基于声发射监测的矿井突水前兆特征信息获取方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿水害是与瓦斯、顶板等并列的矿山建设与生产过程中的主要安全灾害之一。突水过程具有岩体应力变化、水压升高等前兆特征,并伴随释放声发射(AE)信号,大量的岩体内状态变化信息包含在AE信号中,分析、处理获取的AE信号,并把突水前兆特征信息提取出来,这可作为突水监测预报的依据。这对有效遏制我国重大矿井突水事故的发生具有一定的指导作用。
     本文通过理论分析和实验研究等方法,从信号处理的角度,分别研究了基于声发射监测的井下干扰信号的识别、声发射信号的预处理和突水前兆特征信息获取方法。主要工作和创新点如下:
     (1)研究了井下环境煤岩AE信号和干扰信号特征及其适用的信号降噪方法。针对煤岩AE信号特点,分析了各种降噪处理方法,提出了采用小波对AE信号进行降噪处理。通过理论分析和实验仿真,参照SNR、RMSE两个指标对降噪效果评价,可知sym8、coif5小波适合于AE信号的降噪,并选取小波6层
     分解、rigrsure阈值、sln模式、硬阈值处理,得到的降噪效果较其它情况要好。(2)针对声发射波形分析中的限幅饱和问题,提出了一种形态修复方法。对仿真限幅饱和信号进行了修复验证和效果评价,得出形态修复能够较好的复原限幅饱和信号的结论,为获取完整的信号波形和进一步特征提取有重要价值。
     (3)提出了小波特征能谱系数和特征向量的信号特征提取方法,以及基于小波特征向量的神经网络识别方法。通过实践分析,小波特征向量能用较少的参数表示信号特征,可用于识别不同类型的干扰信号和响应信号,并且对于抑制响应信号的不稳定性,抑制同频段的干扰信号也非常有利。基于小波特征向量的神经网络具有结构简单、运行时间短等优点,有利于实现实时的模式识别。
     (4)提出利用小波包分析提取不同应力速率下含水和烘干煤岩试验声发射信号的波形特征。从实验结果看,煤岩在不同含水情况和不同应力速率下破裂时信号的声发射事件数、平均幅值和最大幅值的变化特征是比较明显的。
     (5)提出了AE信号小波特征编码和状态时间序列的特征提取方法。并以小波特征编码的依据,提出了声发射信号的特征编码方法,从编码方案的有效性和一致性两个方面验证了小波特征编码的可行性。把每一分析得到的特征编码按时间顺序排列,得到信号的状态时间序列。连续的特征编码不仅可以相互区分,而且包含了能量的连续分布特征,使得波形特征更加有序化,为从时间序列层次上分析煤矿突水声发射事件的演变过程打下重要基础。
     该论文有图83幅,表14个,参考文献148篇。
The coal mine flood is one of the main security disasters in mine construction and production process, as well as methane gas and roof. Some precursor characteristics, such as rock mass stress variation, water pressure rise, will generate during water inrush accompanied by the release of acoustic emission (AE) signals. A wealth of information of rock internal state is contained in AE signals. The collected AE signals are processed and extracted precursor feature information as a basis for monitoring and forecasting of water inrush. This will give some guidance to curb China's water inrush incidents.
     In this paper, through theoretical analysis and experimental research, from signal processing's angle, mine interference signal recognition, AE signal pre-processing and precursor feature acquisition methods for water inrush are studied separately based on AE monitoring. The main work and innovation are as follows:
     (1) The characteristics of mine AE and interference signals, as well as the suitable noise reduction methods are studied. Considering the characteristics of mine AE signal, a variety of noise reduction methods are analyzed, and the noise processing to AE signal by wavelet is proposed. Through theoretical analysis and experimental simulation, Evaluating noise reduction effect by using SNR and RMSE, it can be seen that sym8 and coif5 wavelets are suitable, and the de-noising results are better than the other cases by selecting 6-layer wavelet decomposition, rigrsure threshold, sln mode and hard threshold processing.
     (2) Aiming at the limiting saturation problem in AE signal, a shape repair method is proposed. Experimental verification and effect appraisal to emulation limiting saturation signal are carried on. It can be drawn the conclusion that the shape repair is a better recovery method to limiting saturated. This method plays an important role in acquiring complete AE waveform and further feature extraction.
     (3) Wavelet characteristic power spectrum coefficient and feature vector are proposed for extracting the signal feature. Furthermore, neural network recognition method based on wavelet feature vector is also proposed. Through practice analysis, wavelet feature vector can express the signal’s characteristic by using fewer parameters, can be used to identify different types of interference signals and response signals. Wavelet feature vector is also very beneficial for restraining the instability of the response signal and suppressing interference signals in the same frequency band. Neural network based on wavelet feature vector has merits of simple structure, short running time, and is also advantageous in realizing the real-time pattern recognition.
