基于模板辅助—仿生矿化机理制备羟基磷灰石纳米晶簇及其电化学传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HAp)被广泛应用于生物医用材料,同时,其独特的三维网状原子结构表现出优良的电化学传感性能,具有广泛的应用前景。在众多合成方法中,模板辅助下的仿生矿化法不但具有环境友好、工艺简便、成本低廉等优点,而且能够有效地对HAp的形貌及微结构进行调控。本论文针对这一应用领域,开发了多种模板控制-仿生矿化制备HAp纳米晶簇的技术,深入研究了模板对于晶簇形貌和微结构的调控规律,并且进一步考察了HAp晶簇对二价有毒重金属离子、三价砷以及有机分子等物质的电化学传感能力,研究内容包括:
     1.提出了天然生物模板辅助-仿生矿化制备HAp纳米晶簇的新方法。系统研究了仿生矿化条件下,天然生物膜及天然生物质对于HAp晶簇形核和生长的调控规律。结果表明,天然生物膜(鸡蛋壳内膜和竹内膜)主要通过控制反应离子的扩散来控制晶体生长,膜的物化特性及表面官能团能够影响晶体在其表面形核;较高的温度或较高的pH值能够增大形成HAp的驱动力,有利于HAp的生长;沿c轴方向的晶体生长占主导地位,遵循形核-溶解再结晶-自组装的晶体生长机制。而天然生物质(鸡蛋壳)中的有机基质对于HAp晶簇的生长具有调控作用,在其作用下天然生物质能够更快地转化为HAp,可以形成三维花状HAp晶簇。
     2.开发了Nafion阳离子交换膜辅助下构建特异形貌HAp纳米结构的技术。在仿生矿化条件下,首次制备出具有海参状形貌和特殊晶体结构的HAp纳米晶簇,遵循底端生长机制。此外,首次采用阳离子交换膜辅助-电沉积技术制备出三维结构纳米HAp晶簇,并发现金属基体的标准电势以及微观结构、电沉积温度和电压等因素均能够显著影响HAp的沉积。其中,阳离子交换膜能够基于空间位阻及分子识别等作用来降低HAp生成的活化能垒,从而加速反应进行。
     3.发展了具有特异形貌羟基磷灰石晶簇修饰下的电化学传感器的检测技术,并研究了晶簇形貌和微结构对于其电化学传感性能的关系,主要是对于电催化过程动力学的影响。结果表明,具有较高比表面积和吸附能力的海参状HAp晶簇对于二价重金属离子(Pb2+和Cd2+)具有优越的电化学传感性能,其灵敏度比文献报道的HAp电化学传感器高10—100倍;花状形貌HAp晶簇对于痕量重金属离子的电化学传感特性与其晶格大小有关;三维花状HAp晶簇还能够应用于痕量As3+的检测;HAp晶簇对有害类激素分子(双酚A)也具有良好的电化学传感特性。研究对于开发低成本、低能耗、工艺简便的高灵敏度电化学传感器具有重要的实际意义。
Hydroxyapatite has been widely used as inorganic biomedical material. The unique3D network structure ensures its excellent electrochemical sensing capability. Among numerous synthesis methods, template-assisted biomineralization provides an effective way for regulating the morphologies and micro structures of HAp with advantages of environmentally friendly, simple process and low cost. Focused on this application area, HAp agglomerates with unique microstructure were fabricated by the template-assisted biomineralization method and the template-controlling mechanisum of morphology and microstructure has been investigated in detail. Furtherly, their electrochemical sensing capabilities towards toxic divaluent heavy metal ions, tervalence arsenic ions and organic molecules were researched respectively. The main contents of the present dissertation are listed as follows:
     1. A new natural biotemplate-assisted biomineralization method has been proposed to fabricate HAp agglomerates. Wherein, the natural bio-membrane and biomass was used as the templates in the biomineralization process respectively and the influences of them on the morphologies and microstructure of HAp agglomerates have been investigated systematically. It reveals that the biomembranes (egg-shell membranes and bamboo membrane) can regulate the crystal growth mainly by controlling the diffusion of reagent ions. The physical and chemical properties as well as functional groups can affect the nucleation process on the surface. Higher temperature and higher pH value can enhance the driving force for the formation of HAp, favor to its growth towards c-axis, following the "nucleation-dissolution recrystallization-self-assembly" mechanism. The organic matrix in natural eggshell has positive influences on the transformation to3D flower-like HAp agglomerate in a relatively fast way.
