西向分布的余震发生在主震的断层面上(或其附近);而西北—东南向分布的余震则发生在明打威断层上(或其附近)。本文提出的一个运动学震源模式,较合理地解释了这次地震的地震源机制、余震分布特征和这次地震没有激发海啸的原因。
     第三章系统地阐述了从远场体波提取震源时间函数(STF),用提取的STF反演震源破裂时间—空间过程的基本原理和方法。并用这种方法研究2000年6月4日印度尼西亚苏门答腊南部M_s8.0地震的震源时空过程。结果表明:从不同方位台站的Z分向P波和SH波提取的震源时间函数显示了明显的方向性效应。震源时间函数的这种方向性效应与P波的方向性效应相一致,清楚地表明:走向为199°的节面为断层面,地震是从东北向西南方向单侧破裂的。这次地震破裂持续了约16s。破裂面长约95km,宽约60km。平均静态位错约为11m。最大静态位错达27m。平均静态应力降大约为90MPa。最大静态应力降达220MPa。
     第四章发展了一种直接拟合远场体波观测地震图反演震源时一空过程的新方法。
    
    并通过正、反演数值模拟实验论证了这种方法的可行性。这种方法是位移表示定理的
    直接应用。根据有限长数据的离散招积运算法则,将全部于断层造成的位移的积分表
    达式写成对有限长波形数据做离散榴积运算的矩阵表达式,从而可解出每个子断层的
    地震矩变化率。本方法除加了断层不会发生反向滑动的物理约束条件外,没有对断层破
    裂点的起始位置、破裂方式、破裂传播速度和各子断层震源时间函数的形状和持续时
    间等作任何先验的假定。因而反演结果中很少有人为的闲素。这是本方法的特点。正、
    反演数值模拟实验结果表明:在有4个以上台站的资料(台站的张角不小于90O)、资
    料的噪声水平不高于 P波最大振幅的 25%的条件下,用这种反演方法,能够可靠地反
    演出不同破裂方式(单侧破裂、双侧破裂、圆盘破裂、地震矩在断层面上均匀分布和
    非均匀分布等)震源的时间一主间过程。在一般情况下,这种方法对观测资料要求的
    上述条件是能够满足的。
In this paper,the first chapter,the historical background of how the concept of the seismic moment tensor was proposed and the development of the research work of seismic moment tensor inversion and seismic source process inversion were reviewed briefly.
    In the second chapter,the basic theory and method of how to use far-field body-waves to invert for the seismic moment tensor were expatiated systematically. The moment tensor solutions of the March 25,1998,Antarctic plate earthquake (Mw=8.1,IRIS) and the June 4,2000,southern Sumatra,Indonesia,earthquake (Ms=8.0) were inverted using teleseismic body waves recorded by long period seismograph stations of the IRIS global seismic network.
    The moment tensor solution obtained in this research for the March 25,1998,Antarctic plate earthquake shows that:The double-couple (DC) component of this earthquake is 3.7X 1021Nm,the moment magnitude is A/w=8.3,the compensated linear vector dipole (CLVD) component is -1.5 X 1020Nm,about -4% of the DC,and the explosion (EP) component is l.lX1020Nm,about 3% of the DC. NP I:The strike is 194,the dip,89,and the rake,-177;NP II:The strike is 104,the dip,87,and the rake,-1. P axis:The azimuth is 59 and the plunge,8;T axis:The azimuth is 329 and the plunge,2;B axis:The azimuth is 206 and the plunge,87. The focal mechanism is mainly left-lateral strike-slip,with a very small normal fault slip component. The NP II is the fault plane. On the whole,the main shock ruptured from the east to the west. The aftershocks were distributed on (or near) the fault plane and were triggered by the stress redistribution in the medium in the nearby region of the fault plane.
    The result for the June 4,2000,southern Sumatra earthquake shows that:The focal mechanism is mainly left-lateral strike-slip,with a small thrust component. The double-couple (DC) component of this earthquake is 1.5X 1021Nm,the moment magnitude is A/w=8.1,the compensated linear vector dipole (CLVD) component is 1.2X 1020Nm,about 8% of the DC,and the explosion (EP) component is -5.9 X 1019Nm,about 4% of the DC. NP I:The strike is 199,the dip,82,and the rake,5;NP II:The strike is 109,the dip,85,and the rake,172. P axis:The azimuth is 154 and the plunge,2;T axis:The azimuth is 64 and the plunge,10;B axis:The azimuth is 256 and the plunge,80. The P-waveforms recorded at different stations show prominent directivity. The directivity shows that the NP I is the fault plane,and that the earthquake ruptured unilaterally from the northeast to the southwest,nearly perpendicular to the strike of the Java trench. The strike-slip faulting was caused by asymmetrical distribution of barriers on the subducting plate. The NNE-
    SSW distributed aftershocks occurred on,or near,the fault plane of the main shock;while the NW-SE distributed aftershocks,on,or near,the Mentawai fault. A kinematic source model proposed in this paper explains well the mechanism of this earthquake,the characteristics of the aftershock distribution,and the reason why no tidal waves
    
