Fenton-like反应降解三氯乙稀的碳氯同位素分馏及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,受人类活动的影响,土壤和地下水系统中氯代烃等有机污染问题日益突出,开展氯代烃的地下环境行为及其原位修复研究,是环境科学领域的研究热点。
     然而,如何准确量化污染物降解效果和验证修复方法的有效性,是土壤和地下水污染原位修复研究中亟待解决的关键问题。同位素分析为解决该问题提供了一种有力工具,其应用的关键参数和前提条件是确定和表征污染物转化过程的同位素富分馏(即同位素富集系数ε)及其影响因素。为了更好地发挥同位素分析在环境科学领域中的应用,需要不断完善不同转化过程(或降解途径)的同位素分馏数据库。
     矿物催化Fenton-like反应降解有机污染物是土壤-地下水污染修复中极具前景的原位修复技术。土壤和含水层中广泛存在的天然含铁矿物,能够催化Fenton-like反应有效地降解土壤和地下水中难降解性有机污染物,而无需向污染场地额外添加可溶性铁,其亦可以用于原位构建Fenton-like反应渗透性反应墙(PRB)。此外,Fenton-like反应原位修复过程中,释放的氧气可以提供电子受体强化好氧微生物降解。矿物催化Fenton-like反应降解有机污染物的研究,不仅极大地丰富了环境矿物学和原位化学氧化修复技术,还有助于促进环境、化学、地质、矿产资源综合利用等学科的交叉渗透。然而,国内外目前关于Fenton-like反应降解氯代烃过程的碳、氯同位素分馏研究尚未涉及。
     因此,本文针对“如何准确有效地评价土壤和地下水污染原位修复效果”这一关键科学问题,率先系统开展了Fenton-like反应降解三氯乙烯(TCE)过程的碳、氯同位素分馏研究,为定量评价Fenton-like反应原位修复方法的有效性和适用性提供了新思路和关键技术参数。
     论文主要研究目标是:表征Fenton-like反应降解TCE过程的碳氯同位素分馏并揭示其分馏机理;揭示Fenton-like反应降解TCE过程中碳氯同位素分馏的影响因素;评价碳氯同位素分析量化Fenton-like反应原位修复效果的不确定性影响。
     论文主要研究内容和思路是:首先建立了TCE含量及其碳氯同位素测试方法,为后续开展Fenton-like反应降解三氯乙烯(TCE)过程的碳氯同位素分馏研究提供技术手段。之后研究了Fenton-like反应降解TCE的反应动力学特征,为后续开展Fenton-like反应降解TCE过程的碳氯同位素分馏研究提供实验基础。在此基础上,利用碳氯同位素分析技术,结合同位素分馏理论和前人关于其它降解过程的同位素分馏研究,分别开展了Fenton-like反应降解TCE过程的单体碳同位素分馏、二维碳氯同位素分馏研究。然后进一步揭示了环境因素(NO3-、SO42-、Cl-和腐殖酸)对该降解过程的碳氯同位素分馏的影响。最后,基于上述研究表征的碳氯同位素分馏,评价了碳氯同位素分析量化Fenton-like反应原位修复效果的不确定性影响。
     研究得出以下结论:
     (一)表征了Fenton-like反应降解TCE过程(Cl-<0.2M)的碳氯同位素分馏并揭示了其分馏机理:
     (1) Fenton-like反应降解TCE过程产生显著碳氯同位素分馏,其碳氯同位素富集系数的平均值分别为εC=-3.0±0.2‰和εCl=-1.04~0.1‰。Fenton-like反应降解TCE过程的碳氯同位素分馏,显著不同于零价铁和微生物还原脱氯降解过程。这主要是由于降解过程的反应机理截然不同,其中Fenton-like反应降解TCE过程的限速反应阶段是碳-碳双键(C=C键)断开为碳-碳单键(C-C键),而还原脱氯降解过程的限速反应阶段是碳-氯键(C-Cl键)断开。
     (2)尽管具有相似的反应机理,即限速反应阶段均是将TCE碳-碳双键(C=C)断开为碳-碳单键(C-C),但是磁铁矿催化Fenton-like反应降解TCE过程的碳同位素分馏,显著小于高锰酸钾和好氧微生物G4氧化降解过程的碳同位素分馏。磁铁矿催化Fenton-like反应与均相溶液中Fenton反应降解TCE过程的碳同位素分馏大小一致,这表明该降解过程的碳同位素分馏不受“催化胁迫”影响。Fenton-like反应降解TCE过程的碳同位素分馏相对较小,可能与该降解过程中限速反应阶段的过渡态结构有关,这有待于利用量子化学计算等手段进一步研究。
     (3)对于Fenton-like反应降解TCE过程的碳氯同位素分馏,其表观动力同位素效应的平均值分别为AKIEC=1.0030±0.0002和AKIECl=1.0010±0.0001。氯同位素分馏属于次级动力同位素效应,这符合Fenton-like反应降解TCE过程中C=C键断开成C-C键为限速反应阶段的预期反应机理。
     (4)同一元素的次级动力同位素效应一般比其主级动力同位素效应至少要小一个数量级。羟基自由基(HO·)降解有机污染物存在夺氢反应、电子迁移和加成反应三种可能的反应机理。对于Fenton-like反应降解TCE过程,如果限速反应阶段是C-H键断开,其产生的氯同位素分馏的相应表观动力同位素效应(AKIECl)为1.003(即AKIECl-1=0.003),是主级动力同位素效应(KIECl=1.013,即KIECl-1=0.013)的四分之一,其不符合次级动力同位素效应。因而夺氢反应对于Fenton-like反应降解TCE过程不成立。如果其反应机理是电子迁移或加成反应,其限速反应阶段C=C键断开为C-C键产生的的氯同位素分馏的相应表观动力同位素效应(AKIECl)为1.001(即AKIECl-1=0.001),是主级动力同位素效应(KIECl=1.013,即KIECl-1=0.013)的十三分之一,符合次级动力同位素效应。
     (5)对于Fenton-like反应降解TCE过程的碳氯同位素分馏,其二维碳氯同位素组成的相对变化(Λ)的平均值为0.348±0.049,相应的碳氯同位素富集系数比值(εCJ/εC)的平均值为0.349±0.057。对比零价铁还原脱氯TCE过程的碳氯同位素富集系数比值(εCl/εC=0.238),二者存在显著差异。这两种反应机理完全不同的降解过程,具有不同的二维碳氯同位素组成的相对变化(或碳氯同位素富集系数比值),表明碳氯同位素组成的相对变化(Λ)具备识别不同降解过程(或反应机理)的应用潜力。为了更好地发挥二维碳氯同位素组成的相对变化(Λ)的应用潜力,需要进一步研究其他降解过程(或反应机理)的二维碳氯同位素组成的相对变化(Λ)及其影响因素。
     (6)环境意义
     ①Fenton-like反应降解TCE过程产生显著碳氯同位素分馏,因而通过同时分析碳氯同位素并结合瑞利分馏模型,可以分别独立地定量评价Fenton-like反应原位修复效果,并且可以相互验证以检验结果的可靠性。
     ②Fenton-like反应降解TCE过程的碳同位素富集系数(εc)明显不同于微生物氧化降解过程,这是利用碳同位素分析判识Fenton-like反应和好氧微生物降解过程的关键和前提条件。微生物G4好氧降解TCE产生的碳同位素分馏非常大(εC=-18.2~20.7‰),远远大于Fenton-like反应降解过程产生的碳同位素分馏。因而,如果野外监测到TCE碳同位素分馏大于Fenton-like反应降解过程,则表明Fenton-like反应原位修复污染场地可能同时存在微生物好氧降解过程。然而,如果野外监测到TCE碳同位素分馏小于Fenton-like反应降解过程,则单独依靠碳同位素分析不能判定是否存在微生物好氧降解过程。因为微生物OB3b好氧降解TCE产生的碳同位素分馏虽然小于Fenton-like反应降解过程产生的碳同位素分馏,但是碳同位素分馏可以忽略的物理过程通过对浓度的影响而使野外监测到的碳同位素分馏偏小。这种情况下,需要结合其他证据进行分析,如水文地球化学条件、生物地球化学指标、单体多维同位素分析(MD-CSIA)等。
     ③Fenton-like反应降解TCE过程的二维碳氯同位素分馏特征(εC、εCl、AKIEC、AKIECl、Λ),明显不同于其它衰减过程,因而,二维碳氯同位素分析可以为识别衰减过程(或反应机理)提供更全面的信息。
     (二)揭示了Fenton-like反应降解TCE过程中碳氯同位素分馏的影响因素:
     (1)反应条件(磁铁矿用量和H2O2浓度及二者的投加方式、TCE初始浓度、TCE/PCE混合污染)对Fenton-like反应降解TCE过程的碳同位素分馏不会产生显著影响。碳同位素富集系数(εC)与该降解反应的表观速率常数(kobs)不存在显著相关性,这表明降解反应速率的变化不会直接影响碳同位素分馏。
     (2)不同浓度硝酸根离子(NO3-)、硫酸根离子(SO42-)或腐殖酸的实验条件下,Fenton-like反应降解TCE过程的碳氯同位素富集系数十分一致,这表明NO3-、SO42-和腐殖酸(HA)的存在与否对Fenton-like反应降解TCE过程的碳氯同位素分馏不会产生影响。
     (3)氯离子(Cl-)浓度的变化(0~2M)导致Fenton-like反应降解TCE过程的碳同位素富集系数(εC)变化范围为-3.0‰~-7.7‰,氯同位素富集系数(εCl)变化范围为-0.6‰~-1.1‰,并且碳同位素富集系数(εC)与氯离子(Cl-)浓度具有显著的线性正相关关系(R2=0.992)。根据这一现象,首次提出氯离子(Cl-)对Fenton-like反应降解TCE过程的碳同位素分馏产生显著影响。其原因可能是由于氯离子(Cl-)捕获Fenton-like反应中的羟基自由基(HO·)而形成Cl2·-等无机自由基,并且Cl2·-等无机自由基降解TCE过程产生的碳同位素分馏明显大于羟基自由基(HO·)降解TCE过程的碳同位素分馏。这有待于进一步利用合适的方法产生Cl2·-等无机自由基以研究其降解TCE过程的同位素分馏特征。
     (4)环境意义
     氯离子(Cl-)明显影响Fenton-like反应降解TCE过程的同位素分馏,因而根据污染修复场地Cl-含量高低选择适合的同位素富集系数至关重要。Fenton-like反应降解TCE过程的同位素分馏未受其它因素(磁铁矿用量和H202浓度及二者的投加方式、TCE初始浓度、TCE/PCE混合效应、N03-、SO42-和腐殖酸)影响,这减小了碳氯同位素分析量化Fenton-like反应原位修复效果的不确定性。
     (三)评价了碳氯同位素分析量化Fenton-like反应原位修复效果的不确定性影响:
     (1)同位素组成的分析误差对降解程度(B)的不确定性影响,随着降解程度(B)增大而逐渐降低;同位素富集系数的不确定度(△ε)对降解程度(B)的不确定性影响,随着降解程度(B)的增加而呈现先增加后降低的趋势。
     (2)对于Fenton-like反应原位修复TCE过程,如果同时存在OB3b或G4好氧微生物降解过程,利用Fenton-like反应降解过程的碳同位素富集系数(εc)量化修复效果,将会低估或高估实际降解程度。因而,确定和表征有机污染物降解过程的同位素富集系数(ε)至关重要。
     本研究的创新之处在于:
     为定量评价Fenton-like反应原位修复有机污染的有效性和适用性提供新思路和技术参数,率先开展了Fenton-like反应降解过程的碳氯同位素分馏研究:
     (1)首次确定和表征了Fenton-like反应降解三氯乙烯过程的碳氯同位素分馏;
     (2)系统研究了反应条件和环境因素对Fenton-like反应降解三氯乙烯过程中碳氯同位素分馏的影响,揭示了该降解过程的碳同位素富集系数(εc)在氯离子作用下的变化规律。
In recent decades, contamination of soil and groundwater systems caused by organic contaminants such as chlorinated hydrocarbons become increasingly prominent due to human activities. To research environmental behaviors and in situ remediation technologies of chlorinated hydrocarbons in subsurface, has being the research focus in the environment field.
     A key issue for in situ soil and groundwater remediation is how to accurately quantify the extent of contaminants degradation and to verify effectiveness and applicability of remediation methods. Isotope analysis is among the most promising tools for resolving the issue. A prerequisite and critical parameter for applying this tool in the field is to determine and characterize the magnitude and variability isotope fractionation (i.e. isotope enrichment factor ε) associated with specific degradation processes and to understand the factors that influence this parameter. In order to better play the role and value of isotope analysis in the field of environmental science, it is essential to constantly enrich the database for isotope fractionation associated with various transformation processes.
