GF/ACF电路屏复合材料的吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于“阻抗匹配”的原则,以活性碳纤维(ACF)电路屏为吸波体,玻璃纤维(GF)为阻抗调节剂制备了环氧树脂基GF/ACF吸波复合材料,并详细研究了材料的电磁波反射、吸收性能及其吸波机理。主要内容及结论如下:
     (1)研究ACF电路屏的形状结构及尺寸参数对材料电磁波反射、吸收性能的影响。对于矩形电路屏复合材料,研究了缝隙的长宽比及缝隙间距对材料吸波性能的影响,发现当长宽比为2、间距为0.5cm时,复合材料的电磁波反射率最低(在2.3-18GHz有-10dB以下的反射率,最低反射值为-34.9dB);对于方形电路屏复合材料,当缝隙边长为2cm、间距为0.8cm时,复合材料的吸波性能最优,最低反射衰减值为-33.9dB。此外,对吸波层厚度对材料电磁波反射特性的影响也进行了研究,发现当吸波层厚度超过趋肤深度后,增加吸波层厚度不再是改善材料吸波性的有效途径。结果表明:电路屏的结构参数对复合材料的电磁波反射、吸收性能影响显著,电路屏自身的频率选择性、ACF毡的介电损耗、涡流损耗是影响复合材料吸波性能的主要因素。因此,合理设计电路屏的结构参数是制备优质吸波材料的有效途径。
     (2)研究了ACF自身结构性能对电路屏复合材料吸波性能的影响。以不同活化温度处理的ACF电路屏为吸波体,制备了电路屏复合材料并对其吸波性能进行了分析。结果表明:活化后ACF电路屏复合材料的吸波性优于未活化的ACF电路屏复合材料,其中活化温度为750℃时的ACF电路屏复合材料吸波效果最好(在5.2-9.9GHz有-10dB以下的反射衰减,最低反射衰减为-21.1dB)。ACF内部π电子的极化弛豫及纤维微观形貌对电磁波的散射损耗是ACF自身结构衰减电磁波的主要机制。
     (3)论文进一步研究了阻抗调节剂——玻璃纤维片的填充对ACF电路屏复合材料电磁波反射、吸收性能的影响。结果表明:将玻璃纤维片填充至电路屏的缝隙中,能有效的拓宽材料的吸收频带宽度及最低反射衰减值,且玻纤片的大小具有最优值。对于3 x 1.5cm2的矩形缝隙,填充2 x 1cm2玻纤片时,材料的吸波性最好,有效带宽为12.1GHz。对于边长为3cm的方形缝隙,填充边长2cm玻纤片时,材料对电磁波最低反射值达到-29.8dB。因此,阻抗匹配则是设计吸波材料的重要原则,论文通过合理调节透波材料(玻璃纤维)与吸波剂(碳纤维)的有效组合,制备出了具有良好阻抗匹配特性、高吸收、低反射性能的吸波材料。
Based on impedance matching principle, the epoxy matrix composites, which contained activated carbon fiber (ACF) felts screens as absorbers and glass fiber as the impedance modifier, were successfully prepared. Microwave absorbing properties and reflection properties of the resulting composites were evaluated, and the mechanisms were also discussed. The main research contents are summarized as follows:
     The influences of the shape and size parameters of ACF screens on the microwave absorbing properties and reflection properties were firstly studied. For the rectangular screen composite, the effects of the aspect ratio of aperture and aperture spacing on the absorbing property of composites were investigated. When the aspect ratio was 2 and the aperture spacing was 0.5cm, there could be achieved the lowest reflection loss (about -34.9dB), and the frequency range, corresponding to the reflection loss below -10dB, covered 2.3 to 18GHz. As to the square ACF screen composite, when the aperture length was 2cm and the aperture spacing was 0.8cm, the lowest reflection loss reached -33.9dB, indicating that the absorbing property of composites was best. Furthermore, the influence of the thickness of absorber on microwave reflection properties was investigated. It was not an effective way to improve the absorbing properties only by increasing the absorber's thickness, once the thickness of absorber exceeded the skin depth of microwave in the medium. In summary, the absorbing property of screens composite could be significantly affected by the structural parameters of ACF screens. The main absorbing parameters of the composites such as frequency selectivity of screens, the dielectric loss and eddy current loss of ACF felts should be considered. It could be concluded that proper design of the structural parameters of the screens was an effective way to prepare excellent microwave absorbing materials.