     2. A facile Nafion cathion-exchange membrane assisted strategy has been proposed for constructing multi-dimesional HAp nano-structure. Herein, seacucumber-like HAp agglomerates have been firstly prepared by this method, followed the "grow at the bottom" mechanism. On the other hand, a Nafion-assisted electrodeposition technology has been firstly applied for the fabrication. It was found that the parameters such as standard potential and microstructure of metal substrates, deposition temperature and voltage could obviously affect the deposition process. During this, the Nafion membrane plays important role in lowing the activation energy barrier for HAp and accelerating the formating reaction.
     3. A new determing technique has been developed via the electrochemical sensor modified by HAp assemblies with unique morphologies. The relationship between microstructure and the electrochemically sensing capability has also been researched, mainly attributes to the effect to the electro-catalytic kinetics. It suggested that the seacucumber-like HAp agglomerate with high surface area and adsorpting ability has excellent electrochemical sensing capability towards the toxic divalent heavy metal ions (Pb2+and Cd2+), with the sensitivity10-100times higher than those previously reported. Then it has been noticed that the crystal lattice structure of flower-like HAp agglomerate is crucial to the detection capabilities. Additionally,3D flower-like HAp agglomerates are explored to be a good candidate for the sensing of trace As3+. Moreover, it shows favourable electrochemical sensing behaviors towards harmful parhormone molecule (bisphenol A). This work is practically significant for the development of new electrochemical sensors with advantages of low cost, less energy consumption, easy preparation and high sensitivity.
引文
[1]S. Mann. Biomineralization and biomimetic materials chemistry [J]. Journal of Materials Chemistry,1995,5:935-946.
    [2]S. Mann. Biomineralization:principles and concepts in bioinorganic mater-ials chemistry [M].2001:Oxford University Press.
    [3]S. Mann. Molecular recognition in biomineralization [J]. Nature,1988,332 (10):119-124.
    [4]M. P. Ginebra, T. Traykova, J. A. Planell. Calcium phosphate cements as bone drug delivery systems:A review [J]. Journal of Controlled Release, 2006,113(2):102-110.
    [5]J. Schnieders, U. Gbureck, R. Thull, et al. Controlled release of gentamicin from calcium phosphate--poly(lactic acid-co-glycolic acid) composite bone cement [J]. Biomaterials,2006,27(23):4239-4249.
    [6]M. Baro, E. Sanchez, A. Delgado, et al. In vitro-in vivo characterization of gentamicin bone implants [J]. Journal of Controlled Release,2002,83(3): 353-364.
    [7]C. N. Cornell, D. Tyndall, S. Waller, et al. Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute [J]. Journal of Orthopaedic Research,1993,11(5):619-626.
    [8]H. Tong, J.M. Hu, W.T. Ma, et al. In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials,2002,23(12): 2593-2598.
    [9]S. Mann, B.R.Heywood., S. Rajam, J. D. Birchall. Controlled crystallization of CaCO3 under stearic acid monolayers [J]. Nature,1988,332:119-124.
    [10]M. Li, H.Schnablegger, S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature,1999, 402:393-395.
    [11]S. Mann, GA.Ozin. Synthesis of inorganic materials with complex form [J]. Nature,1996,382:313-318.
    [12]P. T. Tanev, T. J. Pinnavaia. Biomimetic Templating of porous lamellar silicas by vesicular surfactant assemblies [J]. Science,1996,271(5253):1267-1269.
    [13]A. Corma, M. Moliner, M.J. Diaz-Cabanas, et al. Biomimetic synthesis of microporous and mesoporous materials at room temperature and neutral pH, with application in electronics, controlled release of chemicals, and catalysis [J]. New Journal of Chemistry,2008,32(8):1338.
    [14]M.I. Kay, R.A. Young, A.S. Posner. Crystal structure of hydroxyapatite [J]. Nature,1964,204(4963):1050-1052.
    [15]V. Uskokovic, D. P. Uskokovic. Nanosized hydroxyapatite and other calcium phosphates:Chemistry of formation and application as drug and gene de-livery agents [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2011,96B(1):152-191.
    [16]K. Yamashita, H.Owada, T. Umegaki, et al. Ionic conduction in apatite solid solutions [J]. Solid State Ionics,1988,28-30(PART 1):660-663.
    [17]K. Yamashita, K.Kitagaki, T. Umegaki. Thermal-instability and proton con-ductivity of ceramic hydroxyapatite at high-temperatures [J]. Journal of American Ceramic Society,1995,78:1191-1197.
    [18]T. Takahashi, S. Tanase, O. Yamamoto. Electrical conductivity of some hydroxyapatites [J]. Electrochimica Acta,1978,23(4):369-373.
    [19]K.Yamashita, H. Owada, H. Nakagawa, et al. Trivalent-cation-substituted calcium oxyhydroxyapatite [J]. Journal of the American Ceramic Society, 1986,69(8):590-594.