     Mineral-catalyzed Fenton-like reaction is a promising alternative for in situ soil and groundwater remediation. Naturally-occurring iron-bearing minerals, which are widespread in soils or aquifers, can catalyze Fenton-like reaction to degradation of recalcitrant organic contaminants without the addition of external soluble iron, and can also be used to build in situ permeable reactive barrier based on Fenton-like reaction. Meanwhile, the oxygen released from Fenton-like reaction during in situ remediation process, may also provide sufficient electron acceptor to enhance in situ aerobic biodegradation. The research about mineral-catalyzed Fenton-like reaction to degrade organic contaminants, not only greatly enriches the environmental mineralogy and advanced oxidation in situ remediation technology, but also promotes the crossing and infiltrating of disciplines in environment, chemistry, geology, and comprehensive utilization for mineral resources. To date, carbon and chlorine isotope fractionation associated with degradation of chlorinated hydrocarbons by Fenton-like reaction has not yet been studied.
     Thus, for the critical scientific question about how to accurately and effectively evaluate the in situ soil and groundwater remediation, this study is the first to investigate carbon and chlorine isotope fractionation during trichlorothene (TCE) degradation in Fenton-like reaction. It can provide the theory basis and technical parameters for applying isotope analysis to quantify and verify the effectiveness and applicability of in situ remediation implemented by Fenton-like reaction.
     The main objectives of this study were to characterize carbon and chlorine isotope fractionation associated with TCE degradation by Fenton-like reaction, and to reveal the mechanism and potential effect of factors for carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction, and to evaluate the uncertainty for quantifying in situ degradation implemented by Fenton-like reaction using carbon and chlorine isotope analysis approach.
     The main research contents, ideas and methods are as follows:
     Firstly, analytical methods for TCE concentration and its carbon and chlorine isotope composition were established, which could provide technical means for the follow-up studies on carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction. Secondly, the kinetics of TCE degradation by magnetite-catalyzed Fenton-like reaction were investigated, which were preliminary experiments for the follow-up studies on carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction. Thirdly, applying carbon and chlorine isotope analysis techniques and based on isotope fractionation theory and combined with previous studies of carbon and chlorine isotope fractionation in other transformation processes, compound-specific carbon isotope fractionation and two-dimensional carbon and chlorine isotope fractionation associated with TCE degradation by Fenton-like reaction were characterized. After that, the potential effects of environmental factors (NO3-, SO42-, Cl", and humic acid) for carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction were revealed. Finally, the uncertainty for quantifying in situ degradation implemented by Fenton-like reaction using the Rayleigh equation approach due to the influence of isotope composition and isotope enrichment factor was evaluated.
     The following conclusions can be drawn from the present study:
     (A) Carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction were characterized, and the mechanism for carbon and chlorine isotope fractionation was revealed.
     (1) Significant carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction were noticeable, with average carbon and chlorine enrichment factors of ec=-3.0±0.2%o and εCl=-1.0±0.1%o. Carbon and chlorine isotope fractionation for TCE degradation via Fenton-like reaction were substantially different from those observed for zerovalent iron and microbial reductive dechlorination of TCE. One major difference between Fenton-like reaction degradation and reductive dechlorination of TCE is the reaction mechanism for TCE degradation, which the cleavage of a carbon-carbon double bond (C=C) to a single carbon bond (C-C) as the rate-determining step associated with Fenton-like oxidation is different from the cleavage of C-Cl bond as the first step during microbial and abiotic reductive dechlorination
     (2) Carbon isotope fractionation associated with TCE degradation by magnetite-catalyzed Fenton-like reaction was significantly smaller than those reported for permanganate oxidation of TCE and aerobic mineralization of TCE by B. cepacia G4, although those reactions for abiotic and microbial oxidation of TCE have similar mechanisms involving breakage of a carbon-carbon double bond (C=C) as the rate-determining step. The similar carbon isotope fractionation observed for TCE degradation by Fenton reaction in homogeneous solution and magnetite-catalyzed Fenton-like reaction, suggests that the explanation of commitment to catalysis contribute to the small isotope fractionation observed during Fenton-like oxidation of TCE can be precluded. An alternate explanation for the large differences of ε values is likely the result of transition state structure differences between Fenton-like oxidation and other oxidation reactions (permanganate and G4oxidation). Further simulation of the transition state structure using computational methods is necessary to illuminate these relationships.