     Microporous ACF felts were further activated at different temperatures and the resulting ACF screens were used to manufacture the epoxy matrix composites. The microwave absorbing properties of those composites were investigated as well. The results showed that the composites containing the reactivated ACF felts screens rather than untreated ones performed better microwave absorbing properties. Especially for those composites with ACF felts activated at 750℃, the reflection loss reduced to below-10dB with the range from 5.2GHz to 9.9GHz and the lowest reflection loss achieved-21.1dB. The polar relaxation ofπelectron and the electromagnetic wave scattering loss caused by ACF morphology led to the electromagnetic loss.
     The influence of glass fiber, as an impedance modifier, on microwave reflection and absorption properties of ACF screens was also investigated. When a 3cm x 1.5cm rectangular aperture was filled by a glass fiber sheet (2cm x 1cm), the effective bandwidth was 12.1 GHz, whereas a square aperture (the side length was 3 cm) was filled by a square glass fiber sheet (2cm x 2cm), the minimum value of reflection loss dropped to -29.8dB. Therefore, "impedance matching" is one of the most important principles for the design of the microwave absorbing materials. The good absorbing materials, possessing efficient impedance matching, high absorptions and low reflection properties can be prepared via adjusting the composition of wave-absorber (such as carbon fibers) and wave-transparent (such as glass fiber) materials.
引文
[1]崔玉理,贺鸿珠.吸波材料的研究现状及趋势[J].上海建材,2011,(1):21-23.
    [2]蔺国民,孙秦,李艳华,等.隐身飞机综述[J].航空制造技术,2005,(9):73-76.
    [3]王岩,冯玉杰,刘延坤,等.隐身技术与隐身材料研究进展[J].化学工程师,2006,(9):43-47.
    [4]袁军,周晓艳.电磁吸波材料研究的现状与发展趋势[J].医疗卫生装备,2011,32(5):76-77.
    [5]邵蔚,赵乃勤,师春生,等.吸波材料用吸收剂的研究及应用现状[J].兵器材料科学与工程,2003,26(4):65-68.
    [6]李玉娇,冯永宝,丘泰.吸波材料基体的应用与研究现状[J].电子原件与材料,2011,30(4):79-83.
    [7]赵东林,沈曾民.炭纤维结构吸波材料及其结构设计[J].兵器材料科学与工程,2000,23(6):51-57.
    [8]王磊,张玉军,张伟儒,等.吸波材料的研究现状与发展趋势[J].现代技术陶瓷,2004,(4):23-26.
    [9]施冬梅,邓辉,杜仕国,等.雷达隐身材料技术的发展[J].兵器材料科学与工程,2002,1(25):64-67.
    [10]邹田春.活性碳纤维(毡)/环氧树脂吸波复合材料的设计与吸波性能的研究[D].天津:天津大学,2007:80-110.
    [11]袁承勋,周忠祥,秦汝虎,等.实现轻、薄、宽涂层吸波材料的技术途径[J].哈尔滨工业大学学报,2007,39(6):956-959.
    [12]赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展[J].现代防御技术,2007,35(1):27-31.
    [13]巩晓阳,董企铭.吸波材料的研究现状与进展[J].河南科技大学学报,2003,24(2):19-22.
    [14]郑长进,李家俊,赵乃勤,等.吸波材料的设计和应用前景[J].宇航材料工艺,2004,(5):1-5.
    [15]赵东林,沈曾民.吸波CF和SiCF的制备及其微波电磁特性[J].宇航材料工艺,2001,(1):4-9.
    [16]Park K. Y., Lee S. E., Kim C. G., et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures [J]. Composites Science and Technology, 2006,66(3):576-584.
    [17]刑丽英.蜂窝夹层吸波材料研究[J].材料工程,1992,(6):15-18.
    [18]李娟.泡沫夹芯结构复合材料的吸波性能研究[D].武汉:武汉理工大学,2010:33-39.
    [19]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:422-427.
    [20]杨国华.碳素材料[M].中国物资出版社,1999:25-27.
    [21]Wang X., Chung D. D. L. Electromechanical behavior of carbon fiber [C]. Proceedings of the SPIE Conference,1998:242-250.