    [20]M.S. Khalil, H.H. Beheri, I. Wafa, et al. Structural and electrical properties of zirconia/hydroxyapatite porous composites [J]. Ceramics International,2002, 28(4):451-458.
    [21]A. Laghzizil, N. Elherch, A. Bouhaouss, et al. Electrical behavior of hydro-xyapatites M10(PO4)6(OH)2 (M=Ca, Pb, Ba) [J]. Materials Research Bulletin, 2001,36(5-6):953-962.
    [22]M. Nagai, T. Nishino. Surface conduction of porous hydroxyapatite ceramics at elevated temperatures [J]. Solid State Ionics,1988,28-30, Part 2:1456-1461.
    [23]M. Vallet-Regi, J. M. Gonzalez-Calbet. Calcium phosphates as substitution of bone tissues [J]. Progress in Solid State Chemistry,2004,32(1-2):1-31.
    [24]T. Leventouri. Synthetic and biological hydroxyapatites:Crystal structure questions [J]. Biomaterials,2006,27(18):3339-3342.
    [25]H. B. Pan, B. W. Darvell. Effect of carbonate on hydroxyapatite solubility [J]. Crystal Growth & Design,2010,10(2):845-850.
    [26]J.W. Ager, G. Balooch, R.O. Ritchie. Fracture, aging, and disease in bone [J]. Journal of Materials Research,2011,21(08):1878-1892.
    [27]J. Y. Rho, K. S. Liisa, P. Zioupos. Mechanical properties and the hierarchical structure of bone [J]. Medical Engineering & Physics,1998,20(2):92-102.
    [28]A. G. Fincham, J. Moradian-Oldak, J. P. Simmer. The structural biology of the developing dental enamel matrix [J]. Journal of Structural Biology,1999, 126(3):270-299.
    [29]L. J. Cao, C. B. Zhang, J. F. Huang. Influence of temperature, [Ca], Ca/P ra-tio and ultrasonic power on the crystallinity and morphology of hydroxy-apatite nanoparticles prepared with a novel ultrasonic precipitation method [J]. Materials Letters,2005,59(14-15):1902-1906.
    [30]Y. Zhang, J. Lu. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent [J]. Crystal Growth & Design,2008,.8(7):2101-2107.
    [31]I. S. Neira, Y. V. Kolen'ko, O. I. Lebedev, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis [J]. Crystal Growth & Design,2009,9(1):466-474.
    [32]B. Viswanath, N. Ravishankar. Controlled synthesis of plate-shaped hydroxy- apatite and implications for the morphology of the apatite phase in bone [J]. Biomaterials,2008,29(36):4855-4863.
    [33]W. Shih, M. Wang, M. Hon. Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant [J]. Journal of Crystal Growth,2005,275 (1-2):e2339-e2344.
    [34]M. Jevtic, A. Radulovic, N. Ignjatovic, et al. Controlled assembly of poly (d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres under ultra-sonic irradiation [J]. Acta Biomaterialia,2009,5(1):208-218.
    [35]C. M. Zhang, J.Yang, Z. W. Quan. Hydroxyapatite nano-and microcrystals with multiform morphologies:controllable synthesis and luminescence properties [J]. Crystal Growth & Design,2009,9(5):2030-2035.
    [36]K. Lin, J. Chang, Y. Zhu, et al. A facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbon-ated apatite flowers [J]. Crystal Growth & Design,2009,9(1):177-181.
    [37]S. Brown, M. Sarikaya, E. Johnson. A genetic analysis of crystal growth [J]. Journal of Molecular Biology,2000,299(3):725-735.
    [38]J. N. Cha, G. D. Stucky, D.E. Morse, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides [J]. Nature,2000, 403(6767):289-292.
    [39]R. Gonzalez-McQuire, J. Y. Chane-Ching, E. Vignaud, et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods [J]. Journal of Materials Chemistry,2004,14(14):2277-2281.
    [40]R. E. Riman, W. L. Suchanek, K. Byrappa, et al. Solution synthesis of hydro-xyapatite designer particulates [J]. Solid State Ionics,2002,151(1-4):393-402.
    [41]J. Liu, F. Liu, K. Gao, et al. Recent developments in the chemical synthesis of inorganic porous capsules [J]. Journal of Materials Chemistry,2009,19 (34):6073-6084.
    [42]J. D. Chen, Y.J. Wang, K. Wei, et al. Self-organization of hydroxyapatite nanorods through oriented attachment [J]. Biomaterials,2007,28(14): 2275-2280.
    [43]I. S. Kim, P. N. Kumta. Sol-gel synthesis and characterization of nanostruc-tured hydroxyapatite powder [J]. Materials Science and Engineering B,2004, 111(2-3):232-236.