     (3) For carbon and chlorine isotope fractionation associated with TCE degradation by Fenton-like reaction, the average apparent kinetic isotope effects for carbon and chlorine were AKIEC=1.0030±0.0002and AKIECl=1.0010±0.0001, respectively. An observed small secondary chlorine isotope effect was consistent with the expected reaction mechanism involving breakage of a C=C bond to single carbon bond as the rate-determining step.
     (4) For the same element, secondary isotope effects are generally at least one order of magnitude smaller than primary isotope effects. It has been proposed that hydroxyl radicals react with organic compounds via three mechanisms:hydrogen atom abstraction, electron transfer, and addition to multiple bonds. For the hydrogen abstraction reaction, one C-H bond is broken in the rate-limiting step for TCE degradation by Fenton-like reaction. The AKIECl is1.003(or AKIECl-1=0.003), which is about a quarter of the primary chlorine isotope effect (KIECl=1.013, or KIECl-1=0.013). Thus, it is inconsistent with secondary isotope effects for chlorine, and proposed mechanism that hydroxyl radicals react with organic compounds via hydrogen atom abstraction can be precluded. For the other two mechanisms:electron-transfer and addition to the double C=C bond, the AKIECl is1.001(or AKIECl-1=0.001), and is about one thirteenth of the primary chlorine isotope effect (KIECl=1.013, or KIECl-1=0.013), which is consistent with secondary isotope effects for chlorine.
     (5) For carbon and chlorine isotope fractionation associated with TCE degradation by Fenton-like reaction, the relative change in carbon and chlorine isotope ratios (Λ=△δ37Cl/△δ13C) was calculated to be0.348±0.049, and approximatively equal to the ratio of chlorine and carbon isotope enrichment factors (εCl/εC=0.349±0.057). The A value for TCE degradation via Fenton-like reaction was substantially different from the εCl/εC value for reductive dechlorination of TCE by zerovalent iron. The differences in the relative changes in isotope ratios of carbon and chlorine (or the ratio of chlorine and carbon isotope enrichment factors) for different reaction mechanisms, implies that it can be applied for evaluating transformation processes. In order to better play the role and worth of the relative changes in isotope ratios of carbon and chlorine, it is essential to further investigate the relative changes in isotope ratios of carbon and chlorine and its potential effect factors for various transformation processes.
     (6) Environmental significance.
     ①Significant carbon isotope fractionation effects were noticeable during TCE degradation in magnetite-catalyzed Fenton-like reaction. Thus, stable carbon and chlorine isotope analysis in combination with the Rayleigh equation approach, can be used to independently quantify the efficacy of in situ remediation implemented by Fenton-like reaction and authenticate each other.
     ②The results demonstrate significant differences in isotope fractionation for Fenton-like oxidation and aerobic biological processes, which is a first step toward potentially distinguishing between Fenton-like oxidation versus aerobic biological processes. The previously reported ε value (ε=-18.2to-20.7%o) for microbial TCE transformation by B. cepacia G4was more negative than those for Fenton-like oxidation. Thus, field-derived ε values that are more negative than those for Fenton-like oxidation, may indicate the occurrence of aerobic biological processes at contaminated sites undergoing in situ remediation with Fenton-like reaction. The more negative field-derived ε values, the more aerobic biological processes contribute to the transformation of TCE. However, field-derived ε values that are less negative than those for Fenton-like oxidation are unable to determine whether there is the occurrence of aerobic biological processes such as B. cepacia OB3b with only carbon isotope analysis, because non-fractionating processes such as physical processes may also result in "dilution" or underestimation of field-derived εvalues at contaminated sites undergoing in situ remediation with Fenton-like reaction. In these cases, other lines of evidence should be considered, including hydrogeochemical conditions, biogeochemical indicators, multidimensional compound-specific isotope analysis, etc.
     ③The two-dimensional carbon and chlorine isotope fractionation (εC,εCl, AKIEc, AKIECl, A) associated with TCE degradation by Fenton-like reaction was significant different from those observed for other attenuation processes. Thus, two-dimensional carbon and chlorine analysis can provide more exhaustive information for distinguishing between Fenton-like reaction versus other attenuation processes (or degradation mechanisms).
     (B) The potential effect of factors for carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction was revealed.
     (1) The carbon enrichment factors (εC) were robust and reproducible, and relatively insensitive to different initial reactive conditions (magnetite/H2O2dosage and delivery method, TCE concentration, TCE/PCE co-contamination). There was no discernible relationship between carbon enrichment factors (εC) and apparent first-order rate constants (kobs), which indicates that variations of reaction rate do not directly affect carbon isotope fractionation for TCE degradation in Fenton-like reaction.
     (2) Enrichment factors for TCE degradation by Fenton-like reaction under various initial concentrations of nitrate ion (NO3-), sulfate ion (SO42-), and humic acid agreed closely, which indicates that NO3-, SO42-, and humic acid do not significantly affect carbon and chlorine isotope fractionation for TCE degradation in Fenton-like reaction.
     (3) An increase in the initial chloride ion (Cl-) concentration from0to2M caused the carbon isotope enrichment factors (εC) ranged from-3.0‰to-7.7‰, and the chlorine isotope enrichment factors (εCl) ranged from-0.6‰to-1.1‰for TCE degradation in Fenton-like reaction, respectively. There was a significant positive linear correlation between the Cl-concentrations and the εC values (R2=0.992). This indicates that Cl-significantly affected carbon isotope fractionation for TCE degradation in Fenton-like reaction. The effect of Cl-on isotope fractionation may be explained by the change in reaction mechanism due to the scavenging of Cl-for hydroxyl radicals (HO·) to generate inorganic radicals such as Cl2-, and carbon isotope fractionation for TCE degradation by Cl2-may be substantially larger than those observed for TCE degradation by HO-. Follow up studies are required to characterize the isotope fractionation associated with Cl2·-radicals degradation of TCE using a more appropriate method for generating inorganic radicals.
     (4) Environmental significance.
     Chloride ion (Cl-) significantly affected isotope fractionation for TCE degradation in Fenton-like reaction. Thus, for a quantitative assessment of in situ remediation using the Rayleigh equation approach, it is crucial and necessary to select an appropriate and representative isotope enrichment factors (ε) according to the Cl-concentration in fields. The isotope fractionation associated with TCE degradation by Fenton-like reaction was relatively insensitive to other factors (magnetite/H2O2dosage and delivery method, TCE concentration, TCE/PCE co-contamination, NO3-, SO42-, and humic acid), which can reduce the uncertainty associated with application of carbon isotope analysis for quantification of in situ remediation by Fenton-like reaction.
     (C) The uncertainty for quantifying in situ degradation implemented by Fenton-like reaction using carbon and chlorine isotope analysis was evaluated.
     (1) The uncertainty of degradation extent (B) introduced by analytical errors of isotope composition steadily decreases towards higher amounts of degradation. The uncertainty of degradation extent (B) introduced by the uncertainty in isotope enrichment factors firstly increases and then decreases with the increase of degradation extent (B).
     (2) If aerobic degradation of TCE by OB3b or G4occur simultaneously at contaminated sites undergoing in situ remediation implemented by Fenton-like reaction, the extent of degradation may be underestimated or overestimated using the Rayleigh equation approach with the carbon enrichment factor for TCE degradation in Fenton-like reaction. Therefore, for a quantitative assessment of in situ remediation using the Rayleigh equation approach, it is crucial and necessary to select an appropriate and representative isotope enrichment factors (ε) for specific degradation processes and to understand the factors that influence this parameter.
     The main innovations are as follows:
     To provide the theory basis and technical parameters for applying isotope analysis to quantify and verify the effectiveness and applicability of in situ remediation implemented by Fenton-like reaction, this study is the first to investigate carbon and chlorine isotope fractionation during trichlorothene (TCE) degradation in Fenton-like reaction:
     (1) The carbon and chlorine isotope fractionation for TCE degradation in Fenton-like reaction has been first determined and characterized.
