A~2O工艺的提升改造工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化问题的日渐突出,污水排放标准的不断提高,脱氮除磷已成为当今污水处理领域的研究热点之一。传统的A2O作为最基本的生物脱氮除磷工艺,存在诸多问题,如由于反硝化菌和聚磷菌在碳源上存在竞争,难以同时高效脱氮除磷;其次为达到较好脱氮效果,需要较大的内回流比而导致运行费用较高。针对这些问题,1997年同济大学高廷耀、张波对A2O脱氮除磷工艺提出一种新的碳源分配方式,即缺氧区置于厌氧区之前的倒置A2O工艺,但它也存在着碳源矛盾,后来人们又提出了多点进水倒置A2O工艺。诸多文献表明:与传统A2O工艺相比,倒置A2O工艺具有较高的COD、TN、TP去除率,其出水浓度因进水浓度的不同会有较大差异。
     为研究开发适合我省的简捷高效的城市污水生物脱氮除磷工艺技术,为现有污水处理厂的改造和新建具有脱氮除磷功能污水处理厂的工艺设计提供依据。本研究以太原市某污水处理厂初沉池出水(其中COD:100mg/L~200mg/L;NH3-N:50mg/L左右;PO43-:1~3mg/L)为研究对象,采用A2O的改造工艺—多点进水倒置A2O工艺,进行了不同工况和不同运行参数条件下处理效果的试验研究,探讨了本工艺的主要影响因素。参照文献成果,本试验开始采用的运行参数如下:污泥浓度维持在2500mg/L~4000mg/L;好氧区DO=2~3mg/L;污泥回流比R=200%;水温18℃;缺氧池与厌氧池进水比例:3:1;总HRT:16~20h。
     试验共分为七个部分:
     1.试验在上述参数下运行了六次,其中试验水经过系统处理后, NH3-N的平均去除率为58.4%,出水浓度在20mg/L以下,仅能达到二级排放标准。PO43--P的平均去除率为39.7%,去除率虽然小,但因为进水浓度低,出水仍能达到一级B排放标准。COD的平均去除率为71%,仅能达到一级B排放标准。于是,就从影响生物脱氮除磷的因素找原因。
     2.将系统的温度改变为25℃、30℃、35℃,结果发现:30℃时NH3-N的平均去除率达到最大为98.2%,出水浓度在2.0mg/L以下;25℃时PO43--P的平均去除率达到最大为67.5%,出水浓度能降到1.0mg/L以下,达到一级A排放标准。而温度的变化对于COD好像没有太大的影响。最终得出,25℃的水温就能保持较高的各项污染物去除率。
     3.将缺氧区与厌氧区的进水比例从3:1改为2:1、1:1,结果发现:NH3-N和COD好像没有太大的变化,PO43--P的去除率从85%降到40.5%,所以,进水比例为3:1时就能保持较高的各项污染物去除率。
     4.改变好氧区DO=1mg/L、4 mg/L左右,结果发现,好氧区DO越大,NH3-N和COD去除率越高,PO43--P的去除率越低,所以,最终选择DO=2~3mg/L。
     5.改变污泥回流比为150%、250%,结果发现,污泥回流比越大,除磷效率越高;NH3-N和COD没有太大的变化。
     6.向污水中投加适量的葡萄糖,使得C/N由4左右变为7.5、10左右,NH3-N和COD的出水浓度都变大,PO43--P的出水浓度略微变小,因此,在这种水质采取倒置A2O工艺时, C/N在4左右时就可满足较高的去除NH3-N、PO43--P、COD的效果。
     7.当系统在最佳运行参数(好氧区DO=2~3mg/L;污泥回流比R=250%;水温25℃;缺氧池与厌氧池进水比例为3:1;总HRT:16~20h)下运行时,NH3-N和PO43--P的出水浓度均能满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A标准,而COD有时却达不到50 mg/L以下。因此,本试验又对系统出水进行了硅藻土后续处理,使得最终的出水COD能达到50 mg/L以下。
With water eutrophication issue becoming increasingly prominent and the effluent standards improving constantly,nitrogen and phosphorus removal has become one of the focuses of wastewater treatment research.As basic biological nitrogen and phosphorus removal process,many problems exist in the traditional A2O process that can remove phosphorus and nitrogen simultaneously by biological method,for instance:firstly,PAO and denitrifying bacteria rival for limited carbon source,which results in that high removal for phosphorus and nitrogen simultaneously hardly is realized in the process;Secondly,to obtain a high removal effect for nitrogen,it needs a high internal return sludge ratio,which leads to high operation cost. As for the above mentioned,in 1997,gao ting yao and zhang bo of tong ji university bring forward to a new distribution way of carbon source about A2O process,that is reversed A2O process in which anoxic tank is the first tank and anaerobic tank is the second one.But this process also has the contradiction of carbon source,so multi-influent and inversed A2O process is put forward.A large number of documents indicates that inversed A2O process has better removal efficiency of COD、TN、TP,and its outlet concentration changes largely with the inlet concentration.