    
    generated by this great earthquake.
    In Chapter 3,the basic theory and method of retrieving source time functions from far-field seismic records to invert for the temporal-spatial source process were expatiated systematically. And the method was used to study the temporal-spatial source process of the June 4,2000,southern Sumatra,Indonesia,MS8.0 earthquake. The result obtained in this study shows that:The source time functions retrieved from P- and S-waves recorded at different stations distributed at different azimuths show prominent directivity. The source time function directivity is in accordance with the P waveform directivity,clearly showing that the nodal plane of strike 199 is the fault plane and that the earthquake ruptured unilaterally from the northeast to the southwest. The source duration is about 16s. The fault area is about 95km in length and 60 km in width. The average static slip is estimated to be about llm. The maximum static (final) slip is 27 m. The average static stress drop is about 90 MPa. The highest static stress drop
引文
陈国英,曾融生,吴大铭,1992.青藏高原瑞利波相速度与深部结构的横向变化,地震学报,14(增刊),565-572.
    陈国英,宋仲和,1990.利用长周期面波研究华北地区上地幔结构的横向不均匀性,地球物理学报,33,417-423.
    陈国英,宋仲和,安吕强,陈立华,庄真等,华北地区三维地壳上地幔结构,地球物理学报,34,172-181.
    陈田英,宋仲和,安吕强,苏小兰,1995.中国北部及其邻区地壳上地幔三维速度结构,地球物理学报,38,321-328.
    陈培善,刘福田,李强,秦嘉政,1990.云南地区速度结构的横向不均匀性,中国科学,4,431—438.
    丁志峰,曾融生,1990.用震资料反演北京、云南地区的三维速度结构,地震学报,12,242-247.
    何正勤,丁志峰,叶太兰,孙为国,张乃铃,2001.中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究,地震学报,23,596-603.
    姜枚,吕庆田,史大年,薛光琦,G. Poupinet, A. L. Kharitonov, 1996.用天然地震探测青藏高原中部地壳、上地幔结构,地球物理学报,39,470-482.
    蒋维强,林纪曾,李幼铭,束沛镒,1992.广东东部和闽南南部区域壳幔结构的初步研究,地震学报,14,172-179.
    金安蜀,刘福田,孙永志,1980.北京地区地壳和上地幔三维P波速度结构,地球物理学报,23,172-182.
    李强,刘瑞丰,杜安陆,杨马陵,1994.新疆及其比邻地区地震层析成像,地球物理学报,37,311-320.
    李应平,1996.微震分析水压致裂的破裂过程,地震学报,18,292-300.
    刘福田,李强,吴华等,1989.用于速度图像重建的层析成像法,地球物理学报,32,46-61.
    刘福田,曲克信,吴华,李强,刘建华,胡戈,1986.华北地区地震层面成像,地球物理学报,29,442-449.
    刘福田,曲克信,吴华等,1989.中国大陆及其邻近地区的地震层析成像,地球物理学报,32,281-291.
    刘建华,刘福田,吴华,李强,胡戈,1989.中国南北带地壳和上地幔的三维速度图像.地球物理学报,32,143-152.
    
    
    刘建华,刘福田,孙若昧,吴华,吴丹,1995.秦岭—大别造山带及其南北缘地震层析成像,地球物理学报,38,46-54.
    刘建华,吴华,刘福田,1996.华南及其海域三维速度分布特征与岩石层结构,地球物理学报,38,483-492.
    刘瑞丰,陈培善,李强,1993.云南及其邻近地区三维速度结构,地震学报,15,61-67.
    刘瑞丰,陈运泰,F. Krueger, 成瑾,杨辉,韩炜,牟磊育,2000.用远场资料反演西藏玛尼地震的高阶地震矩张量,地震学报,22,225-232.
    吕庆田,姜枚,马开义等,1996.三维走时反演与青藏高原南部深部构造,地震学报,18,451-459.
    Mozaffari, P., 吴忠良,陈运泰,1998,用经验格林函数方法研究澜沧-耿马M_s=7.6地震的破裂过程,地震学报,20,1-11.
    Mozaffari, P., 许力生,吴忠良,陈运泰,1999,用长周期体波数据反演 1988年11月6日 澜沧-耿马M_s7.6地震的矩张量,地震学报,21,344-353.
    倪江川,陈运泰,王鸣,吴明熙,周家玉,王培德,1991.云南禄劝地震部分余震的矩张量反演,地震学报,13,412-419.
    宋仲和,朱介寿,安吕强,张丽娟,1981.北京—萨哈林剖面的地幔纵向速度结构,地球物理学报,24,310-318.
    宋仲和,安吕强,王椿鏞,仇志荣,张丽娟,1985.青藏高原及南北带上地幔 P 波速度结构,地球物理学报,28(增刊),148-160.
    宋仲和,安吕强,陈立华,仇志荣,1986.中国大陆及其边缘海的上地幔 P 波速度结构,地震学报,8,263-274.
    宋仲和,陈国英,安吕强,陈立华,庄真等,1992.中国东部及其邻近海域三维 S 波速度结构,地球物理学报,35,316-330.
    宋仲和,陈国英,安吕强,陈立华,庄真等,1991.中国西部三维速度结构及其各向异性,地球物理学报,34,694-707.
    宋仲和,陈国英,安吕强,陈立华等,1993a.中国大陆及其海域地壳-上地幔三维速度结构,中国科学(B辑),23,180-188.
    宋仲和,陈国英,安吕强,陈立华等,1993b。中国大陆及其海域瑞利波群速度分布特征,地震学报,15,32-38.
    苏维加,A. M. Dziewonski,1994.全球地幔 P 波和 S 波三维速度的反演,中国地球物理学进展——庆贺曾融生教授诞辰七十周年,海洋出版社,139-149.
    