     (2) The potential effects of reactive conditions and environmental factors for carbon and chlorine isotope fractionation during TCE degradation in Fenton-like reaction has been studied systematically, and the variation for the carbon isotope enrichment factor (εc) of TCE degradation by Fenton-like reaction due to Cl-effect was revealed.
引文
[1]王焰新.地下水污染与防治[M].北京:高等教育出版社,2007.
    [2]高霏,刘菲,陈鸿汉.三氯乙烯污染土壤和地下水污染源区的修复研究进展[J].地球科学进展,2008,23(8):821-829.
    [3]Fountain JC. Technology for Dense Non-aqueous Phase Liquid Source Zone Remediation[R]. Groundwater Remediation Technologies Analysis Center, TE-98-02,1998.
    [4]Orth WS, Gillham RW. Dechlorinatin of trichloroethene in a queous solution using Fe0[J]. Environmental Science and Technology,1996,30(1):66-71.
    [5]Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers:A critical review[J]. Environmental Engineering Science,2007,24(4):401-423.
    [6]刘玉龙,刘菲,陈宏坤,等.影响铁渗透反应格栅修复地下水中氯代烃长期运行性能的研究进展[J].地学前缘,2011,18(3):331-338.
    [7]Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants:a critical perspective[J]. Environment International,2011,37(8): 1362-1375.
    [8]Mattes TE, Alexander AK, Coleman NV. Aerobic biodegradation of the chloroethenes: pathways, en2ymes, ecology, and evolution[J]. Federation of European Microbiological Societies Microbiology Reviews,2010,34(4):445-475.
    [9]Garrido-Ramirez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review[J]. Applied Clay Science,2010,47(3-4): 182-192.
    [10]Bombach P, Richnow HH, Kastner M, et al. Current approaches for the assessment of in situ biodegradation[J]. Applied Microbiology and Biotechnology,2010,86(3):839-852.
    [11]Schmidt TC, Zwank L, Elsner M, et al. Compound-specific stable isotope analysis of organic contaminants in natural environments:a critical review of the state of the art, prospects, and future challenges[J]. Analytical and Bioanalytical Chemistry,2004,378(2):283-300.
    [12]Hofstetter TB, Berg M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis[J]. Trends in Analytical Chemistry,2011,30(4): 618-627.
    [13]Braeckevelt M, Fischer A, Kastner M. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers[J]. Applied Microbiology Biotechnology,2012,94(6):1401-1421.
    [14]Gillham RW. O'Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-vale iron[J]. Ground Water,1994,32(6):958-963.
    [15]刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代烃的实验室研究[J].地球科学-中国地 质大学学报,2002,27(2):186-188.
    [16]何小娟,刘菲,黄园英,等.利用零价铁去除挥发性氯代脂肪烃的试验[J].环境科学,2003,24(1):139-142.
    [17]Chen, JL, Al-Abed SR, Ryan JA, et al. Effects of pH on dechlorination of trichloroethylene by zerovalent iron[J]. Journal of Hazardous Materials,2001,83(3):243-254.
    [18]Dong RA, Lai YL. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron[J]. Chemosphere,2006,64(3):371-378.
    [19]刘玉龙,夏凡,刘菲,等.苯或甲苯对粒状铁还原三氯乙烯及其中间产物顺式二氯乙烯的影响[J].环境科学,2010,31(7):114-120.
    [20]Johnson TL, Scherer MM, Tratnyek PG.. Kinetics of halogenated organic compound degradation by iron metal[J]. Environmental Science and Technology,1996,30(8): 2634-2640.
    [21]Roberts AL, Totten LA, Arnold WA, et al. Reductive elimination of chlorinated ethylenes by zero-valent metals[J]. Environmental Science and Technology,1996,30(8):2654-2659.
    [22]Weber EJ. Iron-mediated reductive transformations:Investigation of reaction mechanism[J]. Environmental Science and Technology,1996,30(2):716-719.
    [23]Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science and Technology,2000, 34(9):1794-1805.
    [24]Johnson TL, Fish W, Gorby YA, et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology,1998, 29(4):379-398.
    [25]Su C, Puls RW. Kinetics of trichloroethene reduction by zero-valent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science and Technology,1999,33(1):163-168.
    [26]Kober R, Schlicker O, Ebert M, et al. Degradation of chlorinated ethylenes by FeO:inhibition processes and mineral precipitation[J]. Environmental Geology,2002,41(6):644-652.
    [27]Jeen SW, Jambor JL, Blowes DW, et al. Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium[J]. Environmental Science and Technology,2007,41(6):1989-1994.
    [28]O'Hannesin SF, Gillham RW. Long-term preformance of an in situ "iron wall" for remediation of VOCs[J]. Ground Water,1998,36(1):164-170.
    [29]Puls RW, Blowes DW, Gillham RW. Long-term performance monitoring for a permeable reactive barrier at the US Coast Guard Support Center, Elizabeth City, North Carolina[J]. Journal of Hazardous Materials,1999,68(1-2):109-124.
    [30]Vogan JL, Focht RM, Clark DK, et al. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater[J]. Journal of Hazardous Materials,1999,68(1-2):97-108.
    [31]Parbs A, Ebert M, Dahmke A. Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron[J]. Environmental Science and Technology,2007,41(1):291-296.
    [32]Nooten TV, Lieben F, Dries J, et al. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions[J]. Environmental Science and Technology,2007,41(16):5724-5730.
    [33]O'Hara S, Krug T, Quinn J, et al. Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron[J]. Remediation Journal,2006,16(2):35-56.
    [34]Mackenzie PD, Horney DP, Sivavec TM. Mineral precipitation and porosity losses in granular iron columns[J]. Journal of Hazardous Materials,1999,68(1-2):1-17.
    [35]Zhang Y, Gillham RW. Effects of gas generationan dprecipitates on performance of Fe0 PRBs[J]. Ground Water,2005,43(1):113-121.
    [36]Ghittini GM. Malcomsonm QF. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environmental Science and Technology,1995, 29(11):2898-2900.
    [37]全燮,刘会娟,杨凤林,等.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学,1998,15(4):333-336.
    [38]何小娟,汤鸣皋,李旭东,等.镍/铁和铜/铁双金属降解四氯乙烯的研究[J].环境化学,2003,22(4):334-339.
    [39]Feng J, Lim TT. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:Comparison with commercial micro-scale Fe and Zn[J]. Chemosphere,2005,59(9):1267-1277.
    [40]刘菲,黄园英,张国臣.纳米镍/铁去除氯代烃影响因素的探讨[J].地学前缘,2006,13(1):150-154.
    [41]Zhang WX. Nanoscale iron particles for environmental remediation:An overview[J]. Journal of Nanoparticle Research,2003,5(3-4):323-332.
    [42]Zhang WX, Wang CB. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science and Technology,1997,31(7): 2154-2156.
    [43]Lien HL, Zhang WX. Nanoscale iron particles for complete reduction of chlorinated ethenes[J]. Colloids and Surface A:Physiochemical and Engineering Aspects,2001,191(1-2): 97-105.
    [44]黄园英,刘菲,汤鸣皋,等.纳米镍/铁对四氯乙烯快速脱氯试验[J].盐矿测试,2005,24(2):93-96.
    [45]Zhang WX, Wang CB, Lien H. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today,1998,40(4):387-395.
    [46]Lien HL, Zhang WX. Transformation of chlorinated methanes by nanoscale iron particles[J]. Journal of Environmental Engineering-ASCE,1999,125(11):1042-1047.
    [47]Song H, Carraway ER. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effect of reaction conditions[J]. Environmental Science and Technology,2005,39(16):1221-1230.
    [48]Liu Y, Lowry GV. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity:H2 evolution and TCE dechlorination[J]. Environmental Science and Technology,2006,40(19): 6085-6090.
    [49]Liu Y, Phenrat T, Lowry GV. Effect of TCE concentration and dissolved groundwater solutes on NZVI promoted TCE dechlorination and H2 evolution[J]. Environmental Science and Technology,2007,41(22):7881-7887.
    [50]Tiraferri A, Chen KL, Sethi R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008,324(1-2):71-79.
    [51]Hong Y, Honda RJ, Myung NV, et al. Transport of iron-based nanoparticles:Role of magnetic properties[J]. Environmental Science and Technology,2009,43(23):8834-8839.
    [52]Daniel WE, Zhang WX. Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science and Technology,2001,35(24):4922-4925.