     Directing at our province situation,the research is to study and develop a new process of municipal sewage biological phosphorus and nitrogen removal,and to supply reference for current sewage plants renovating or for sewage plants.This research adopted commutative multi-influent and inversed A2O process to treat the effluent of the primary sedimentation tank(in which, COD was 100mg/L~200mg/L,NH3-N was about 50mg/L,PO43--P was 1 mg/L~3mg/L )in tai yuan sewage plant so as to study the selection of parameters and the factors that influenced the effectiveness of municipal wastewater treatment.
     Referring to the literature results,the initial operational parameters of this experiment were listed as followed : Sludge concentration was between 2500mg/L and 4000mg/L;Aerobic zone DO=2~3mg/L;Sludge return ratio R=200%;Water temperature was 18℃;Total HRT was about 16~20h.
     The -test consists of 7 parts as followed:
     1.Under the operational parameters above-mentioned,the author of this article did six tests.After the treatment,the average removal rate of NH3-N is 58.4%, PO43--P is 39.7%,and COD is 71%.In the outlet water,NH3-N is only lower than 20 mg/L,which can only meet the requirement of the second class emission standard,PO43--P can reach the first class B emission standard,although its removal rate is relatively lower,COD is about 50 mg/L,which can only reach the first class B emission standard.So, the experiment analied the reasons form the factors affecting the removing of the nitrogen and phosphorus.
     2.When the temperature of the system is changed to 25℃, 30℃and 35℃from 18℃, the results showed that: the removal rate of NH3-N is 98.2% and reach the maximum under 30℃,PO43--P is 67.5% and reach the maximum under 25℃.In the outlet water, NH3-N is lower than 2 mg/L and PO43--P is 1.0mg/L which can reach the first class A emission standard. But COD seems to be no significant changes when temperature varied.SO 25℃of the water is advised.
     3.When the proportion of the anoxic zone and the anaerobic zone is reduced from 3:1 to 2:1 and 1:1, the results showed that: the removal rate of PO43--P decreased from 85% to 40.5%,COD and NH3-N seems to be no significant changes.So,it is advised that the proportion of the anoxic zone and the anaerobic zone is 3:1.
     4.When DO of the aerobic zone is changed from 2~3mg/L to 1mg/L and 4mg/L, the results showed that: the removal rate of NH3-N and COD increased with DO growing,but PO43--P decreased. So, it is advised that DO is between 2mg/L and 3mg/L.
     5. When sludge return ratio is changed from 200% to 150% and 250%, the results showed that: the removal rate of PO43--P increased with sludge return ration growing, but NH3-N and COD seems to be no significant changes. So, it is advised that sludge return ratio is 250%.
     6. When C/N is changed from 4 to 7.5 and 10 after adding the glucose to the water, NH3-N and COD in the outlet water is larger,but PO43--P is a little smaller.So, it is advised that C/N is is 4.
     7. When the system is running at optimal parameters (aerobic zone DO = 2 ~ 3mg / L; sludge return ratio R = 250%; water temperature 25℃; the ratio of the anoxic and anaerobic zone is 3:1; Total HRT: 16 ~ 20h), NH3-N and PO43--P in the outlet water can reach the first class A emission standard, but sometimes COD is more than 50 mg/L.Therefore, the experiment has been on the study about the further treatment of the outlet water of the system with the compounds of diatomite and coagulants,so that the final outlet COD is much less than 50 mg/L.