    
    孙若昧,刘福田,刘建华,1991.四川地区的地震层析成像,地球物理学报,34,708-716.
    孙若昧,刘福田,1995.京津唐地区地壳结构与强震的发生——Ⅰ.P 波速度结构,地球物理学报,38,599-607.
    孙若昧,赵燕来,吴丹,1996.京津唐地区地壳结构与强震的发生——Ⅱ.S 波速度结构,地球物理学报,39,347-355.
    滕吉文,胡家富,张中杰,王爱武等,1995.中国西北地区岩石层瑞利波三维速度结构与沉积盆地,地球物理学报,38,737-749.
    王椿鏞,王溪莉,颜其中,1994.昆明地震台网下方的三维速度结构,地震学报,16,167-175.
    王椿鏞,1997.中国岩石层结构研究的回顾与展望,地球物理学报,40,82-109.
    王凯,姚振兴,1991.华南上地幔 P 波速度结构,地球物理学报,34,309-317.
    王凯,姚振兴,1991.青藏高原北缘地区上地幔 P 波速度结构,中国地震,7,38-46.
    王凯,姚振兴,1989.中国上地幔剪切波速度结构的初步研究,地球物理学报,32,36-45.
    吴忠良,陈运泰,倪江川,王培德,王鸣,1994.近震源宽频带记录的地震矩张量反演,地震学报,16,141-152.
    徐果明,李光品,王善恩,等,2000.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维结构,地球物理学报,43,366-375.
    许力生,1995.地震破裂时空过程的研究,博士论文,北京:中国地震局地球物理研究所.
    许力生,陈运泰,1996.用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数,地震学报,18,156-169.
    许力生,陈运泰,1997.用数字化宽频带波形资料反演共和地震的震源参数,地震学报,19,113-128.
    许力生,陈运泰,1999.1997 年西藏玛尼 M_s7.9 地震的时空破裂过程,地震学报,21,449-459.
    许向彤,陈运泰,王培德,1999.1995年7月20日怀来盆地M_L=4.1地震的破裂过程,21,570-582.
    许向彤,陈运泰,王培德,2001.1995年7月20日怀来盆地M_L4.1地震序列震源参数的精确测定,23,225-238.
    姚殿义,于利民,李钦祖,束沛镒,李幼铭,1991.利用合成地震图研究东北地区壳幔介质结构,地震学报,13,471-479.
    姚振兴,纪晨,1997.时间域内有限地震断层的反演问题,地球物理学报,40,691-701.
    
    
    郑斯华,杨健,1998.1988 年澜沧地震(M=7.6)震源时空扩展参数的研究,地震学报,20,337-346.
    周家玉,陈运泰,倪江川,王鸣,王培德,孙次吕,1993.用经验格林函数确定中小地震的震源时间函数,地震学报,15,22-31.
    周荣茂,陈运泰,吴忠良,1999a.由矩张量反得到的海南东方震群的震源机制,地震学报,21,337-343.
    周荣茂,陈运泰,吴忠良,1999b.由矩张量反得到的北部湾地震的震源机制,地震学报,21,561-569.
    周云好,许力生,陈运泰,2002a.2000年6月4日印度尼西亚苏门答腊南部M_s8.0地震的震源机制,地震学报,待刊.
    周云好,许力生,陈运泰,2002b.2000年6月4日印度尼西亚苏门答腊南部M_s8.0地震的时空破裂过程,中国地震,待刊.
    朱露培,曾融生,刘福田,1990.京、津、唐、张地区地壳上地幔三维 P 波速度结构,地球物理学报,33,267—277.
    朱露培,曾融生,吴大铭,1992.利用宽频带远震体波波形研究青藏高原地壳上地幔速度结构的初步结果,地震学报,14(增刊),580~591.
    朱培定,李幼铭,1985.利用深源远震记录波形研究台站区域的介质结构,地球物理学报,28,16—25.
    朱培定,李幼铭,张立敏,梁尚鸿,束沛镒,1985.利用深源远震记录波形研究新疆准噶尔盆地边缘台站区域的介质分层结构,西北地震学报,7,46—58.
    朱培定,李幼铭,张立敏,束沛镒,梁尚鸿,1986.川南、滇北地震台网区域壳幔介质分层结构的初步研究,地球物理学报,29,245—254.
    Aki, K., 1966. Generation and propagation of G-waves from the Niigata earthquake of June 16, 1964, Pt.2: Estimation of earthquake moment, released energy and stress-strain drop from G-wave spectrum, Bull. Earthq. Res. Inst. 44, 23-88.
    Aki, K. and H. Patton, 1978. Determination of seismic moment tensor using surface waves. Tectonophysics, 49, 213-222.
    Aki, K. and P. G. Richards, 1980. Quantitative Seismology: Theory and Methods, W. H. Freeman, San Francisco.
    Ammon, C. J., A. A. Velasco, and T. Lay, 1993. Rapid estimation of rupture directivity: Application to the 1992 Landers (M_s=7.4) and Cape Mendocino (M_s=7.2) California earthquakes, Geophys. Res. Lett. 20, 97-100.
    Ammon, C. J., T. Lay, A. A. Vclasco, and E. J. Vidale, 1994. Routine estimation of earthquake source complexity: The 18 October 1992 Colombian earthquake, Bull. Seism. Soc. Am. 84, 1266-1271.
    