    [44]W. Feng, M. S. Li, Y. P. Lu, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders [J]. Materials Letters,2005,59(8-9):916-919.
    [45]A. Bigi, E. Boanini, K. Rubini. Hydroxyapatite gels and nanocrystals pre-pared through a sol-gel process [J]. Journal of Solid State Chemistry,2004, 177(9):3092-3098.
    [46]T. A. Kuriakose, S. N. Kalkura, M. Palanichamy, et al. Synthesis of stoichio-metric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature [J]. Journal of Crystal Growth,2004,263(1-4):517-523.
    [47]韩颖超,王欣宇,李世普,等.自然烧法合成纳米HAp粉末[J].硅酸盐学报,2002,30(3):387-389.
    [48]K. C. B. Yeong, J. Wang, S. C. Ng. Mechanochemical synthesis of nano-crystalline hydroxyapatite from CaO and CaHPO4 [J]. Biomaterials,2001, 22(20):2705-2712.
    [49]W. L. Suchanek, K. Byrappa, P. Shuk, et al. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method [J]. Biomaterials,2004,25(19):4647-4657.
    [50]Anabel Lopez-Macipe, Jaime Gomez-Morales, Rafael Rodriguez-Clemente. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/ phosphate solutions using microwave and conventional heating [J]. Advan-ced Materials,1998,10(1):49-53.
    [51]S. Sarig, F. Kahana. Rapid formation of nanocrystalline apatite [J]. Journal of Crystal Growth,2002,237-239(Part 1):55-59.
    [52]L. Cao, C. Zhang, J. Huang. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation [J]. Ceramics International,2005,31(8):1041-1044.
    [53]G. E. Poinern, R.K. Brundavanam, N. Mondinos, et al., Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method [J]. Ultrasonics Sonochemistry,2009,16(4):469-474.
    [54]A. Osaka, Y. Miura, K. Takeuchi, et al. Calcium apatite prepared from cal-cium hydroxide and orthophosphoric acid [J]. Journal of Materials Science: Materials in Medicine,1991,2(1):51-55.
    [55]R. Kumar, K.H. Prakash, P. Cheang, et al. Temperature driven morpho-logical changes of chemically precipitated hydroxyapatite nanoparticles [J]. Langmuir,2004,20(13):5196-5200.
    [56]B. Cengiz, Y. Gokce, N. Yildiz, et al. Synthesis and characterization of hydroxyapatite nanoparticles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,322(1-3):29-33.
    [57]D. Choi, P. N. Kumta. An alternative chemical route for the synthesis and thermal stability of chemically enriched hydroxyapatite [J]. Journal of the American Ceramic Society,2006,89(2):444-449.
    [58]Rodriguez-Lorenzo, L.M.M. Vallet-Regi. Controlled crystallization of cal-cium phosphate apatites [J]. Chemistry of Materials,2000,12(8):2460-2465.
    [59]V. Ball, J.-M. Planeix, O. Felix, et al. Molecular tectonics:abiotic control of hydroxyapatite crystals morphology [J]. Crystal Growth & Design,2002,2 (6):489-492.
    [60]A. S. Deshpande, E. Beniash. Bioinspired synthesis of mineralized collagen fibrils [J]. Crystal Growth & Design,2008,8(8):3084-3090.
    [61]J. Liu, Q. Wu, Y. Ding. Self-assembly and fluorescent modification of hydroxyapatite nanoribbon spherulites. European Journal of Inorganic Chemistry,2005,2005(20):4145-4149.
    [62]J. Liu, Q. Wu, Y. Ding. Controlled synthesis of different morphologies of BaWO4 crystals through biomembrane/organic-addition supramolecule tem-plates [J]. Crystal Growth & Design,2004,5(2):445-449.
    [63]M. Takiguchi, K. Igarashi, M. Azuma, et al. Flowerlike agglomerates of cal-cium carbonate crystals formed on an eggshell membrane [J]. Crystal Growth & Design,2006,6(12):2754-2757.
    [64]汪港,张伟刚,唐建,等.天然多孔材料水热合成羟基磷灰石[J].功能材料,2008(12):2038-2041.
    [65]A. F. Lemos, J. H. G. Rocha, S. S. F. Quaresma, et al. Hydroxyapatite nano-powders produced hydrothermally from nacreous material [J]. Journal of the European Ceramic Society,2006,26(16):3639-3646.
    [66]M. Lamghari, M. J. Almeida, S. Berland, et al. Stimulation of bone marrow cells and bone formation by nacre:in vivo and in vitro studies [J]. Bone, 1999,25(2, Supplement 1):91S-94S.