引文
[1]王成.水资源危机与国际争端[J].东北水利水电,2003,1.
    [2]彭坷珊.21世纪中国水资源危机[J].水利水电科技进展,2000,10.
    [3]UNESCO and WMO.Water Resources Assessment Activities:Handbook for National Evaluation[M].Geneva:WMO Secretariat,1998:100~101.
    [4]Stephenson D.Developments in Water Science[M].Elservier Science publicshing company Inc,1999:68~77.
    [5]车武.中国的水资源危机及其对策[J].北京建筑工程学院学报,2000,12.
    [6]陈汉辉,澳大利亚水华的控制和管理[M].环境导报,No.5,1995.
    [7]綦文正,日本水体污染的现状与对策[M].世界环境,No.2.1988.
    [8]王占生、刘文君,微污染水源饮用水处理[M].中国建筑工业出版社,1999.
    [9]《全国主要湖泊、水库富营养化调查研究》课题组,湖泊富营养化调查研究[M].北京:中国环境科学出版社,1987.
    [10]张章元、吴颖颖.我国湖泊富营养化趋势探讨[J].环境科学研究,1991.4(3) .
    [11]2000年,《中国海洋环境质量公报》.环境导报,No.3.
    [12]郑兴灿.李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [13]杨祯奎,胡保林译.水域的富营养化及其防治对策[M].北京:中国环境科学出版社,1987 2-3.
    [14]孙建升等.生物脱氮除磷工艺现状及研究发展前景[M].排水委员会第四届第二次年会论文集.
    [15]张自杰.排水工程下册(第四版) [M].中国建筑工业出版社,北京:2000.
    [16]B.Sharma,R.C.Ahlert.Nitrification and Nitrogen Removal[J].Water Research,1977,11:897-925.
    [17]V . Mateju , S Cizinska and J . Krejci . Biological water denitrification-areview[J].Enz.Microb.Technology,1992:1 4,170-183.
    [18]H.A.Painter.Microial.Transformations.of.lnorganicNitrogen[J].Prog.Water Technology,1 977:8(4~5):3~29.
    [19]张波,城市污水生物脱氮除磷技术工艺与机理研究[D].同济大学工学博士学位论文,1996.
    [20]Fuhs,G w.nd M.Chen.Mieroiologicl sis of Phosphte Removl in the ctivted Sludge Process for the Treatment of Wastewter[J].Microil Ecology,1975,2:119.
    [21]朱怀兰等.SR生物除磷工艺的研究[M].上海环境科学.1993,12(8):8-13.
    [22]徐亚同编.《废水中氮磷的处理》[M].华东师范大学出版社,1994,1-111.
    [23]Grady C.P.and Limhc.《废水生物处理理论的应用》[M].中国建筑工业出版社,1989.
    [24]Gerber.A.E.S.Mostert,C.T.WingterandR.H.De Villiers.Interactions Between Phosphate Nitrate and Organic Substrate in Biological Nutrient Removal Processes[J].Wat.Sci.Tech.1987,19:183-194.
    [25]H.odegaard,B.Paulsrud,T.BilstadandJ.E.Pettersen.(1991)Norwegian Strategies in the treatment of municipal wastewater towards the reduction of nutrient discharges to the NorthSea[J].Wat.Sci.Technol.24(10):179-186.
    [26]Mino,T.,Aurn,V.,Tzuzuki,Y.andMatzuo,Effect of phosphours accumulation on acetate metabolism in the biological phosphours removal process[J].Proc,fromIAWQspec.conf., Rome,1987.
    [27]Wentzel,M.C.,Lotter,L.H.,Ekama.GA.,Loewenthal,R.E.andMarais,G.V.R.Evaluation of biochemical models for biological excess phosphorus removal[J].WaterSci.Technol.23, 567,1991.
    [28]钱易,郝吉明编.环境科学与工程进展[J].清华大学出版社,1998.