    
    Anderson, D. L. and R. S. Hart, 1976. An earth model besed on free oscillations and body waves, J. Geophys. Res. 81, 1461-1475.
    Antolik, M., D. Dreger, and B. Romanowicz, 1999. Rupture processes of deep-focus earthquakes from inversion of moment rate functions, J. Geophys. Res. 104, 863-894.
    Apsel, R. J. and J. E. Luco, 1983. On file Green's functions for a layered half-space, Part II. Bull. Seism. Soc. Am. 73,931-951.
    Backus, G. E. and M. Mulcahy, 1976. Moment tensors and other phenomenological descriptions of seismic sources—I. Continuous displacements, Geophys. J. R. astr Soc. 46,341-361.
    Backus, G. E. and M. Mulcahy, 1977. Moment tensors and other phenomenological descriptions of seismic sources—II. Discontinuous displacements, Geophys. J. R. astr. Soc. 47, 301-329.
    Backus, G. E., 1977a. Interpreting the seismic glut moments of total degree two or less, Geophys. J. R. astr. Soc. 51, 1-25.
    Backus, G. E., 1977b. Seismic sources with observable glut moments of spatial degree two, Geophys. J. R. astr. Soc. 51, 27-45.
    Barker, J. S. and C. A. Langston, 1982. Moment tensor inversion of complex earthquakes. Geophys. J. R. astr. Soc. 68, 777-803.
    Bcrcsnev, I. A. and G. M. Atkinson, 1997. Modeling finite-fault radiation from the ω~n spectrum, Bull. Seism. Soc. Am. 87, 67-84.
    Bouchon, M., 1979. Discrete wavenumber representation of elastic wave fields in three space dimensions, J. Geophys. Res. 84, 3604-3614.
    Bouchon, M., 1981. A simple method to calculate Green's functions for elastic layered media. Bull. Seism. Soc. Am. 71,959-971.
    Bouchon, M., 1982. The complete synthesis of seismic crustal phases at regional distance, J. Geophys. Res. 87, 1735-1741.
    Bouchon, M. and K. Aki, 1977. Discrete wavenumber representation of seismic source wave fields, Bull. Seism. Soc. Am. 67, 259-277.
    Bour, M. and M. Cara, 1997. Test of a simple empirical Green's function method on moderate-sized earthquakes, Bull. Seism. Soc. Am. 87, 668-683.
    Brigham, E. O., 1974. The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
    Brune, J. N., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997-5009.
    
    
    Bullen, K. E., 1963. An Introduction to the Theory of Seismology, 3rd edition, Cambridge Univ. Press.
    Bullen, K. E., 1975. The Earth 's Density, London, Chapman and Hall.
    Bullen, K. E. and B. A. Bolt, 1985. An Introduction to the Theory of Seismology, 4th edition, Cambridge Univ. Press.
    Burridge, R. and L. Knopoff, 1964. Body force equivalents for seismic dislocations, Bull. Seism. Soc. Am. 54, 1875-1888.
    Byerly, P., 1928. Nature of first motion in the Chilean earthquake of November 11, 1922, Am. J. Sci. 26, 232-236.
    Byerly, P., 1938. The earthquake of July 6, 1934——amplitudes and first motion, Bull. Seism. Soc. Am. 28, 1-22.
    Chen, X. F., 1999. Seismograms synthesis in multi-layered half-space media, I. Theoretical fomulations, Earthquake Research in China, 13, 149-174.
    Chen, X. F. and H. M. Zhang, 2001. An efficient method for computing Green's functions for a layered half-space at large epicentral distances, Bull. Seism. Soc. Am. 91,858-869.
    Chen, Y. T., J. Y. Zhou, and J. C. Ni, 1991. Inversion of near-source-broadband accelerograms for the earthquake source-time function, Tectonophysics. 197, 89-98.
    Chen, Y. T., L. S. Xu, X. Li, and M. Zhao, 1996. Source process of the 1990 Gonghe, China, earthquake and tectonic stress field in the northeastern Qinghai-Xizang (Tibetan) plateau, Pure Appl. Geophys. 146, 697-715.
    Chen, Y. T. and L. S. Xu, 2000. A time domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in Tibetan Plateau, Geophys. J. Int. 143,407-416.
    Courboulex, F. J. Virieux, A. Deschamps, D. Gibert, and A. Zollo, 1996. Source investigation of a small event using empirical Green's functions and simulated annealing, Geophys. J. Int. 125, 768-780.
    Christensen, D. H. and L. J. Ruff, 1985. Analysis of the trade-offs between hypocentral depth and source time function, Bull. Seism. Soc. Am. 75, 1637-1656.
    Dahm, T., 1996. Relative moment tensor inversion based on ray theory: theory and synthetic test, Geophys. J. Int. 124, 245-257.
    Doombos, D. J., 1982. Seismic moment tensors and kinematic source parameters, Geophys. J. R. astr. Soc. 69, 235-251.
    