    [22]简汇宏,曾信雄,张雅惠.碳纤维之结构与导电性的关系[J].高科技纤维与应用,2003,28(1):43-47.
    [23]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004:235-267.
    [24]贺福.碳纤维的抗磁性[J].碳素,1988,(3):17-23.
    [25]刑丽英.隐身材料[M].北京;化学工业出版社.2004:109-111.
    [26]邹田春,赵乃勤,师春生.制备工艺对活性碳纤维微观结构和吸波性能的影响[J].材料导报,2010,24(2):86-89.
    [27]Xu Z., Li J., Wu X., et al. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface [J]. Composites Part A:Applied Science and Manufacturing,2008, 39(2):301-307.
    [28]Xie W., Cheng H. F., Chu Z. Y., et al. Effect of carbonization time on the structure and electromagnetic parameters of porous-hollow carbon fibres [J]. Ceramics International,2009, 35(7):2705-2710.
    [29]赵东林,沈曾民,迟伟东,等.碳纤维结构吸波材料及其吸波碳纤维的制备[J].高科技纤维与应用,2000,25(3):8-14.
    [30]曾俊.碳纤维/铜和CuO纳米线/碳纤维复合材料的制备及性能研究[D].兰州:兰州大学,2009:90-95.
    [31]Huang C. Y., Mo W. W. The effect of attached fragments on dense layer of electroless Ni/P deposition on the electromagnetic interference shielding effectiveness of carbon fibre/acrylonitrile-butadiene-styrene composites [J]. Surface and Coatings Technology,2002, 154(1):55-62.
    [32]Yang Y., Zhang B. S., Xu W. D., et al. Preparation and electromagnetic characteristics of a novel iron-coated carbon fiber [J]. Journal of Alloys and Compounds,2004,365(1):300-302.
    [33]Huang C. Y., Mo W. W., Roan M. L. Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites [J]. Surface and Coatings Technology,2004,184(2):163-169.
    [34]Jun Z., Peng T., Sen W., et al. Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers [J]. Applied Surface Science,2009,255(9):4916-4920.
    [35]Zeng J., Xu J., Tao P., et al. Ferromagnetic and microwave absorption properties of copper oxide-carbon fiber composites [J]. Journal of Alloys and Compounds,2009,487(1):304-308.
    [36]Motojima S., Hoshiya S., Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands [J]. Carbon,2003,41(13):2658-2660.
    [37]Zheng T., Wang Y., Zheng K., et al. Electromagnetism and Absorptivity of the Modified Micro-coiled Chiral Carbon Fibers [J]. Chinese Journal of Aeronautics,2007, (20):559-563.
    [38]Shen Z., Ge M., Zhao D. The microwave absorbing properties of carbon microcoils [J]. New Carbon Materials,2005,20(4):289-293.
    [39]陈仁松,汪建科,吴红莉,杨志凌.螺旋形纳米碳纤维的电磁波吸收特性分析[J].上海航天,2006,(2):42-44.
    [40]吴红焕,王晓燕,张玲,等.碳纤维吸波材料的研究进展[J].材料导报,2007,21(5):115-124.
    [41]Ling Q., Sun J., Zhao Q., et al. Microwave absorbing properties of linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber [J]. Materials Science and Engineering:B,2009,162(3):162-166.
    [42]Shen G, Xu M., Xu Z. Double-layer microwave absorber based on ferrite and short carbon fiber composites [J]. Materials Chemistry and Physics,2007,105(2):268-272.
    [43]吴红焕,朱冬梅,周万城,等.短切碳纤维的微波介电性能研究[J].功能材料,2006,37(增刊):1073-1075.
    [44]Cao M. S., Song W. L., Hou Z. L., et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon,2010,48(3):788-796.
    [45]莫红松,吕潇,李光,等.复合材料中碳纤维的铺设方式对吸波性能的影响[J].功能材料,2007,38(增刊):3063-3066.
    [46]邹田春,赵乃勤,师春生,等.微量碳纤维/树脂复合吸波材料的研究[J].功能材料,2005,36(11):1689-1692.
    [47]杨悦.频率选择表面吸波复合材料和结构的有限元分析及设计[D].北京:北京交通大学,2007:7-15.
    [48]张朝发,李焕喜,吕明云.吸波材料与FSS复合的隐身技术研究进展[J].材料导报,2007,21(1):118-123.
    [49]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2006:242-277.