    [53]Wei YT, Wu SC, Chou CM, et al. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation:A field case study[J]. Water Research,2010,44(1):131-140.
    [54]Comba S, Di Molfetta A, Sethi R. A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers[J]. Water Air and Soil Pollution,2011,215(1-4):595-607.
    [55]陈梦舫,骆永明,宋静,等.场地含水层氯代烃污染物自然衰减机制与纳米铁修复技术的研究进展[J].环境监测管理与技术,2011,23(3):85-89.
    [56]Karn B, Kuikenk T, Otto M. Nanotechnology and in situ remediation:A review of the benefits and potential risks[J]. Environmental Health Perspectives,2009,117(12): 1823-1831.
    [57]Matheson LJ, Tratnyek PGT. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science and Technology,1994,28 (12):2045-2053.
    [58]Lien HL, Zhang WX. Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination[J]. Applied Catalysis B:Environmental,2007,77(1-2):110-116.
    [59]Kim JH, Tratnyek PG, Chang YS. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron[J]. Environmental Science and Technology,2008, 42(11):4106-4112.
    [60]吴德礼,马鲁铭,徐文英,等.Fe/Cu催化还原法处理氯代有机物的机理分析[J].水处理技术,2005,31(5):30-33.
    [61]Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothioate herbicide, molinate, using nanoseale zero-valent iron[J]. Environmental Science and Technology,2004,38(7): 2242-2247.
    [62]Joo SH, Feitz AJ, Sedlak DL, et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron[J]. Environmental Science and Technology,2005,39(5): 1263-1268.
    [63]贾汉忠,宋存义,李晖.纳米零价铁处理地下水污染技术研究进展[J].化工进展,2009,28(11):2028-2034.
    [64]谭文捷,李宗良,丁爱中,等.土壤和地下水中多环芳烃生物降解研究进展[J].生态环境,2007,16(4):1310-1317.
    [65]He J, Sung Y, Krajmalnik-Brown R, et al. Isolation and characterization of dehalococcoides sp. strain FL2, a trichloroethene (TCE)-and 1,2-dichloroethene-respiring anaerobe[J]. Environmental Microbiology,2005,7(9):1442-1450.
    [66]Amos BK, Suchomel EJ, Pennell KD, et al. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone[J]. Water Research,2008, 42(12):2963-2974.
    [67]Lu X, Wilson JT, Kampbell DH. Comparison of assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in field[J]. Environmental Pollution,2009,157(3):809-815.
    [68]McCarty PL, Chu MY, Kitanidis PK. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater[J]. European Journal of Soil Biology,2007,43(5-6):276-282.
    [69]Lee I, Bae J, McCarty PL. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE[J]. Journal of Contaminant Hydrology,2007,94(1-2):76-85.
    [70]Robinson C, Barry DA, McCarty PL, et al. pH control for enhanced reductive bioremediation of chlorinated solvent source zones[J]. Science of Total Environment,2009,407(17): 4560-4573.
    [71]Oldenhuis R, Oedzes JY, van der Waarde JJ, et al. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene[J]. Applied and Environmental Microbiology,1991,57(1):7-14.
    [72]Amos BK, Christ JA, Abriola LM, et al. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution[J]. Environmental Science and Technology,2007,41(3):963-970.
    [73]Haest PJ, Springael D, Smolder E. Dechlorination kinetics of TCE at toxic TCE concentration:Assessment of different models[J]. Water Research,2010,44(1):331-339.
    [74]Wilson JT, Wilson BH. Biotransformation of Trichloroethylene in Soil[J]. Applied and Environmental Microbiology,1985,49(1):242-243.
    [75]Little CD, Palumbo AV, Herbes SE, et al. Trichloroethylene biodegradation by a methane oxidizing bacterium[J]. Applied and Environmental Microbiology,1988,54(4):951-956.
    [76]Malachowsky KJ, Phelps TJ, Teboli AB, et al. Aerobic Mineralization of trichloroethylene, vinyl chloride and aromatic compounds byrhodococcus species[J]. Applied and Environmental Microbiology,1994,60(2):542-548.
    [77]陈翠柏,杨琦,尚海涛,等.三氯乙烯好氧生物降解的初步研究[J].环境污染治理技术与设备,2001,11(5):35-37.
    [78]章立勇,林匡飞,徐圣友,等.硫酸盐还原条件下三氯乙烯的降解研究[J].环境污染与防治,2009,31(2):1-3.
    [79]Amarante D. Applying in situ chemical oxidation[J]. Pollution Engineering,2000,32(2): 40-42.
    [80]Interstate Technology & Regulatory Council. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater,2nd ed. ISCO-2[R]. Washington, DC:Interstate Technology & Regulatory Council, In Situ Chemical Oxidation Team,2005.
    [81]Yan YE, Schwartz FW. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate[J]. Journal of Contaminant Hydrology,1999,37(4):343-365.
    [82]Yan YE, Schwartz FW. Kinetics and mechanisms for TCE oxidation by permanganate[J]. Environmental Science and Technology,2000,34(12):2535-2541.
    [83]Gates-Anderson DD, Siegrist RL, Cline SR. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils[J]. Journal of Environmental Engineering,2001,127(4):337-347.
    [84]Fenton HJH. Oxidation of tartaric acid in presence of iron[J]. Journal of Chemical Society, Transactions,1894,65(0):899-910.
    [85]崔英杰,杨世迎,王萍.Fenton原位化学氧化法修复有机污染土壤和地下水研究[J].化学进展,2008,20(7-8):1196-1201.
    [86]Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [87]Kulik N, Goi A, Trapido M, et al. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil[J]. Journal of Environmental Management,2006,78(4):382-391.
    [88]Tsai TT, Kao CM, Wang JY. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation[J]. Chemosphere,2011,83(5):687-692.
    [89]Watts RJ, Udell MD, Rauch PA. Treatment of pentachlorophenol contaminated soil using Fenton's reagent[J]. Hazardous Waste and Hazardous Materials,1990,7(4):335-345.
    [90]Tsai TT, Kao CM, Surampalli RaoY, et al. Treatment of TCE contaminated groundwater using Fenton-like oxidation activated with basic oxygen furnace slag[J]. Journal of Environmental Engineering,2010,136(3):288-294.
    [91]Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide:competition between the surface area and crystallinity ofnanoparticles[J], Journal of the American Chemical Society,2007,129(35):10929-10936.
    [92]Gregor C, Hermanek M, Jancik D, et al. The effect of surface area and crystal structure on the catalytic efficiency of iron(Ⅲ) oxide nanoparticles in hydrogen peroxide decomposition[J]. European Journal of Inorganic Chemistry,2010, (16):2343-2351.
    [93]Che H, Lee W. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension[J]. Chemosphere,2011,82(8):1103-1108.
    [94]Jung YS, Lim WT, Park JY, et al. Effect of pH on Fenton and Fenton-like oxidation[J]. Environmental Technology,2009,30(2):183-190.
    [95]Che H, Bae S, Lee W. Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J]. Journal of Hazardous Materials,2011,185(2-3):1355-1361.
    [96]Xu L, Wang J. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles[J]. Applied Catalysis B:Environmental,2012,123:117-126.
    [97]Kakarla P, Prasad KC, Watts RJ. Depth of Fenton-like oxidation in remediation of surface soil[J]. Journal of Environmental Engineering,1997,123(1):11-17.
    [98]Watts RJ, Finn DD, Cutler LM, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface solids[J]. Journal of Contaminant Hydrology,2007,91(3-4):312-26.
    [99]Yeh CKJ, Wu HM, Chen TC. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems[J]. Journal of Hazardous Materials,2003,96(1): 29-51.
    [100]Kang N, Hua I, Rao PSC. Enhanced Fenton's destruction of non-aqueous phase perchloroethylene in soil systems[J]. Chemosphere,2006,63(10):1685-1698.
    [101]Smith BA, Teel AL, Watts RJ. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent[J]. Journal of Contaminant Hydrology,2006,85(3-4):229-246.
    [102]Smith BA, Teel AL, Watts RJ, et al. Destruction of trichloroethylene and perchloroethylene DNAPLs by catalyzed H2O2 propagations [J]. Journal of Environmental Engineering,2009,135(7):535-543.
    [103]Teel AL, Warberg CR, Atkinson DA, et al. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene[J]. Water Resource,2001,35(4): 977-984.