    
    Dreger, D. S., 1994. Empirical Green's function study of the January 17, 1994 Northridge, California earthquake, Geophys. Res. Lett. 21, 2633-2636.
    Dreger, D., J. Ritsema, and M. Pasyanos, 1995. Broadband analysis of the 21 September, 1993 Klamath Falls earthquake sequence, Geophys. Res. Lett. 22, 997-1000.
    Dziewonski, A. M. and D. L. Anderson, 1981. Preliminary reference earth model, Phys. Earth Planet. Inter. 25, 297-356.
    Dziewonski, A. M. and F. Gilbert, 1974. Temporal variation of the seismic moment tensor and the evidence of precursive compression for two deep earthquakes, Nature, 247, 185-188.
    Dziewonski, A. M., A. T. Chou, and J. H. Woodhouse, 1981. Determination of the earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. 86, B4, 2825-2852.
    Dziewonski, A. M. and J. H. Woodhouse, 1983. An experiment in systematic study of global seismicity: Centroid-moment tensor solutions for 201 moderate and large earthquake of 1981, J. Geophys. Res. 88, B4, 3247-3271.
    Dziewonski, A. M., J. E. Franzen, and J. H. Woodhouse, 1984. Centroid-moment tensor solutions for January-March 1984, Phys. Earth Planet. Inter. 34, 209-219.
    Dziewonski, A. M., G. Ekstrom, J. E. Franzen, and J. H. Woodhouse, 1987. Global seismicity of 1977: centroid-moment tensor solution for 471 earthquakes, Phys. Earth Planet. Inter. 45, 11-36.
    Dziewonski, A. M., G. Ekstrom, and N. N. Maternovskaya, 2001. Centroid-moment tensor solutions for July-September 2000, Phys. Earth Planet. Inter. 124, 9-23.
    Ekstrom, G., 1989. A very broad band inversion method for the recovery of earthquake source parameters, Tectonophysics, 166, 73-100.
    Fauzi, R. McCaffrey, D. Wark, Sunaryo, and P. Y. P. Haryadi, 1996. Lateral variation in slab orientation beneath Toba Caldera, northern Sumatra, Geophys. Res. Lett. 23,443-446.
    Fitch, T. J., 1972. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific, J. Geophys. Res. 77, 4432-4460.
    Fitch, T. J., D. W. McCowan, and M. W. Shields, 1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes, d. Geophys. Res. 85, 3817-3828.
    Fitch, T. J., 1981. Correction and addition to 'Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes' by T. J. Fitch, D. W. McCowan, and M. W. Shields, J. Geophys. Res. 86, 9375-9376.
    
    
    Frankel, A., J. Fletcher, E Vernon, L. Haar, J. Berger, T Hanks, and J. Brune, 1986. Rupture characteristics and tomographic source imaging of M_L~3 earthquakes near Anza, Southern California, J. Geophys. Res. 91, 12633-12650.
    Fuchs, K., and G. Muller (1971). Computation of synthetic seismograms with reflectivity method and comparison with observations, Geophys. J. R. astr. Soc. 23, 417-433.
    Fukuyama, E. and K. Irikura, 1986. Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using waveform inversion method, Bull. Seism. Soc. Am. 76, 1623-1640.
    Fukuyama, E. and T. Mikumo, 1993. Dynamic rupture analysis: Inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake (M=6.5), J. Geophys. Res. 98, 6529-6542.
    Gilbert, F., 1970. Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. astr. Soc. 22, 223-226.
    Gilbert, F., 1973. Derivation of source parameters from low-frequency spectra, Phil. Trans. R. Soc. London, A274, 369-371.
    Gilbert, F. and R. Buland, 1976. An enhanced deconvolution procedure for retrieving the seismic moment tensor from a sparse network, Geophys. J. R. astr. Soc. 47, 251-255.
    Gilbert, F. and A. M. Dziewonski, 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trana. R. Soc. London, A278, 187-269.
    Gutenberg, B., 1950. Structure of the earth's crust in the continents, Science, 111,29.
    Gutenberg, B., 1953. Wave velocities at depths between 50 and 600 kilometers, Bull. Seism. Soc. Am. 43, 223.
    Haddon, R. A. W., 1996. Use of empirical Green's functions, spectral ratios, and kinematic source models for simulating strong ground motion, Bull. Seism. Soc. Am. 86, 597-615.
    Hartzell, S. H., 1978. Earthquake aftershocks as Green's functions, Geophys. Res. Lett., 5, 1-4.
    Hartzell, S. H. and T. H. Heaton, 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am. 73, 1553-1583.
    Hartzell, S. H. and T. H. Heaton, 1985. Teleseismic time functions for large, shallow subduction zone earthquakes, Bull. Seism. Soc. Am. 75, 965-1004.
    Hartzell, S. H. and T. H. Heaton, 1986. Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records, Bull. Seism. Soc. Am. 76, 649-674.
    
    
    Hartzell, S., 1989. Comparison of seismic waveform inversion results for the rupture history of a finite fault: Application to the 1986 North Palm Springs, California, earthquake, J. Geophys. Res. 94, 7515-7534.
    Hartzell, S. and M. Iida, 1990. Source complexity of the 1987 Whittier Narrows, California, Earthquake from the inversion of strong motion records, J. Geophys. Res. 95, 12475-12485.
    Hartzell, S. and C. Mendoza, 1991. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake. Bull. Seism. Soc. Am. 81,305-331.
    Hartzell, S., G. S. Stewart, and C. Mendoza, 1991. Comparison of L_1 and L_2 Norms in a teleseismic wavefrom inversion for the slip history of the Loma Prieta, California, earthquake, Bull. Seism. Soc. Am. 81, 1518-1539.
    Hartzell, S. and C. Langer, 1993. Importance of model parameterization in finite fault inversion: Application to the 1974 M_w8.0 Peru earthquake, J. Geophys. Res. 98, B12, 22123-22134.
    Hartzell, S., P. Liu, and C. Mendoza, 1996. The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation, J. Geophys. Res. 101, B9, 20091-20108.
    Helmberger, D. V., 1974. Generalized ray theory for shear dislocations, Bull. Seism. Soc. Am. 64, 45-64.
    Henry, C., S. Das, and J. H. Woodhouse, 2000. The great March 25, 1998, Antarctic plate earthquake: Moment tensor and rupture history, d. Geophys. Res. 105, 16097-16118.
    Honda, H., 1957. The mechanism of the earthquakes, Sci. Repts. Tohoku Univ. Ser. 5. Geophys. Suppl. 9, 1-46.
    Hough, S. E., L. Seeber, A. Lerner-Lam, J. C. Armbruster, and H. Guo, 1991. Empirical Green's fuction analysis of Loma Prieta aftershochs, Bull. Seism. Soc. Am. 81. 1737-1753.
    Huang, W. C., G. Ekstrom, E. A. Okal, and M. P. Salganik, 1994. Application of the CMT algorithm to analog recordings of deep earthquakes, Phys. Earth Planet. Inter. 83, 283-297.
    Hutchings, L. and W. Francis, 1990. Empirical Green's functions from small earthquakes: A waveform study of locally recorded aftershocks of the 1971 San Femando earthquake, J. Geophys. Res. 95, 1187-1214.
    Hutchings, L., 1994. Kinematic earthquake models and synthesized ground motion using empirical Green's functions, Bull. Seism. Soc. Am. 84, 1028-1050.
    