    [29]F.J.Ludzack,M.B.Ettinger.Controlling Operation to Minimize Activated Sludge Effluent Nitrogen[J].Journal WPCF.1962,34(9):920-931.
    [30]J.L.Bamard.Biological Dertitrification, [J].Wat.P01.Con.Fed.,1973,72:705~720.
    [31]J.L.Bamard.P.G.J.Meiring and Partners.The BARDENPHO process.In:Advances in water and wastewater treatment biological nutrient removal[J].Ann Arbor Science Publishers,Michigan.1978.
    [32]J L Bamard.A review ofbiological phosphorus removal in the activated sludge process[J].Wat.SA.,1976,2:136-147.
    [33]Rabinowitz B and Marais GvR.Chemical and Biological Phosphorus Removal in theActivated Sludge Process.Research Report No.W32,Univ.of Cape Town,Dept.of CiVil Eng,1980,3.
    [34]Syed R Qasim,Walter Chiang,Guang Zhu,etal.Effect of biodegradable carbon on biological phosphorus removal[J].Journal of environmentalengineering,1 996,122(9):875—878.
    [35]G.T.Daigger,C.W.Randall and G.D.Waltrip.Factors affecting biological phosphorus removal for the VIP process,a high-rate University of Cape Town type process.Proceedings of an IAWPRC specialized conference held in Rome[J].Italy Ramadori Ed.1987.
    [36]A.R.Pitman.Design considerations for nutrient removal activated sludge plant[J],Water Science Technology.1991,23:78 1-790.
    [37]胡家燕,硅藻土的矿物岩石特征,http://mygem.myrice.com./guizaotu.htm.
    [38]许树成,硅藻土开发应用与特性研究[J].阜阳师范学院学报(自然科学版),2000,17(3):29-31.
    [39]盂建平,范瑾初,谢燕菊等.国产硅藻土助滤剂理化性能的研究[J].中国给水排水,1994,10(4):13.16.
    [40]李清山.新兴的工业资源—硅藻土[J].学科教育,1995,12:31.
    [41]陆永兴.新型高效精细过滤技术—硅藻土过滤[J].贵州化工,1998,3:8-10.
    [42]于墘,包亚芳.硅藻土在污水处理中的应用[J].中国矿业,2002,11(2):33-36.
    [43]刘应隆,赵黔榕.硅藻土的特性研究及工业应用[J].云奄教育学院学报,1998,14(5):31-33.
    [44]王泽民.硅藻土助滤剂在水过滤中的应用[J].工业水处理,2000,20(8):4-7.
    [45]陆浩,硅藻土资源及开发利用概况[J].浙江地质,2001,17(1):52-59.
    [46]张月华.硅藻土助滤剂的制各方法及其应用[J].纯工设计,1994,l:10-15.
    [47]王泽民.硅藻土助滤剂在水过滤中的应用[J].工业水处理,2000,20(8):4-7.
    [48]赵静,赵松竹.硅藻土助滤剂的制备与性能研究[J].非金属矿,1995,2:37-38.
    [49]郭秀瑞,李宝智.超细精制硅藻土作为载体的应用研究[J].非金属矿,2002,25(2):29.
    [50]郭秀瑞,任建梅,李宝智.硅藻土作为抗菌剂载体的研究[J].中国非金属矿工业导刊,2002,26(2):20一22.
    [51]王泽民,吴吉昆,马小凡等.硅藻土作粒剂农药载体的研究[J].农药,1989,28(3):9-10.
    [52]神笠谕,承载光催化剂的硅藻土在水处理中的应用[J].水处理信息导报,2002,104(1):20.21.
    [53]刘岁海,刘爱平,硅藻土开发应用的新成果[J].建筑材料工业信息,2003,(7):9-11.
    [54] Broom G.P,Treament of heavy metal effluent by crossflow microfiltration[J].Journal of membrane science,1994,87(1-2):219-230.
    [55] A1.degs Y., Sorption of 1ead ions on diatomite and manganese oxides modified diatomite[J].Water Research,200l,35(15):3724-3728.
    [56]夏士朋,石诚,改性硅藻土处理废水中重金属离子[J].河南化工,2002,(5):24-26.