    [67]V. Ball, M. Michel, F. Boulmedais, et al. Nucleation kinetics of calcium phosphates on polyelectrolyte multilayers displaying internal secondary structure [J]. Crystal Growth & Design,2006,.6(1):327-334.
    [68]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [69]李汶军,施尔畏,郑燕青,等.晶体的微观生长机理及其应用[J].人工晶体学报,2000,29(5):28.
    [70]陈万春.溶液晶体生长动力学机理研究近况[J].物理,1980,9(6):525-530.
    [71]M. Srinivasan, C. Ferraris, T. White. Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite [J]. Environmental Science & Technology,2006,40(22):7054-7059.
    [72]T. J. White, Z. L. Dong. Structural derivation and crystal chemistry of apa-tites [J]. Acta Crystallographica Section B,2003,59(1):1-16.
    [73]刘国诠.生物工程下游技术[M].北京:化学工业出版社,2001.
    [74]T. I. Ivanova, O.V. Frank-Kamenetskaya, A.B. Kol'tsov, et al. Crystal struc-ture of calcium-deficient carbonated hydroxyapatite. Thermal decomposition [J]. Journal of Solid State Chemistry,2001,160(2):340-349.
    [75]Q. L. Luo, J. D. Andrade. Cooperative adsorption of proteins onto hydro-xyapatite [J]. Journal of Colloid and Interface Science,1998,200(1):104-113.
    [76]A. Barroug, E. Lernoux, J. Lemaitre, et al. Adsorption of catalase on hydro-xyapatite [J]. Journal of Colloid and Interface Science,1998,208(1): 147-152.
    [77]E. Schroder, T. J. Leslie Poole. Hydroxyapatite chromatography:altering the phosphate-dependent elution profile of protein as a function of pH [J]. Analytical Biochemistry,2003,313:176-178.
    [78]潘壮英,马荣娜,李静,等.羟基磷灰石/离子液体混合膜修饰电极的制备及其应用于水中痕量镉离子的高选择性测定[J].化学学报,2009,67(23):2721-2726.
    [79]Y. Li, X. Liu, X. Zeng, et al. Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry [J]. Sensors and Actuators B:Chemical, 2009,139(2):604-610.
    [80]D. Pan, Y. Wang, Z. Chen, et al. Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead:an electrochemical sensing platform toward heavy metals. Analytical Chemistry,2009,81(12): 5088-5094.
    [81]M. A. El Mhammedi, M. Achak, A. Chtaini. Ca10(P04)6(OH)2-modified carbon-paste electrode for the determination of trace lead(II) by square-wave voltammetry [J]. Journal of Hazardous Materials,2009,161(1):55-61.
    [82]H. S. Wang, G. X. Wang, Q. X. Pan. Electrochemical study of the inter-actions of DNA with redox-active molecules based on the immobilization of dsDNA on the sol-gel derived nano porous hydroxyapatite-polyvinyl alcohol hybrid material coating [J]. Electroanalysis,2005,17(20):1854-1860.
    [83]秦玉华,张袁健,徐修冬,等.细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学[J].化学学报,2004,62(09):860-863.
    [84]S. Wang, Y. Lei, Y. Zhang, et al. Hydroxyapatite nanoarray-based cyanide biosensor [J]. Analytical Biochemistry,2010,398(2):191-197.
    [85]J. Wang. Analytical Electrochemistry [M]. Second ed.2000, New York: Wiley-VCH.
    [86]G. Pezzotti, S. M. F. Asmus, L. P. Ferroni, et al. In situ polymerization into porous ceramics:a novel route to tough biomimetic materials [J]. Journal of Materials Science:Materials in Medicine,2002,13(8):783-787.
    [87]S. A. Hutchens, R. S. Benson, B.R. Evans, et al. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials, 2006,27(26):4661-4670.
    [88]R.Yoh, T. Matsumoto, J. Sasaki, et al. Biomimetic fabrication of fibrin/apatite composite material [J]. Journal of Biomedical Materials Research Part A, 2008,87A(1):222-228.
    [89]E. Landi, A. Tampieri, M. Mattioli-Belmonte, et al. Biomimetic Mg-and MgCO3-substituted hydroxyapatites:synthesis characterization and in vitro behaviour [J]. Journal of the European Ceramic Society,2006,26(13):2593-2601.
    [90]B. Palazzo, D. Walsh, M. Iafisco, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nano-crystals [J]. Acta Biomaterialia,2009,5(4):1241-1252.
    [91]J. Watanabe, M. Akashi. Formation of various polymorphs of calcium carbonate on porous membrane by electrochemical approach [J]. Journal of Crystal Growth,2009,311(14):3697-3701.