     (4) The extracting method of waveform characteristics of AE signals is proposed by using wavelet packet in experiments of watery and drying coal rock under different stress rates. From the experimental results, the change characteristics of the AE event number, average amplitude and maximum amplitude are quite obvious under different watery situations and different stress rates.
     (5) Wavelet feature coding and condition time series characteristics of AE signal are proposed. The basis of wavelet feature coding is elaborated. The method of feature coding is put forward. The feasibility of wavelet feature coding has confirmed from code scheme's availability and consistency. The condition time series is obtained by chronological arranging feature coding, which acquired from each signal analysis. The continuous feature coding cannot only differentiate mutually, and contains continuous distribution characteristics of energy, makes the waveform characteristics more orderly. This will lay an important foundation for the time sequence analysis of AE event's evolution in mine water inrush.
引文
[1]董书宁,虎维岳.中国煤矿水害基本特征及其主要影响因素[J].煤田地质与勘探, 2007.10, Vol.35, NO.5: 34-38.
    [2]国家煤矿安全监察局. 2005年全国煤矿特大事故分析报告[R]. 2006.
    [3]国家煤矿安全监察局. 2006年全国煤矿事故分析报告[R]. 2007.
    [4]王玉海,姚峰.构建和谐矿区之路:柴里煤矿安全文化创新实践[M].中国矿业大学出版社, 2005.6.
    [5]张光德,李栋臣,胡斌等.矿井水灾防治[M].中国矿业大学出版社,2002.7.
    [6]李德彬,张鹏,刘晓雷,赵悦.煤矿水害与防治[J].今日科苑, 2009年9期: 135.
    [7]白玉杰.煤矿水害原因分析及防治技术[J].煤炭技术, 2009.11, Vo1.28 No.1:85-87.
    [8] Jincai Zhang. Investigations of water inrushes from aquifers under coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, Volume 42, Issue 3, April 2005: 350-360.
    [9] JiuchuanWEI, ZhongjianLI, LongqingSHI, YuanzhangGUAN, Huiyong YIN. Comprehensive evaluation of water-inrush risk from coal floors [J]. Mining Science and Technology, Volume 20, Issue 1, January 2010: 121-125.
    [10] Qing-hua ZHU, Mei-mei FENG, Xian-biao MAO. Numerical analysis of water inrush from working-face floor during mining [J]. Journal of China University of Mining and Technology, Volume 18, Issue 2, June 2008: 159-163.
    [11] Sun Jian, Wang Lianguo, Wang Zhansheng, Hou Huaqiang, Shen Yifeng. Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring[J]. Mining Science and Technology, Volume 21, Issue 2, March 2011, Pages 165-168.
    [12]孟召平,易武,兰华,王萌.开滦范各庄井田突水特征及煤层底板突水地质条件分析[J].岩石力学与工程学报, Feb.2009, Vo1.28, No.2:228-237.
    [13]王秀辉.采煤工作面底板突水预报的多参数测试方法[J].煤田地质与勘探, 1998, 26(增1): 36-39.
    [14]王连国,宋扬.煤层底板突水突变模型[J].工程地质学报, 2002, 8(2): 160-163.
    [15]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社, 1997.
    [16]孟召平,郑玉柱.焦作矿区演马庄井田突水地质条件分析[J].煤田地质与勘探, 1997, 25(1): 37-40.
    [17] WU Q, WANG M, WU X. Investigations of groundwater bursting into coalmine seam floors from fault zones [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 557-571.
    [18] ZHANG J C, SHEN B H. A coal mining under aquifers in China: a case study [J].International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 629-639.
    [19]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报, 1999, 8(4): 11-18.
    [20]王树元.矿井突水事件的模糊数学预测法[J].山东矿业学院学报, 1989年8卷3期: 48-51.
    [21]杨永国,黄福臣.非线性方法在矿井突水水源判别中的用研究[J].中国矿业大学学报, 2007年36卷3期: 283-286.
    [22]钱家忠,潘国营.矿井涌水量的灰色马尔可夫预报模型[J].煤炭学报, 2000年25卷1期: 71-75.
    [23]黄国明,苏文智.利用神经网络预测煤层底板突水[J].华东地质学院学报, 1996, 19(2): 170-172, 182.
    [24]冯利军,郭晓山.人工神经网络在矿井突水预报中的应用[J].西安科技学院学报, 2003, 23(4): 369-371.
    [25] Istvan Bogardi, Lucien Duckstein, Antal Schmieder, Ferenc Szidarovszky. Stochastic forecasting of mine water inrushes[J]. Advances in Water Resources, Volume 3, Issue 1, March 1980: 3-8.