    [57]赵黔榕,刘应隆等,改性硅藻土对cu(II)吸附性能的研究[J].云南师范大学学报(自然科学版),2000,20(6):55.57.
    [58]刘频,赵黔榕等,改性硅藻土对Pb(II)的吸附作用[J].云南化工,2003,30(5):11-13.
    [59]王泽民.硅藻土做填料、载体和包农的应用[J].非金属矿,1999,22(5):23—26.
    [60].赵华文,黄志桂.酸浸硅藻土制取白炭黑的研究[J].化学世界,1997,7:348—351.
    [61]任象玉,尤文华,陈中宝.热摸法离心铸造用硅藻土隔热涂料朗[J].非金属矿,1997,119(5):39-41.
    [62]李国昌,王萍.硅藻土的扩容处理及其程复合保温材料中的应用研究[J].中国非金属矿工业导刊,2000,14(2):19—20.
    [63]杜玉成,张红.某低品位硅藻土提纯及作为污水处理剂的改性研究[J].非金属矿,2001,24(1):44-45.
    [64]张红,杜玉成.微孔状非金属矿物对水中有机污染物吸附研究现状[J].中国非金属矿工业学刊,2000,5:32-33.
    [65]唐有叶.加强非金属矿产在水污染防治中的应用研究[J].浙江地质,1999,15(1):73-77.
    [66]孟建平,范瑾初,谢燕菊等.硅藻土过滤(DEF)技术的研究[J].中国给水排水,1994,10(2):8.
    [67]范瑾初等.高纯水制备的有效预处理—硅藻土过滤[J].给水排水,1994,20(6):1.
    [68]李忆,蒋风飞,范瑾初.硅藻土过滤技术在游泳池循环水处理中的研究和应用[J].绘水排水,1997,23(3):36.
    [69]吴吉昆等.利用硅藻土和炉灰渣分别处理印染废水的初步研究[C].全国环境化学导向问题研究学术座谈会论文,南京:1987.
    [70]李敏学等.用硅藻土处理含油废水的研究[C].全国环境化学导向问题研究学术座谈会论文,南京:1987.
    [71]G Bortone,S Marsili Libelli,etal. Anoxic phosphate uptake in the Dephanox process. Wat SciTech,1999,40(4-5):177~185.
    [72]李亚新,活性污泥法理论与技术[M],中国建筑工业出版社,2007.
    [73]Thomas A S.Palo verde nuclear generating station secondary sewage effluent as a cooling water source[J].International Water Conference,1990,(2):26-34.
    [74]邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学,2002,24(2):81– 84.
    [75]陈洁,张吉荣.钼锑抗分光光度法测定水中总磷的探讨[J].仪器仪表与分析检测,2004,11(3).
    [76]傅钢,董滨,周增炎,高廷耀.倒置A2O工艺的设计特点及运行参数[J],中国给水排水,2004,20(9):56-58.
    [77]张波.城市污水生物脱氮除磷技术工艺与机理研究[D].同济大学工学博士论文,1996.
    [78]张永祥,丰锴斌,马俊.倒置A 2O工艺生物脱氮效果研究[J].山西建筑,2007,33(15):7-9.
    [79]Brdjanovic D,Slamet A,van Ioosdrecht M.C.M.,Hooijmans C.M,Alaerts G J,Heijnen J J.Impact of excessive aeration on biological phosphorus removal from wastewater[J].Water Research, 1998,34(1):200-208.
    [80]刘长青.城市污水脱氮除磷倒置A2O小试及生产性试验研[D].青岛:青岛建筑工程学院,2004.
    [81]李军,多点进水多级AO工艺处理城市污水的实验研究[D],北京工业大学硕士学位论文,2008.
    [82]C.Julian,V.Teresa,L.Javier.Effect of influent COD/N ratio on biological nitrogen removal(BNR)from high-strength ammonium industrial wastewater. Process Biochemistry.2004,39:2035~2041.
    [83]M.J.Tetreault,A.H.Benedict,C.Kaempfer,E.F.Barth.Biological phosphorus removal:A technological evaluation.Jeweler.Water Pollut.Control. Fed.1986,58(8):823-837.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700