    [104]Jho EH, Singhal N, Turner S. Fenton degradation of tetrachloroethene and hexachloroethane in Fe(Ⅱ) catalyzed systems[J]. Journal of Hazardous Materials,2010, 184(1-3):234-240.
    [105]Smith BA, Teel AL, Watts RJ. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems[J]. Environmental Science and Technology,2004,38(20):5465-5469.
    [106]张琳,桂建业,陈立,等.单体同位素判识地下水MTBE衰减的研究进展[J].环境科学与技术,2012,35(6):84-88.
    [107]Van Warmerdam EM, Frape SK, Aravena R, et al. Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents[J]. Applied Geochemistry,1995, 10(5):547-552.
    [108]Jendrzejewski N, Eggenkamp HGM, Coleman ML. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions:Scope of application to environmental problems[J]. Applied Geochemistry,2001,16(9-10):1021-1031.
    [109]Shouakar-Stash O, Frape SK, Drimmie RJ. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents[J]. Journal of Contaminant Hydrology,2003,60(3-4):211-228.
    [110]Annable WK, Frape SK, Shouakar-Stash O, et al.37Cl,15N,13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants[J]. Applied Geochemistry,2007,22(7):1530-1536.
    [111]Elsner M, Jochmann MA, Hofstetter TB, et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants[J]. Analytical and Bioanalytical Chemistry,2012,403(9):2471-2491.
    [112]Hunkeler D, Aravena R, Berry-Spark K, et al. Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis[J]. Environmental Science and Technology,2005,39(16):5975-5981.
    [113]Blessing M, Schmidt TC, Dinkel R, et al. Delineation of Multiple Chlorinated Ethene Sources in an Industrialized Area-A Forensic Field Study[J]. Environmental Science and Technology,2009,43(8):2701-2707.
    [114]Sturchio NC, Clausen JL, Heraty LJ, et al. Chlorine isotope investigation of natural attenuation of trichloroethylene in aerobic aquifer[J]. Environmental Science and Technology, 1998,32(20):3037-3042.
    [115]Hunkeler D, Chollet N, Pittet X, et al. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers[J]. Journal of Contaminant Hydrology,2004,74(1-4):265-282.
    [116]Dempster HS, Lollar BS, Feenstra S. Tracing organic contaminants in groundwater:A new methodology using compound-specific isotopic analysis[J]. Environmental Science and Technology,1997,31(11):3193-3197.
    [117]Smallwood BJ, Philp RP, Burgoyne TW, et al. The use of stable isotopes to differentiate specific source markers for MTBE[J]. Environmental Forensics,2001,2(3):215-221.
    [118]Yanik PJ, O'Donnell TH, Macko SA, et al. Source apportionment of polychlorinated biphenyls using compound specific isotope analysis[J], Organic Geochemistry,2003,34(2): 239-251.
    [119]Coffin RB, Coffin RB, Miyares PH, et al. Stable carbon and nitrogen isotope analysis of TNT:Two-dimensional source identification[J]. Environmental Toxicology and Chemistry, 2001,20(12):2676-2680.
    [120]Beneteau KM, Aravena R, Frape SK. Isotopic characterization of chlorinated solvents-Laboratory and field results[J]. Organic Geochemistry,1999,30(8):739-753.
    [121]Jendrzejewski N, Eggenkamp HGM, Coleman ML. Characterisation of chlorinated hydrocarbon from chlorine and carbon to environmental problems[J]. Applied Geochemistry, 2001,16(9-10):1021-1031.
    [122]Drenzek NJ, Tarr CH, Eglinton TI, et al. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds[J]. Organic Geochemistry, 2002,33(4):437-444.
    [123]Kurashima N, Makino Y, Urano Y, et al. Use of stable isotope ratios for profiling of industrial ephedrine samples:Application of hydrogen isotope ratios in combination with carbon and nitrogen[J]. Forensic Science International,2009,189(1-3):14-18.
    [124]Hunkeler D, Aravena R, Butler BJ. Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios:Microcosm and field studies[J]. Environmental Science and Technology,1999,33(16): 2733-2738.
    [125]Sherwood Lollar B, Slater GF, Sleep B, et al. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover air force base[J]. Environmental Science and Technology,2001,35(2):261-269.
    [126]Chartrand MMG., Morrill PL, Lacrampe-Couloume G, et al. Stable isotope evidence for biodegradation of chlorinated ethenes at a fractured bedrock site[J]. Environmental Science and Technology,2005,39(13):4848-4856.
    [127]Kuder T, Wilson JT, Kaiser P, et al. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE:Microcosm and field evidence[J]. Environmental Science and Technology,2005,39(1):213-220.
    [128]Zwank L, Berg M, Elsner M, et al. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes:Application to ground water contamination by MTBE[J]. Environmental Science and Technology,2005,39(4): 1018-1029.
    [129]Rosell M, Barcelo D, Rohwerder T, et al. Variations of 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation[J]. Environmental Science and Technology,2007,41(6):2036-2043.
    [130]Ahad JME, Sherwood Lollar B, Edwards EA, et al. Carbon isotope fractionation during anaerobic biodegradation of toluene:Implications for intrinsic bioremediation[J]. Environmental Science Technology,2000,34(5):892-896.
    [131]Morasch B, Richnow HH, Vieth A, et al. Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons[J]. Applied Environmental Microbiology,2002,68(10):5191-5194.
    [132]Fischer A, Herklotz I, Herrmann S, et al. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathway s[J]. Environmental Science and Technology,2008,42(12):4356-4363.
    [133]Mancini SA, Devine CE, Elsner M, et al. Isotopic evidence suggests different initial reaction mechanisms for anaerobic benzene biodegradation[J]. Environmental Science and Technology,2008,42(22):8290-8296.
    [134]Chartrand MMG, Waller A, Mattes TE, et al. Carbon isotopic fractionation during aerobic vinyl chloride degradation[J]. Environmental Science and Technology,2005,39(4): 1064-1070.
    [135]Chu KH, Mahendra S, Song DL, et al. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes[J]. Environmental Science and Technology, 2004,38(11):3126-3130.
    [136]Elsner M, Chartrand M, Vanstone N, et al. Identifying abiotic chlorinated ethene degradation:Characteristic isotope patterns in reaction products with nanoscale zero-valent iron[J]. Environmental Science and Technology,2008,42(16):5963-5970.
    [137]Liang X, Dong Y, Kuder T, et al. Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation[J]. Environmental Science and Technology,2007,41(20):7094-7100.
    [138]Liang XM, Philp RP, Butler EC. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals[J]. Chemosphere,2009, 75(1):63-69.
    [139]Dong Y, Liang X, Krumholz LR, et al. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms[J]. Environmental Science and Technology,2009,43(3):690-697.
    [140]Van Breukelen BM. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation[J]. Environmental Science and Technology,2007,41(11):4004-4010.
    [141]Hirschorn SK, Dinglasan MJ, Elsner M, et al. Pathway dependent isotopic frractionation during aerobic biodegradation of 1,2-dichloroethane[J]. Environmental Science and Technology,2004,38(18):4775-4781.
    [142]Elsner M, Zwank L, Hunkeler D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science and Technology,2005,39(18):6896-6916.
    [143]Nijenhuis I, Andert J, Beck K, et al. Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp strain PCE-S and abiotic reactions with cyanocobalamin[J]. Applied and environmental microbiology,2005,71(7):3413-3419.
    [144]Cichocka D, Siegert M, Imfeld G, et al. Factors controlling the carbon isotope fractionation of tetra-and trichloroethene during reductive dechlorination by Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S[J]. FEMS Microbiology Ecology,2007,62(1):98-107.
    [145]Cichocka D, Imfeld G, Richnow HH, et al. Variability in microbial carbon isotope fractionation of tetra-and trichloroethene upon reductive dechlorination[J], Chemosphere, 2008,71 (4):639-648.
    [146]Northrop DB. The expression of isotope effects on enzyme-catalyzed reactions[J]. Annual Review of Biochemistry,1981,50:103-131.
    [147]Ersner M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants:principles, prospects and limitations[J]. Journal of Environmental Monitoring,2010,12(11):2005-2031.
    [148]Ersner M, McKelvie J, Lacrampe-Couloume G, et al. Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments[J]. Environmental Science and Technology,2007,41(16):5693-5700.
    [149]Hofstetter TB, Reddy CM, Heraty LJ, et al. Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes[J]. Environmental Science and Technology,2007,41(13):4662-4668.