    [92]R. Murugan, S. Ramakrishna. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite [J]. Biomaterials,2004,25(15): 3073-3080.
    [93]J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, et al. Scaffolds for bone restoration from cuttlefish [J]. Bone,2005,37(6):850-857.
    [94]Y. Guo, Y. Zhou. Conversion of nacre powders to apatite in phosphate buffer solutions at low temperatures [J]. Materials Chemistry and Physics,2007, 106(1):88-94.
    [95]M. Ni. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution [J]. Biomaterials,2003,24(23):4323-4331.
    [96]K. S. Vecchio, X. Zhang, J. B. Massie, et al. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants [J]. Acta Biomaterialia,2007, 3(6):910-918.
    [97]M. K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, et al. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite [J]. Materials Science and Engineering:C,2009,29(5):1674-1680.
    [98]N. A. M. Barakat, M. S. Khil, A. M. Omran, et al. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods [J]. Journal of Materials Processing Technology,2009,209(7):3408-3415.
    [99]Z. F. Chen, B. X. Huang, H. B. Pan, et al. Solubility of bovine-derived hydro-xyapatite by solid titration, pH 3.5-5 [J]. Crystal Growth & Design,2009, 9(6):2816-2820.
    [100]Y. C. Chien, M. T. Hincke, H. Vali, et al. Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro [J]. Journal of Structural Biology,2008,163(1):84-99.
    [101]L. Dupoirieux, M. Neves, D. Pourquier. Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: An experimental study [J]. Journal of Oral and Maxillofacial Surgery,2000, 58(1):40-46.
    [102]S. Nayar, A. Guha. Waste utilization for the controlled synthesis of nanosized hydroxyapatite [J]. Materials Science and Engineering:C,2009,29(4):1326-1329.
    [103]S. Sasikumar, R.Vijayaraghavan. Low temperature synthesis of nano-crystalline hydroxyapatite from egg shells by combustion method. Trends in Biomaterials and Artificial Organs,2006,19(2):70-73.
    [104]E. M. Rivera, M. Araiza, W. Brostow, et al. Synthesis of hydroxyapatite from eggshells [J]. Materials Letters,1999,41(3):128-134.
    [105]C. Oliveira, A. Ferreira, F. Rocha. Dicalcium phosphate dihydrate preci-pitation:characterization and crystal growth [J]. Chemical Engineering Research and Design,2007,85(12):1655-1661.
    [106]M. J. J. M.van Kemenade, P. L. de Bruyn. A kinetic study of precipitation from supersaturated calcium phosphate solutions [J]. Journal of Colloid and Interface Science,1987,118(2):564-585.
    [107]S. Sudo, T. Fujikawa, T. Nagakura, et al. Structures of mollusc shell frame-work proteins [J]. Nature,1997,387(6633):563-564.
    [108]I. Sarashina, K.Endo. Primary structure of a soluble matrix protein of scallop shell; implications for calcium carbonate biomineralization [J]. American Mineralogist,1998,83(11-12 part2):1510-1515.
    [109]T. Samata, N. Hayashi, M. Kono, et al. A new matrix protein family related to the nacreous layer formation of Pinctada fucata [J]. FEBS Letters,1999, 462(1-2):225-229.
    [110]H. Tong, J. Hu, W. Ma, et al. In situ analysis of the organic framework in the prismatic layer of mollusc shell [J]. Biomaterials,2002,23(12):2593-2598.
    [111]Y. Dauphin, J. P. Cuif, J. Doucet, et al. In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept [J]. Journal of Structural Biology,2003,142(2):272-280.
    [112]M. Suzuko, E.Murayama, H. Inoue, et al. Characterization of prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochemical Journal,2004,382:205-213.
    [113]H. Miyamoto, F. Miyoshi, J. Kohno. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc pinctada fucata [J]. Zoological Science,2005,22(3):311-315.
    [114]A. Checa. A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca) [J]. Tissue and Cell,2000,32(5):405-416.
    [115]X. Ren, T. E. Springer, S. Gottesfeld. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance [J]. Journal of the Electrochemical Society,2000,147(1):92-98.
    [116]P. Staiti, A. S. Arico, V. Baglio, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells [J]. Solid State Ionics,2001,145(1-4):101-107.
    [117]D. H. Jung, S. Y. Cho, D. H. Peck, et al. Performance evaluation of a Nafion/ silicon oxide hybrid membrane for direct methanol fuel cell [J]. Journal of Power Sources,2002,106(1-2):173-177.
    [118]G. Gebel, J. Lambard. Small-angle scattering study of water-swollen perfluo-rinated ionomer membranes [J]. Macromolecules,1997,30(25):7914-7920.