    
    Ihmle, P. F., 1996. Frequency-dependent relocation of the 1992 Nicaragua slow earthquake: an empirical Green's function approach, Geophys. J. Int. 127, 75-85.
    Ihmle, P. F., 1998. On the interpretation of subevents in teleseismic waveforms: The 1994 Bolivia deep earthquake revisited, J. Geophys. Res. 103, 17919-17932.
    Jeffreys, H., 1939. The times of the core waves, M. N. R. A. S. Geophys. Suppl. 4,498-594.
    Jeffreys, H. and K. E. Bullen, 1940. Seismological Tables, British Association for the Advancement of Science, London.
    Johnson, D. E. and C. A. Langston, 1984. The effects of assumed source structure on inversion of earthquake source parameters: The eastern Hispanioda earthquake of 14 September. 1981, Bull. Seism. Soc. Am. 74, 2115-2134.
    Jost, M. L. and R. B. Herrmann, 1989. A Student's guide to and review of moment tensors. Seism. Res. Lett. 60, 37-56.
    Kakehi, Y. and K. Irikura, 1996. Estimation of high-frequency wave radiation areas on the fault plane by the envelope inversion of acceleration seismograms, Geophys. J. Int. 125, 892-900.
    Kakehi, Y. and K. Irikura, 1997. High-frequency radiation process during earthquake faulting—Envelope inversion of acceleration seismograms from the 1993 Hokkaido-Nansei-Oki, Japan, earthquake, Bull. Seism. Soc. Am. 87,904-917.
    Kanamori, H. and J. W. Given, 1981. Use of long-period surface waves for rapid determination of earthquake source parameters, Phys. Earth Planet. Inter. 27, 8-31.
    Kanamori, H. and J. W. Given, 1982. Use of long-period surface waves for rapid determination of earthquake source parameters: 2. Preliminary determinations of source mechanisms of large earthquakes (M_s≥6.5) in 1980, Phys. Earth Planet. Inter. 30, 260-268.
    Katili, J. A. and F. Hehuwat, 1967, On the occurrence of large transcurrent earthquakes in Sumatra, Indonesia, Osaka Univ. J. Geosci. 10, 5-7.
    Kennett, B. L. N. and N. J. Kerry, 1979. Seismic waves in a stratified half space, Geophys. J. R. astr. Soc. 57, 557-583.
    Kennett, B. L. N., 1980. Seismic waves in a stratified half space—Ⅱ: Theoretical seismograms. Geophys. J. R. astr. Soc. 61, 1-10.
    Kennett, B. L. N. and E. R. Engdahl, 1991. Travel times for global earthquake location and phase identification, Geophys. J. Int. 105,429-465.
    Kikuchi, M. and H. Kanamori, 1982. Inversion of complex body waves, Bull. Seism. Soc. Am. 72, 491-506.
    
    
    Kikuchi, M. and H. Kanamori, 1986. Inversion of complex body waves—Ⅱ, Phys. Earth Planet. Inter.43,205-222.
    Kikuchi, M. and H. Kanamori, 1991. Inversion of complex body waves—Ⅲ, Bull. Seism. Soc. Am. 81, 2335-2350.
    Knopoff, L. and M. J. Randall, 1970. The compensated linear-vector dipole: a possible mechanism for deep earthquakes, J. Geophys. Res. 75, 4957-4963.
    Kostrov, B. V., 1970. The theory of the focus for tectonic earthquakes, Izv. Bull. Akad. Sci. USSR. Phys. Solid Earth, 4, 84-101.
    Kostrov, B. V., 1974. Seismic moment and energy of earthquakes, and seismic flow of rock, Izv., Phys. Solid Earth, 1, 23-40.
    Langston, C. A. and D. V. Helmberger, 1975. A procedure for modeling shallow dislocation sources, Geophys. J. R. astr. Soc. 42, 117-130.
    Langston, C. A., 1981. Source inversion of seismic waveforms: The Koyna, India, earthquakes of 13 September 1967, Bull. Seism. Soc. Am. 71, 1-24.
    Langston, C. A., J. S. Barker, and G. B. Pavlin, 1982. Point-source inversion techniques, Phys. Earth Planet. Inter. 30, 228-241.
    Lanza, V., D. Spallarossa, M. Cattaneo, D. Bindi, and P. Augliera, 1999. Source parameters of small events using constrained deconvolution with empirical Green's functions, Geophys. J. Int. 137, 651-662.
    Lawson, C. H. and R. J. Hanson, 1974. Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, New Jersey.
    Lay, T., J. W. Given, and H. Kanamori, 1982. Long period mechanism of the 8 November 1980 Eureka, California, earthquake, Bull. Seism. Soc. Am. 72, 439-456.
    Lay, T. and T. C. Wallace, 1995. Modern Global Seismology, Academic Press, INC. San Diago, California.
    Li, Y. and C. H. Thurber, 1988. Source properties of two micro-earthquakes at Kilauea Volcano, Hawaii, Bull. Seism. Soc. Am. 78, 1123-1132.
    Li, Y., C. Doll Jr., and M. N. Toksoz, 1995. Source characterization and fault plane determinations for M_(bLg)=1.2 to 4.4 earthquakes in the Charlevoix seismic zone, Quebec, Canada, Bull. Seism. Soc. Am. 85, 1604-1621.
    Luco, J. E. and R. J. Apsel, 1983. On the Green's functions for a layered half-space, Part I, Bull Seism. Soc. Am. 73,909-929.
    