    [150]Abe Y, Aravena R, Zopfi J, et al. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene[J]. Environmental Science and Technology,2009,43(1):101-107.
    [151]Hunkeler D, Abe Y, Broholm MM, et al. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR[J]. Journal of Contaminant Hydrology,2011,119(1-4):69-79.
    [152]Vogt C, Cyrus E, Herklotz I, et al. Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation[J]. Environmental Science and Technology, 2008,42(21):7793-7800.
    [153]Herrmann S, Vogt C, Fischer A, et al. Characterization of anaerobic xylene biodegradation by two-dimensional isotope fractionation analysis[J]. Environmental Microbiology Reports,2009,1(6):535-544.
    [154]Rakoczy J, Remy B, Vogt C, et al. A bench-scale constructed wetland as a model to characterize benzene biodegradation processes in freshwater wetlands[J]. Environmental Science and Technology,2011,45(25):10036-10044.
    [155]Youngster LKG, Rosell M, Richnow HH, et al. Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions[J]. Applied Microbiology and Biotechnology,2010,88(1):309-317.
    [156]Hofstetter TB, Spain JC, Nishino SF, et al. Identifying competing aerobic nitrobenzene biodegradation pathways using compound-specific isotope analysis[J]. Environmental Science and Technology,2008,42(13):4764-4770.
    [157]Hofstetter TB, Schwarzenbach RP, Bernasconi SM. Assessing Transformation Processes of Organic Compounds Using Stable Isotope Fractionation[J]. Environmental Science and Technology,2008,42(21):7737-7743.
    [158]Hunkeler D, Meckenstock RU, Sherwood Lollar B, et al. A guide for assessing biodegradation and source identification of organic groundwater contaminants using compound specific isotope analysis (CSIA)[R]. EPA 600/R-08/148, United States Environmental Protection Agency:Ada, OK, Dec.2008.
    [159]Morrill PL, Lacrampe-Couloume G, Slater GF, et al. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes[J]. Journal of Contaminant Hydrology,2005,76(3-4):279-293.
    [160]Fischer A, Bauer J, Meckenstock RU, et al. A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer[J]. Environmental Science and Technology,2006,40(13):4245-4252.
    [161]Hirschorn SK, Grostern A, Lacrampe-Couloume G, et al. Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study:Added value via stable carbon isotope analysis[J]. Journal of Contaminant Hydrology,2007,94(3-4): 249-260.
    [162]Aeppli C, Hofstetter TB, Amaral HI, et al. Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances[J]. Environmental Science and Technology.2010, 44(10):3705-3711.
    [163]Hamonts K, Kuhn T, Vos J, et al. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume[J]. Water Research,2012,46(6):1873-1888.
    [164]Hofstetter TB, Spain JC, Nishino SF, et al. Identifying competing aerobic nitrobenzene biodegradation pathways by compound-specific isotope analysis[J]. Environmental Science and Technology,2008,42(13):4764-4770.
    [165]Slater GF, Dempster HS, Sherwood Lollar B, et al. Headspace analysis:A new application for isotopic characterization of dissolved organic contaminants[J]. Environmental Science and Technology,1999,33(1):190-194.
    [166]Huang L, Sturchio NC, Abrajano T, et al. Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation[J]. Organic Geochemistry,1999,30 (8A): 777-785.
    [167]Poulson SR, Drever JI. Stable isotope (C, Cl, and H) fractionation during vaporization of trichloroethylene[J]. Environmental Science and Technology,1999,33 (20):3689-3694.
    [168]Jeannottat S, Hunkeler D. Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone[J]. Environmental Science and Technology,2012,46(6):3169-76.
    [169]Hunkeler D, Aravena R, Shouakar-Stash O, et al. Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer[J]. Environmental Science and Technology,2011,45(19):8247-8253.
    [170]Hunkeler D, Aravena R. Determination of compound-specific carbon isotope ratios of chlorinated methanes, ethanes, and ethenes in aqueous samples[J]. Environmental Science and Technology,2000,34(13):2839-2844.
    [171]Slater GF, Ahad JME, Sherwood Lollar B, et al. Carbon isotope effects resulting from equilibrium sorption of dissolved VOCs[J]. Analytical Chemistry,2000,72(22):5669-5672.
    [172]Schiith C, Taubald H, Bolano N, et al. Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials[J]. Journal of Contaminant Hydrology,2003,64(3-4):269-281.
    [173]Hohener P, Yu X. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption[J]. Journal of Contaminant Hydrology,2012,129(SI):54-61.
    [174]Dayan H, Abrajano T, Sturchio NC, et al. Carbon isotopic fractionation during reductive dehalogenation of chlorinated ethenes by metallic iron[J]. Organic Geochemistry. 1999,30(8):755-763.
    [175]Slater G, Sherwood Lollar B, Allen King R, et al. Isotopic fractionation during reductive dechlorination of trichloroethene by zero-valent iron:Influence of surface treatment[J]. Chemosphere,2002,49(6):587-596.
    [176]Schuth C, Bill M, Barth JAC, et al. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers[J]. Journal of Contaminant Hydrology,2003,66(1-2):25-37.
    [177]VanStone NA, Focht RM, Mabury SA, et al. Effect of iron type on kinetics and carbon isotopic enrichment of chlorinated ethylenes during abiotic reduction on Fe(0)[J]. Ground Water,2004,42(42):268-276.
    [178]Prommer H, Aziz LH, Bolano N, et al. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron[J]. Journal of contaminant hydrology,2008,97(1-2):13-26.
    [179]Eisner M, Cwiertny DM, Roberts AL, et al.1,1,2,2-Tetrachloroethane reactions with OH-, Cr(Ⅱ), granular iron, and a copper-iron bimetal:Insights from product formation and associated carbon isotope fractionation[J]. Environmental Science and Technology,2007, 41(11):4111-4117.
    [180]VanStone N, Eisner M, Lacrampe-Couloume G, et al. Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation[J]. Environmental Science and Technology,2008,42(1):126-132.
    [181]Su CM, Puls RW. Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science and Technology,1999,33(1):163-168.
    [182]Butler EC, Hayes KF. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal[J]. Environmental Science and Technology, 2001,35(19):3884-3891.
    [183]Zwank L, Ersner M, Aeberhard A, et al. Carbon isotope fractionation in the reductive dehalogenation of carbon tetrachloride at iron (hydr)oxide and iron sulfide minerals[J]. Environmental Science and Technology,2005,39(15):5634-5641.
    [184]Poulson SR, Naraoka H. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE)[J]. Environmental Science and Technology, 2002,36(15):3270-3274.
    [185]Hunkeler D, Aravena R, Parker BL, et al. Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes:Laboratory and field studies[J]. Environmental Science and Technology,2003,37(4):798-804.
    [186]Marchesi M, Aravena R, Sra KS, et al. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate[J]. Science of the Total Environment, 2012,433:318-322.
    [187]Sakaguchi-Soder K, Jager J, Grund H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communication in Mass Spectrometry,2007,21(18):3077-3084.
    [188]Lojkasek-Lima P, Aravena R, Shouakar-Stash O, et al. Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis[J]. Groundwater Monitoring and Remediation,2012,32(4):53-62.
    [189]Sherwood Lollar B, Slater GF, Ahad J, et al. Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene:Implications for intrinsic bioremediation[J]. Organic Geochemistry,1999,30(8):813-820.
    [190]Bloom Y, Aravena R, Hunkeler D, et al. Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride:implications for assessment of natural attenuation[J]. Environmental Science and Technology,2000,34(13): 2768-2772.
    [191]Hirschorn SK, Dinglasan MJ, Elsner M, et al. Pathway dependant isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane[J]. Environmental Science and Technology,2004,38(18):4775-4781.
    [192]Abe Y, Zopfi J, Hunkeler D. Effect of molecule size on carbon isotope fractionation during biodegradation of chlorinated alkanes by Xanthobacter autotrophicus GJ10[J]. Isotopes in Environmental and Health Studies,2009,45(1):18-26.
    [193]Lollar BS, Hirschorn S, Mundle SOC, et al. Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes[J]. Environmental Science and Technology,2010,44(19):7498-7503.
    [194]Hirschorn SK, Dinglasan-Panlilio MJ, Edwards EA, et al. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane[J]. Environmental Microbiology,2007,9(7):1651-1657.
    [195]Dong YR, Butler EC, Paul Philp R, et al. Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene[J]. Biodegradation,2011,22(2):431-444.