    [26]戚文云,基于GIS的矿井水文地质信息管理系统研究.河北工程大学硕士论文, 2007.
    [27]杨梅,基于GIS的淮南老矿区地下水环境特征及突水水源判别模型.合肥工业大学硕士论文, 2008.9.
    [28]孙亚军,杨国勇,郑琳.基于GIS的矿井突水水源判别系统研究[J].煤田地质与勘探, 2007年2期: 34-37.
    [29]武强,殷作如.评价煤层顶板涌(突)水条件的“三图—双预测法”[J].煤炭学报, 2000年25卷1期: 60-65.
    [30]王英钢.矿山突水监测技术的研究现状及发展趋势[J].安全生产与监督, 2009年2期: 54-55.
    [31] Christopher P. Konrad. Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States[J]. Journal of Hydrology, Volume 329, Issues 3-4, 15 October 2006, 444-470.
    [32] Ekkehard Holzbecher. Calculating the effect of natural attenuation during bank filtration[J]. Computers & Geosciences, Volume 32, Issue 9, November 2006, Pages 1451-1460.
    [33] Jin-Hung Hwang and Chih-Chieh Lu. A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology, Volume 22, Issue 1, January 2007, 39-46.
    [34] Dyskin A V, Bermanovich L N. A model of fault propagation in rocks under compression[J].In: Daemen, Schultz, eds. Rock Mechanics. 1995: 731-738.
    [35] A.K. Antonakos, N.J. Lambrakis. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece [J]. Journal of Hydrology, Volume 333, Issues 2-4, 15 February 2007, 288-304.
    [36]王经明,龚乃勤.煤层底板突水的自动化监测技术及其应用[J].煤矿设计, 1998年10期: 32-33.
    [37]郑纲.模糊聚类分析法预测顶板砂岩含水层突水点及突水量[J].煤矿安全, 2004年35卷1期: 24-25.
    [38]靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术, 2002年30卷6期: 1-4.
    [39]冯利军,郭晓山.人工神经网络在矿井突水预报中的应用[J].西安科技学院学报, 2003年23卷4期: 369-371, 393.
    [40]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J].煤田地质与勘探, 1997年25卷3期: 31-34.
    [41]刘树才,岳建华,刘志新.煤矿水文物探技术与应用.徐州:中国矿业大学出版社,2005.
    [42]岳建华,刘树才.矿井直流电法勘探.徐州:中国矿业大学出版社,2000.
    [43]张万斌,王淑坤,藤学军.我国冲击地压研究与防治的进展[J].煤炭学报, 1992年17卷3期: 27-36.
    [44]王云刚,魏建平,孙海涛.煤岩动力灾害的机理分析及防治[J].矿业安全与环保, 2010年4月: 17-19.
    [45]吴自立. AE信号参数预测预报煤(岩)与瓦斯突出危险性的进展及展望[J].矿业安全与环保, 2005年32卷1期: 27-29.
    [46]李俊平,周创兵.岩体的声发射特征试验研究[J].岩土力学, 2004, 25(3) : 374-378.
    [47] Xingping Lai, Meifeng Cai. Couple analyzing the acoustic emission characters from hard composite rock fracture[J]. Journal of University of Science and Technology Beijing, 2004, 11(2): 97-101.
    [48] Masayasu Ohtsu, Hiroshi Watanabe. Quantitative damage estimation of concrete by acoustic emission[J]. Construction and Building Materials 15(2001):217-224.
    [49]赵恩来,王恩元.岩土破环过程声发射特征的实验研究[J].防灾减灾工程学报, 2006,26(3): 316-320.
    [50] TANG Shoufeng, TONG Min-ming, HU Junli, HE Xinmin, Characteristics of acoustic emission signals in damp cracking coal rocks [J]. Mining Science and Technology, January 2010, Vol.20 No.1: 143-147.
    [51]唐守锋,童敏明,秦海鹏,胡俊立等.突水过程煤岩破裂声发射实验系统的研究[J].采矿与安全工程学报, 2010.9, 27(3): 429-432.
    [52]王更峰.基于小波分析的岩石声发射信号处理技术[J].矿业工程, 2006, 4(5): 11-14.
    [53]唐守锋,童敏明,潘玉祥,贺新民,赖小松.煤岩破裂微震信号的小波特征能谱系数分析法[J].仪器仪表学报. 2011.7, Vol.32 No.7: 202-208.
    [54]童敏明,胡俊立,唐守锋,戴新联.不同应力速率下含水煤岩声发射信号特性[J].采矿与安全工程学报. 2009年26卷1期: 97-100.
    [55]金解放,赵奎,王晓军等.岩石声发射信号处理小波基选择的研究[J].矿业研究与开发.2007.27(2):12-15.