    [119]H. W. Starkweather, Crystallinity in perfluorosulfonic acid ionomers and re-lated polymers [J]. Macromolecules,1982,15(2):320-323.
    [120]K. D. Kreuer, S. J. Paddison, E. Spohr, et al. Transport in proton conductors for fuel-cell applications:simulations, elementary reactions, and pheno-menology [J]. Chemical Reviews,2004,104(10):4637-4678.
    [121]K. D. Kreuer. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. Journal of Membrane Science,2001, 185(1):29-39.
    [122]M. H. Kim, C. J. Glinka, S. A. Grot, et al. SANS study of the effects of water vapor sorption on the nanoscale structure of perfluorinated sulfonic acid (NAFION) membranes [J]. Macromolecules,2006,39(14):4775-4787.
    [123]张丽芳,赵弘韬,王松竹.全氟磺酸质子交换膜的辐照改性研究[J].化学与黏合,2007,29(2):95-97.
    [124]A. L. Rollet, O. Diat, G. Gebel. A new insight into Nafion structure [J]. The Journal of Physical Chemistry B,2002,106(12):3033-3036.
    [125]A. S. Ioselevich, A. A. Kornyshev, J. H. G. Steinke. Fine morphology of proton-conducting ionomers [J]. The Journal of Physical Chemistry B,2004, 108(32):11953-11963.
    [126]H. G. Haubold, T. Vad, H. Jungbluth, et al. Nano structure of NAFION:a SAXS study [J]. Electrochimica Acta,2001,46(10-11):1559-1563.
    [127]K. Schmidt-Rohr, Q. Chen. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes [J]. Nature Materials,2007,7(1):75-83.
    [128]B. K. Mandal, K. T. Suzuki. Arsenic round the world:a review. Talanta,2002, 58(1):201-235.
    [129]R. A. Yokel, S. M. Lasley, D. C. Dorman. The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment [J]. Journal of Toxicology and Environmental Health, Part B,2006,9(1):63-85.
    [130]P. Salaiin, B. Planer-Friedrich, C. M. G van den Berg. Inorganic arsenic spe-ciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Analytica Chimica Acta,2007,585(2):312-322.
    [131]B. Bas, M. Jakubowska, M. Jez, et al. Novel renovated silver ring electrode for anodic stripping analysis of Pb(II) and Cd(II) traces in water samples without removal of oxygen and surfactants [J]. Journal of Electroanalytical Chemistry,2010,638(1):3-8.
    [132]E. Tesarova, L. Baldrianova, S. B. Hocevar, et al. Anodic stripping voltam-metric measurement of trace heavy metals at antimony film carbon paste electrode [J]. Electrochimica Acta,2009,54(5):1506-1510.
    [133]V. Meucci, S. Laschi, M. Minunni, et al., An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry [J]. Talanta,2009, 77(3):1143-1148.
    [134]Y. Wu, N. B. Li, H. Q. Luo. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode [J]. Sensors and Actuators B: Chemical,2008,133(2):677-681.
    [135]Y. C. Sun, J. Mierzwa, M. H. Yang. New method of gold-film electrode preparation for anodic stripping voltammetric determination of arsenic (III and V) in seawater [J]. Talanta,1997,44(8):1379-1387.
    [136]Z. C. Sanchez-Acevedo, J. Riu, F. X. Rius. Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-a [J]. Biosensors and Bioelectronics, 2009,24(9):2842-2846.
    [137]R. Steinmetz, N. G. Brown, D. L. Allen, et al., The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo [J]. Endocri-nology,1997,138(5):1780-1786.
    [138]X. L. Cao, J. Corriveau. Migration of bisphenol A from polycarbonate baby and water bottles into water under severe conditions [J]. Journal of Agricultural and Food Chemistry,2008,56(15):6378-6381.
    [139]X. L. Cao, J. Corriveau, S. Popovic. Levels of bisphenol A in canned soft drink products in Canadian markets [J]. Journal of Agricultural and Food Chemistry,2009,57(4):1307-1311.
    [140]K. Anezaki, I. Nukatsuka, K. Ohzeki. Determination of arsenic(III) and total arsenic(III,V) in water samples by resin suspension graphite furnace atomic absorption spectrometry [J]. Analytical Sciences,1999,15(9):829-834.
    [141]P. Thomas, K. Sniatecki. Determination of trace amounts of arsenic species in natural waters by high-performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Journal of Analytical Atomic Spec-trometry,1995,10(9):615-618.