    [196]Lee PKH, Conrad ME, Alvarez-Cohen L. Stable carbon isotope fractionation of chlorethenes by dehalorespiring isolates[J]. Environmental Science and Technology,2007, 41(12):4277-4285.
    [197]Nikolausz M, Nijenhuis I, Ziller K, et al. Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria[J]. Environmental Microbiology, 2006,8(1):156-164.
    [198]Marco-Urrea E, Nijenhuis I, Adrian L. Transformation and carbon isotope fractionation of tetra-and trichloroethene to trans-dichloroethene by Dehalococcoides sp Strain CBDB1[J]. Environmental Science and Technology,2011,45(4):1555-1562.
    [199]Heraty LJ, Fuller ME, Huang L, et al. Isotopic fractionation of carbon and chlorine by microbial degradation of dichloromethane[J]. Organic Geochemistry,1999,30(8A): 793-799.
    [200]Numata M, Nakamura N, Koshikawa H, et al. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria[J]. Environmental Science and Technology,2002,36(20):4389-4394.
    [201]Palau J, Soler A, Teixidor P, et al. Compound-specific carbon isotope analysis of volatile organic compounds in water using solid-phase microextraction[J]. Journal of Chromatography A,2007,1163(1-2):260-268.
    [202]Jendrzejewski N, Eggenkamp HGM, Coleman ML. Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent[J]. Analytical Chemistry,1997,69(20):4259-4266.
    [203]Holt BD, Heraty LJ, Sturchio NC. Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine[J]. Environmental Pollution,2001,113(3):263-269.
    [204]Holmstrand H, Andersson P, Gustafsson o. Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry[J]. Analytical Chemistry,2004,76(8):2326-2342.
    [205]Van Acker MRMD, Shahar A, Young ED, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J], Analytical Chemistry,2006,78(13):4663-4667.
    [206]Shouakar-Stash O, Drimmie RJ, Zhang M, et al. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry,2006,21(5):766-781.
    [207]Shouakar-Stash O, Frape SK, Aravena R, et al. Analysis of Compound-Specific Chlorine Stable Isotopes of Vinyl Chloride by Continuous Flow Isotope Ratio Mass Spectrometry (FC-IRMS)[J]. Environmental Forensics,2009,10(4):299-306.
    [208]Xiao YK, Zhou YM, Wang QZ, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology,2002,182(2-4):655-661.
    [209]胥焕岩,彭明生,刘羽,等.矿物类Fenton反应降解有机污染物的研究进展[J].矿物岩石地球化学通报,2009,28(4):394-400.
    [210]Jung YS, Lim WT, Park JY, et al. Effect of pH on Fenton and Fenton-like oxidation[J]. Environmental Technology,2009,30(2):183-190.
    [211]Barth JAC, Slater GF, Schuth C, et al. Carbon isotope fractionation during aerobic biodegradation of trichloroethene by Burkholderia cepacia G4:a tool to map degradation mechanisms[J]. Applied Environmental Microbiology,2002,68 (4):1728-1734.
    [212]Slater GF, Sherwood Lollar B, Sleep BE, et al. Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes[J]. Implications for field applications[J]. Environmental Science and Technology,2001,35(5):901-907.
    [213]Ahad JME, Slater GF. Carbon isotope effects associated with Fenton-like degradation of toluene:Potential for differentiation of abiotic and biotic degradation[J]. Science of the total environment,2008,401(1-3):194-198.
    [214]Poulson SR, Chikaraishi Y, Naraoka H. Carbon isotope fractionation of monoaromatic hydrocarbons and chlorinated ethylenes during oxidation by Fenton's reagent[J]. Geochimica et Cosmochimica Acta.2003,67(18):A382.
    [215]Chen G, Hoag GE, Chedda P, et al. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent[J]. Journal of Hazardous Materials, 2001,87(1-3):171-186.
    [216]Kang N, Hua I, Rao PSC. Enhanced Fenton's destruction of non-aqueous phase perchloroethylene in soil systems[J]. Chemosphere,2006,63(10):1685-1698.
    [217]Liu YD, Zhou AG, Gan YQ, et al. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction[J]. Journal of Contaminant Hydrology,2013,145(2):37-43.
    [218]Kwan WP, Voelker BM. Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems[J]. Environmental Science and Technology, 2004,38(12):3425-3431.
    [219]魏运洋,李建,编著.化学反应机理导论[M].北京:科学出版社,2003.125.
    [220]Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental,2010,99(1-2):1-26
    [221]De Laat J, Truong Le G, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2[J]. Chemosphere,2004,55(5):715-723.
    [222]Truong Le G, De Laat J, Legube B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2[J]. Water Research,2004,38(9):2383-2393.
    [223]Deng Y, Rosario-Muniz E, Ma X. Effects of inorganic anions on Fenton oxidation of organic species in landfill leachate[J]. Waste Manage Research,2012,30(1):12-19.
    [224]姜成春,庞素艳,江进,等.无机阴离子对类-Fenton反应的影响[J].环境科学学报,2008,28(5):982-987.
    [225]De Laat J, Truong Le G. Effects of chloride ions on the iron(Ⅲ)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process[J]. Applied Catalysis B:Environmental,2006,66(1-2):137-146.
    [226]Lipczynska-Kochany E, Sprah G, Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction[J]. Chemosphere,1995,30(1):9-20.
    [227]Yeh CKJ, Kao YA, Cheng CP. Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide:the effect of soil organic matter[J]. Chemosphere,2002,46(1): 67-73.
    [228]Vione D, Merlo F, Maurino V, et al. Effect of humic acids on the Fenton degradation of phenol[J]. Environmental Chemistry Letters,2004,2(3):129-133.
    [229]Georgi A, Schierz A, Trommler U, et al. Humic acid modified Fenton reagent for enhancement of the working pH range[J]. Applied Catalysis B:Environmental,2007,7(1-2): 26-36.
    [230]Kochany J, Lipczynska-Kochany E. Fenton reaction in the presence of humates. Treatment of highly contaminated wastewater at neutral pH[J]. Environmental Technology, 2007,28(9):1007-1013.
    [231]Lindsey ME, Tarr MA. Inhibition of hydroxy radical reaction with aromatics by dissolved natural organic matter[J]. Environmental Science and Technology,2000,34(3): 444-449.
    [232]Bogan BW, Trbovic V. Effect of sequestration on PAH degradability with Fenton's reagent:roles of total organic carbon, humin, and soil porosity[J]. Journal of Hazardous Materials,2003,100(1-3):285-300.
    [233]Bissey LL, Smith JL, Watts RJ. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent)[J]. Water Research,2006,40(13):2477-2484.
    [234]Siedlecka EM, Wieckowska A, Stepnowski P. Influence of inorganic ions on MTBE degradation by Fenton's reagent[J]. Journal of Hazardous Materials,2007,147(1-2): 497-502.
    [235]Pignatello JJ. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J]. Environmental Science and Technology,1992,26(5): 944-951.
    [236]Davies G, Fataftah A, Cherkasskiy T. Tight metal binding by humic acids and its role in biomineralization[J]. Journal of the Chemical Society-DaltonTransactions,1997,21: 4047-4060.
    [237]Lipczynska-Kochany E, Kochany J. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH[J]. Chemosphere,2008,73(5):745-50.
    [238]Meunier L, Laubscher H, Hug SJ, et al. Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters[J]. Aquatic Sciences,2005,67(3):292-307.
    [239]Voelker BM, Morel FMM, Sulzberger B. Iron redox cycling in surface waters:Effects of humic substances and light[J]. Environmental Science and Technology,1997,31(4): 1004-1011.
    [240]Paciolla MD, Kolla S, Jansen SA. The reduction of dissolved iron species by humic acid and subsequent production of reactive oxygen species[J]. Advances in Environmental Research,2002,7(1):169-178.
    [241]栾富波,谢丽,李俊,等.腐殖酸的氧化还原行为及其研究进展[J].化学通报,2008,(11):833-837.
    [242]Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry [J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [243]Voelker BM, Sulzberger B. Effect of fulvic acids on Fe(II) oxidation by hydrogen peroxide[J]. Environmental Science and Technology,1996,30(4):1106-1114.
    [244]Watts RJ, Teel AL. Chemistry of modified Fenton's reagent (Catalyzed H2O2 Propagations-CHP) for in situ soil and groundwater remediation[J]. Journal of Environmental Engineering,2005,131(4):612-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700