    
    Madariaga, R., 1983. Earthquake source theory: a review, in Earthquakes: Observation. Theory and Interpretation, H. Kanamori and E. Boschi, Editors, North-Holland, Amsterdam, New York, Oxford, 1-44.
    McCowan, D. W., 1976. Moment tensor representation of surface wave sources, Geophys. J. R. astr. Soc. 44, 59-599.
    Mendiguren, J. A., 1977. Inversion of surface wave data in source mechanism studies, J. Geophys. Res. 82,880-891.
    Mendez, A. J., A. J. Olson, and J. G. Anderson, 1990. A norm minimution criterion for the inversion of earthquake ground motion, Geophys. J. Int. 102,287-298.
    Mendez, A. J. and J. G. Anderson, 1991. The temporal and spatial evolution of the 19 September 1985 Michoacan earthquake as inferred from near-source ground motion records, Bull. Seism. Soc. Am. 81,844-861.
    Mendoza, C. and S. H. Hartzell, 1989. Slip distribution of the 19 September 1985 Michoacan, Mexico, earthquake: near-source and teleseismic constraints, Bull. Seism. Soc. Am. 79, 655-669.
    Mori, J. and K. A. Frankel, 1990. Source parameters for small events associated with the 1986 north Palm Springs, California, earthquake determined using empirical Green functions, Bull. Seism. Soc. Am. 80, 278-295.
    Mori, J. and S. Hartzell, 1990. Source inversion of the 1988 Upland, California, earthquake: Determination of a fault plane for a small event, Bull. Seism. Soc. Am. 80, 507-518.
    Mori, J., 1993. Fault plane determinations for three small earthquakes along the San Jacinto Fault, California: Search for cross faults, J. Geophys. Res. 98, B10, 17711-17722.
    Mueller, C. S., 1985. Source pulse enhancement by deconvolution of an empirical Green's function, Geophys. Res. Lett. 12, 33-36.
    Nakanishi, I. and H. Kanamori, 1982. Effects of lateral heterogeneity and source process time on the linear moment tensor inversion of long-period Rayleigh waves, Bull. Seism. Soc. Am. 72, 2063-2080.
    Nakanishi, I. and H. Kanamori, 1984. Source mechanisms of twenty-six large, shallow earthquakes (M_s≥6.5) during 1980 from P-wave first motion and long-period Rayleigh wave data, Bull. Seism. Soc. Am. 74,805-818.
    Nakano, H., 1923. Notes on the nature of the forces which give rise to the earthquake motions. Central Meteor. Observ. Japan, Seism. Bull. 1, 92-130.
    Nettles, M., T. C. Wallace, and S. L. Beck, 1999. The March 25, 1998, Antarctic plate earthquake, Geophys. Res. Lett. 26, 2097-2100.
    
    
    Newcomb, K. R. and W. R. McCann, 1987. Seismic history and seismotectonics of the Suda Arc, J. Geophys. Res. 92, 421-439.
    Okal, E. A., 1981. Intraplate seismicity of Antarctica and tectonic implications, Earth Planet. Sci. Lett. 52, 397-409.
    Pan, T. C., K. Megawati, J. M. W. Brownjohn, and C. L. Lee, 2001. The Bengkulu, southern Sumatra, earthquake of 4 June 2000 (M_w=7.7): Another warning to remote metropolitan areas, Seism. Res. Lett. 72. 171-185.
    Patton, H. and K. Aki, 1979. Bias in the estimate of seismic moment tensor by the linear inversion method, Geophys. J. R. astr. Soc. 59, 479-495.
    Patton, H., 1980. Reference point equalization method for determinating the source and path effects of surface waves, J. Geophys. Res. 85, 821-848.
    Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1987. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.
    Randall, M. J., 1971. Elastic multipole theory and seismic moment, Bull. Seism. Soc. Am. 61, 1321-1326.
    Reid, H. F., 1910. The mechanics of the earthquake: the California earthquake of April 18, 1906. Report of the State Investigation Committee, 2, Carnegie Institution of Washington.
    Romanowicz, B., 1981. Depth resolution of earthquakes in central Asia by moment tensor inversion of long-period Rayleigh waves: Effects of phase velocity variations across Eurasia and their calibration, J. Geophys. Res. 86, 5963-5984.
    Romanowicz, B., 1982. Moment tensor inversion of long-period Rayleigh waves: a new approach, J. Geophys. Res. 87, 5395-5407.
    Sipkin, S. A., 1982. Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms, Phys. Earth Planet. Inter. 30, 242-259.
    Sipkin, S. A., 1986. Interpretation of nun-double-couple earthquake mechanisms derived from moment tensor inversion, J. Geophys. Res. 91,531-547.
    Sipkin, S. A., 1987. Moment tensor solutions estimated using optimal filter theory for 51 selected earthquakes, 1980-1984, Phys. Earth Planet. Inter. 47, 67-79.
    Strelitz, R. A., 1978. Moment tensor inversion and sources model, Geophys. J. R. astr. Soc. 52, 359-364.
    Strelitz, R. A,, 1980. The fate of the downgoing slab: A study of the moment tensors from body waves of complex deep-focus earthquakes, Phys. Earth Planet. Inter. 21, 83-96.
    