    [142]Y. L. Feng, H. Y. Chen, L. C. Tian, et al. Off-line separation and deter-mination of inorganic arsenic species in natural water by high resolution inductively coupled plasma mass spectrometry with hydride generation combined with reaction of arsenic(Ⅴ) and -cysteine [J]. Analytica Chimica Acta,1998,375(1-2):167-175.
    [143]R. S. Sadana. Determination of arsenic in the presence of copper by differen-tial pulse cathodic stripping voltammetry at a hanging mercury drop electrode [J]. Analytical Chemistry,1983,55(2):304-307.
    [144]K. Gibbon-Walsh, P. Salaun, C. M. G. van den Berg. Arsenic speciation in natural waters by cathodic stripping voltammetry [J]. Analytica Chimica Acta, 2010,662(1):1-8.
    [145]E. Munoz, S. Palmero. Analysis and speciation of arsenic by stripping poten-tiometry:a review [J]. Talanta,2005,65(3):613-620.
    [146]R. Feeney, S. P. Kounaves. On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array [J]. Analytical Chemistry, 2000,72(10):2222-2228.
    [147]H. Yin, Y. Zhou, L. Cui, et al. Electrochemical oxidation behavior of bis-phenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination [J]. Journal of Solid State Electrochemistry, 2011,15(1):167-173.
    [148]E. Dempsey, D. Diamond, A. Collier. Development of a biosensor for endo-crine disrupting compounds based on tyrosinase entrapped within a poly (thionine) film [J]. Biosensors and Bioelectronics,2004,20(2):367-377.
    [149]M. Sanchez-Paniagua Lopez, F. Tamimi, E. Lopez-Cabarcos, et al. Highly sensitive amperometric biosensor based on a biocompatible calcium phos-phate cement [J]. Biosensors and Bioelectronics,2009,24(8):2574-2579.
    [150]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].2002,科学出版社:北京.
    [151]B. Wang, J. J. Zhang, Z. Y. Pan, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film [J]. Biosensors and Bioelectronics,2009, 24(5):1141-1145.
    [152]M. A. El Mhammedi, M. Bakasse, A. Chtaini. Square-wave voltammetric de-termination of paraquat at carbon paste electrode modified with hydro-xyapatite [J]. Electroanalysis,2007,19(16):1727-1733.
    [153]B. J. Feldman, J. D. Osterloh, B.H. Hata, et al. Determination of lead in blood by square wave anodic stripping voltammetry at a carbon disk ultramicroelectrode [J]. Analytical Chemistry,1994,66(13):1983-1987.
    [154]B. Feldman, A. D'Alessandro, J. Osterloh, et al. Electrochemical determin-ation of low blood lead concentrations with a disposable carbon microarray electrode [J]. Clinic Chemistry,1995,41(4):557-563.
    [155]S. Roda, R. Greenland, R. Bornschein, et al. Anodic stripping voltammetry procedure modified for improved accuracy of blood lead analysis [J]. Clinic Chemistry,1988,34(3):563-567.
    [156]B. Bas, M. Jakubowska, M. Jez, et al. Novel renovated silver ring electrode for anodic stripping analysis of Pb(II) and Cd(II) traces in water samples without removal of oxygen and surfactants [J]. Journal of Electroanalytical Chemistry,2010,638(1):3-8.
    [157]E. Tesarova, L. Baldrianova, S. Hocevar, et al. Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode [J]. Electrochimica Acta,2009,54(5):1506-1510.
    [158]M. A. G Rico, M. Olivares-Marin, E. P. Gil. Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nano-particles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II) [J]. Talanta,2009,80(2):631-635.
    [159]X. Dai, R.G. Compton. Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass:application to the detection of arsenic(III) [J]. Analytical Sciences,2006,22:567-570.
    [160]A. O. Simm, C. E. Banks, R.G. Compton. Sonically assisted electroanalytical detection of ultratrace arsenic [J]. Analytical Chemistry,2004,76(17):5051-5055.
    [161]M. R. Rahman, T. Okajima, T. Ohsaka. Selective detection of As(III) at the Au(111)-like polycrystalline gold electrode [J]. Analytical Chemistry,2010, 82(22):9169-9176.
    [162]A. O. Simm, C. E. Banks, S. J. Wilkins, et al. A comparison of different types of gold-carbon composite electrode for detection of arsenic(Ⅲ) [J]. Analy-tical and Bioanalytical Chemistry,2005,381(4):979-985.
    [163]X. Dai, O. Nekrassova, M. E. Hyde, et al. Anodic stripping voltammetry of arsenic(Ⅲ) using gold nanoparticle-modified electrodes [J]. Analytical Che-mistry,2004,76(19):5924-5929.
    [164]L. Lu, L. Zhang, X. Zhang, et al. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic com-pounds [J]. Analytica Chimica Acta,2010,665(2):146-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700