    [50]程海峰,刘海韬,刘世利,等.电路模拟吸波材料的研究及其发展[J].材料工程,2006,1(增刊):485-489.
    [51]刑丽英,蒋诗才,李斌太.含电路模拟结构陷阱式吸波复合材料研究[J].材料工程,2003,(12):29-32.
    [52]Zhao N., Zou T., Shi C., et al. Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites [J]. Materials Science and Engineering:B,2006,127(2):207-211.
    [53]赵乃勤,邹田春,师春生,等.碳毡电路模拟吸波复合材料的研究[J].功能材料,2005,36(11):1685-1687.
    [54]邹田春,赵乃勤,师春生,等.含Minkowski活性碳毡电路屏复合材料的吸波性能研究[J].功能材料,2010,41(3):457-459.
    [55]李红彬,孙志杰,陈淳.含碳纤维格栅结构吸波复合材料的实验研究[J].玻璃钢/复合材料,2007,(5):24-27.
    [56]Fan H. L., Yang W., Chao Z. M. Microwave absorbing composite lattice grids [J]. Composites Science and Technology,2007,67(15):3472-3479.
    [57]赵稼祥.碳纤维及其复合材料的新进展[J].新型碳材料,1991,(3):21-25.
    [58]谢雄军,曹运红,王蕾.雷达吸波纤维复合材料研制现状及在航空航天器上的应用[J].飞航导弹,2003,(10):56-60.
    [59]高建军,靳武刚.透波性混杂纤维复合材料性能的研究[J].电子工艺技术,2000,21(6):268-270.
    [60]王强,王军,楚增勇,等.多向铺层碳化硅纤维吸波材料吸波性能方向性研究[J].新技术新工艺,2008,(5):104-106.
    [61]华宝家,肖高智,杨建生,等.碳纤维在结构隐身材料中的应用研究[J].宇航材料工艺,1994,(3):31-34.
    [62]徐海霞,黄洁,耿健烽,等.碳纤维/玻璃纤维复合纤维毡的介电和吸波性能[J].精细化工,2009,26(11):1041-1044.
    [63]Lee S. E., Park K. Y., Oh K. S., et al. The use of carbon/dielectric fiber woven fabrics as filters for electromagnetic radiation [J]. Carbon,2009,47(8):1896-1904.
    [64]Geetha S., Kumar K. K. S., Meenakshi S., et al. Synergetic effect of conducting polymer composites reinforced E-glass fabric for the control of electromagnetic radiations [J]. Composites Science and Technology,2010,70(6):1017-1022.
    [65]Lethien C., Loyez C., Vilcot J.-P., et al. Review of Glass and Polymer Multimode Fibers Used in a Wimedia Ultrawideband MB-OFDM Radio Over Fiber System [J]. Journal of Lightwave Technology,2009,27(17):1320-1331.
    [66]Starostenko S. N., Rozanov K. N., Osipov A. V. Microwave properties of composites with glass coated amorphous magnetic microwires [J]. Journal of Magnetism and Magnetic Materials, 2006,298(1):56-64.
    [67]杨康,师春生,赵乃勤,等.玻璃纤维布对ACF/FRP结构吸波复合材料导电性能和吸波性能的影响[J].中国科技论文在线,2008,3(4):250-255.
    [68]Lee W. J., Lee J. W., Kim C. G. Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band [J]. Composites Science and Technology,2008,68(12):2485-2489.
    [69]Cao N., Darmstadt H., Soutric F., et al. Thermogravimetric study on the steam activation of charcoals obtained by vacuum and atmospheric pyrolysis of softwood bark residues [J]. Carbon, 2002,40(4):471-479.
    [70]Girgis B. S., Yunis S. S., Soliman A. M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation [J]. Materials Letters,2002,57(1):164-172.
    [71]李剑锐.矢量网络分析仪在吸波材料反射率、透射率测试中的应用[J].科技信息,2009,(33):78-79.
    [72]姚承照,张晨,冯志海,等.电路模拟吸波材料带宽拓展方法探索[J].新材料新工艺,2008,(5):33-37.
    [73]聂彦,冯则坤,张秀成,等.FSS在吸波材料中应用的实验研究[J].华中科技大学学报,2004,32(5):50-52.
    [74]Liu H. T., Cheng H. F., Chu Z. Y., et al. Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches [J]. Materials & Design,2007,28(7): 2166-2171.