    
    Stump, B. W. and L. R. Johnson, 1977. The determination of source properties by linear insversion of seismograms, Bull. Seism. Soc. Am. 67, 1489-1502.
    Stump, B. W. and L. R. Johnson, 1984. Near-field source characterization of contained nuclear explosion in tuff, Bull. Seism. Soc. Am.74, 1-16.
    Su, W. J. and Dziewonski, A. M., 1991. Predominance of long-wavelength heterogeneity in the mantle, Nature, 352, 121-126.
    Su, W. J. and Dziewonski, A. M., 1992. On the scale of mantle heterogeneity, Phys. Earth Planet. Inter. 74, 29-54.
    Su, W. J. and Dziewonski, A. M., 1995. Inner core anisotropy in three dimensions, J. Geophys. Res. 100,9831-9852.
    Tregoning, P., F. K. Brunner, Y. Bock, S. S. O. Puntodewo, R. McCaffrey, J. F. Genrich, E. Calais, J. Rais, and C. Subarya, 1994. First geodetic measurement of convergence across the Java Trench. Geophys. Res. Lett. 21.2135-2138.
    Velasco, A. A., T. Lay, and J. Zhang, 1992. Improved resolution of earthquake source parameters from long-period surface wave inversion, Phys. Earth Planet. Inter: 74, 101-107.
    Velasco, A. A., T. Lay, and J. Zhang, 1993. Long-period surface wave inversion for source papameters of the 8 October 1989 Loma Prieta earthquake, Phys. Earth Planet. Inter 76, 43-66.
    Velasco, A. A., C. J. Ammon, and T. Lay, 1994a. Empirical Green function deconvolution of broadband surface waves: Rupture directivity of the 1992 Landers California (M_w=7.3) earthquake, Bull. Seism. Soc. Am. 84, 735-750.
    Velasco, A. A.,C. J. Ammon, and T. Lay, 1994b. Recent large earthquakes near Cape Mendocino and in the Gorda plate: Broadband source time functions, fault orientations and rupture complexities, J. Geophys. Res. 99, 711-728.
    Velasco, A. A., C. J. Ammon, and T. Lay, 1995. Source time function complexity of the great 1989 Macqurie Ridge earthquake, J. Geophys. Res. 100, 3989-4009.
    Velasco, A. A., C. J. Ammon, T. Lay, and M. Hagerty, 1996. Rupture process of the 1990 Luzon, Philippines (M_w=7.7), earthquake, J. Geophys. Res. 101, B10, 22419-22434.
    Velasco, A. A., C. J. Ammon, and S. L. Beck, 2000. Broadband source modeling of the November 8, 1997, Tibet (M_w=7.5) earthquake and its tectonic implications, J. Geophys. Res. 105, B12, 28065-28080.
    Wald, D. J., D. V. Helmberger, and T. J. Heaton, 1991. Rupture model of the 1989 Lome Prieta
    
    earthquake from the inversion of strong motion and broadband teleseismic data, Bull. Seism. Soc. Am. 81, 1540-1572.
    Wald, D. J. and T. H. Heaton, 1994. Spatial and temporal distribution of slip for the 1992 Landers, Colifomia, earthquake, Bull. Seism. Soc. Am.84, 668-691.
    Wang, C. and R. B. Herrmann, 1980. A numerical study of P-, SV-, and SH-wave generation in plane-layered medium, Bull. Seism. Soc. Am. 70, 1015-1036.
    Ward,S. N., 1980a. Body wave calculations usig moment tensor soures in spherically symmetric, inhomogeneous media, Geophys. J. R. astr. Soc. 60, 53-66.
    Ward, S. N., 1980b. A technique for the recovery of the seismic moment tensor applied to the Oaxaca, Mexico, earthquake of the November 1978, Bull Seism. Soc. Am. 70. 717-734.
    Ward, S. N., 1981. Body wave inversion moment tensors and depths of oceanic intraplate bending earthquakes, J. Geophys. Res. 88, 9315-9330.
    Ward, S. N. and S. E. Barrientos, 1986. An inversion for slip distribution and fault shape from geodetic observations of the 1983, Borah Peak, Idaho, earthquake, J. Geophys. Res. 91, 4909-4919.
    Woodhouse, J. H. and A. M. Dziewonski, 1984. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms, J. Geophys. Res. 89, 5953-5986.
    Xie, J., Z. Liu, R. B. Herrmann, and E. Cranswick, 1991. Source processes of three aftershocks of the high-resolution images of small, symmetric ruptures, Bull. Seism. Soc.Am. 81, 818-843.
    Yao, Z. X. and D. G. Harkrider, 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms, Bull. Seism. Soc. Am. 73, 1685-1699.
    Zachariasen, J., K. Sieh, F. W. Taylor, R. L. Edwards, and W.S. Hantoro, 1999. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls, J. Geophys. Res. 104, 895-919.
    Zhou, Y. H., L. S. Xu, and Y. T. Chen, 2002. Source process of the June 4, 2000 Southern Sumatra, Indonesia, earthquake, Bull. Seism. Soc. Am. In press.
    Zollo, A., P. Capuano, and S. K. Singh, 1995. Use of small earthquake records to determine the source time functions of large earthquakes: an alternative method and an application, Bull. Seism. Soc. Am. 85, 1249-1256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700