    [75]李媛,李久生.电磁场与微波技术[M].北京:北京邮电大学出版社,2010:78-100.
    [76]Deslandes D., Wu K. Integrated microstrip and rectangular waveguide in planar form [J]. Microwave and Wireless Components Letters, IEEE,2001,11(2):68-70.
    [77]任伟,赵家升.电磁场与微波技术[M].北京:电子工业出版社,2005:36-58.
    [78]Yusoff A. N., Abdullah M. H. Microwave electromagnetic and absorption properties of some LiZn ferrites [J]. Journal of Magnetism and Magnetic Materials,2004,269(2):271-280.
    [79]吕述平,刘顺华,赵彦波.谐振型吸波材料的理论分析与实验研究[J].材料科学与工程学报,2006,24(1):135-138.
    [80]Liu L., Matitsine S., Huang R. F., et al. Electromagnetic smart screen with extended absorption band at microwave frequency [J]. Metamaterials,2011,5(1):36-41.
    [81]Nanni F., Travaglia P., Valentini M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites [J]. Composites Science and Technology,2009, 69(3):485-490.
    [82]柯亨玉,龚子平.电磁场理论基础[M].北京:人民邮电出版社,2011:102-123.
    [83]郑长进.纤维(毡)/环氧树脂电路模拟吸波材料的制备及性能研究[D].天津:天津大学,2005:46-65.
    [84]刘振宇,郑经堂,王茂章.活性炭纤维孔结构控制和表面改性[J].离子交换与吸附,1997,13(4):353-358.
    [85]梁英娟,罗湘南.粘胶基活性炭纤维及其改性[J].炭素,2007,(4):45-48.
    [86]Deng Q., Li X., Zuo J., et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell [J]. Journal of Power Sources,2010,195(4):1130-1135.
    [87]Xu B., Wu F., Chen R., et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte [J]. Journal of Power Sources,2010,195(7):2118-2124.
    [88]Wu J., Chung D. D. L. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers [J]. Carbon,2002,40(3): 445-447.
    [89]严成.表面大孔型粘胶基活性碳纤维的制备及致孔机理研究[D].上海:东华大学2010:49-66.
    [90]Chen Y., Wu Q., Ning P., et al. Rayon-based activated carbon fibers treated with both alkali metal salt and Lewis acid [J]. Microporous and Mesoporous Materials,2008,109(1-3):138-146.
    [91]赵乃勤,郭伟凯,李家俊.用活性碳毡制备电路模拟吸波材料的研究[J].宇航材料工艺,2004,(6):
    [92]李玉现.物理学导论[M].北京:科学出版社,2011:60-72.
    [93]Born M., Wolf E. Principles of optics [M]. Oxford:Pergamon.1980:1188-1197.
    [94]Wang G. X., Han H., Li L. W., et al. SEM and AFM Studies on the Surface and Cross Section Morphology of Rayon-Based Activated Carbon Fibers [J]. Materials Science Forum,2011,689: 413-418.
    [95]Li B., Duan Y., Zhang Y., et al. Electromagnetic wave absorption properties of cement-based composites filled with porous materials [J]. Materials & Design,2011,32(5):3017-3020.
    [96]Antunes M., Mudarra M., Velasco J. I. Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams [J]. Carbon,2011,49(2):708-717.
    [97]李宝毅,段玉平,刘顺华.基于空心球壳结构的吸波平板的吸波性能研究[J].功能材料,2011,42(9):1741-1734.
    [98]李承祖,田成林.多层吸波和多层透波材料阻抗匹配问题研究[J].国防科技大学学报,1991,13(4):66-73.
    [99]康青.新型微波吸收材料[M].北京:科学出版社,2006:12-14.
    [100]Jie Y., Gang X., Sheng C. M. A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software [J]. Materials & Design, 2006,27(1):45-52.
    [101]Padooru Y. R., Yakovlev A. B., Kaipa C. S. R., et al. Multi-band high-impedance surface absorbers with a single resistive sheet:Circuit theory model [C]. Proceedings of the Antennas and Propagation,2011 IEEE International Symposium,2011:2264-2267.
    [102]夏钢锋,樊飞跃,孙毅,等.多层结构Ku波段雷达吸收薄膜[P]:中国,CN201816261U,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700