    [56] J. Webster, W.P. Dong, R. Lindsay. Raw Acoustic Emission Signal Analysis of Grinding Process[J]. CIRP Annals - Manufacturing Technology, Volume 45, Issue 1, 1996: 335-340.
    [57] W.P. Dong, Y.H.Joe Au, A. Mardapittas. Characteristics of acoustic emission in drilling[J]. Tribology International, Volume 27, Issue 3, June 1994: 169-170.
    [58] Ronnie K. Miller and Paul Mclntire, eds. Acoustic Emission Testing, Nondestructive Testing Handbook Vol. 5, American Society for Nondestructive Testing [M], 1987.
    [59]黄翔,候力,谭永健等.机械故障诊断中的声发射信号处理方法研究[J].噪声与振动控制. 2006年6月第3期: 39-41.
    [60] E. Nanjo. Fracture mechanism and acoustic emission of short carbon-fiber reinforced material [J]. J. Mater. Sci. 1993, 61: 42-55.
    [61] Babak Eftekharnejad, D. Mba. Seeded fault detection on helical gears with acoustic emission [J]. Applied Acoustics, Volume 70, Issue 4, April 2009: 547-555.
    [62]沈功田,戴光,刘时风.中国声发射检测技术进展——学会成立25周年纪念[J].无损检测, 2003年25卷6期: 302-307.
    [63]李光海.声发射检验技术进展[J].南昌航空工业学院学报, 2001年6月第l5卷第2期: 39-43.
    [64] Dunegan, H.L., Piezoelectric Transducers or Acoustic Emission Measurements [M], UCRL-50553, 1968.
    [65]石显鑫,蔡栓荣,冯宏,李华.利用声发射技术预测预报煤与瓦斯突出.煤田地质与勘探[J]. Vol.26 No.3: 60-65.
    [66]刘时风.焊接缺陷声发射检测信号谱估计及人工神经网络模式识别研究.博士学位论文,北京:清华大学机械工程系. 1996.
    [67]沈功田.金属压力容器的声发射源特性及识别方法的研究.博士学位论文,北京:清华大学机械工程系. 1998.
    [68]邹银辉,赵旭生,刘胜.声发射连续预测煤与瓦斯突出技术研究[J].煤炭科学技术,2005, (5): 14-16.
    [69]赵旭生.声发射监测井下动力灾害的噪声处理方法[J].煤炭科学技术, 2005.3.33(3): 51-54.
    [70]袁少波.焊接裂纹声发射监测技术的研究[D].重庆大学. 2006.
    [71] Qiang Wu, Hua Xu, Wei Pang. GIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north China [J]. Environmental Geology, 2008, Volume 54, Number 5: 937-943.
    [72] Beizhan Liu, Liang Bing. Prediction of Floor Water Bursting Based on Combining Principal Component Analysis and Support Vector Machine [J]. Advances in Intelligent and Soft Computing, 2010, Volume 78, Fuzzy Information and Engineering 2010: 591-597.
    [73] Christian Wolkersdorfer, Rob Bowell. Contemporary Reviews of Mine Water Studies in Europe, Part 1 [J]. Mine Water and the Environment, 2004, Volume 23, Number 4: 162-182.
    [74]王鹰,陈强,魏有仪等. .红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报, 2003, 22(5): 855-857.
    [75]胡耀青,赵阳升,杨栋等.承压水上采煤突水的区域监控理论与方法[J].煤炭学报, 2000, 25(3): 252-255.
    [76]姜福兴, XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报, 2003, 25(1): 23-25.
    [77]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破, 2002, 8(1): 58-61.
    [78]刘卫东,冲击地压预测的声发射信号处理的关键技术研究.中国矿业大学博士论文. 2009.12.
    [79] A. V. Nasedkin, V. M. Shikhman, S. V. Zakharova and I. V. Ivanilov. Application of finite-element methods for calculation of reception systems for acoustic-emission inspection[J]. Russian Journal of Nondestructive Testing, 2006, Volume 42, Number 2: 83-91.
    [80] V. G. Khanzhin. Designing computer systems for acoustic-emission materials testing[J]. Metal Science and Heat Treatment, 2009, Volume 51, Numbers 5-6: 245-249.
    [81] Lifeng Wang, Shengli Ma and Li Ma. Accelerating Moment Release of Acoustic Emission During Rock Deformation in the Laboratory [J]. Pure and Applied Geophysics, 2008, Volume 165, Number 2: 181-199.
    [82]杨明维,耿荣升.声发射检测[M].北京:机械工业出版社, 2005.
    [83]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击, 2008年27卷3期: 75-79.
    [84]宫李海,阳能军.声发射技术在工程应用中若干问题及对策[J].中国西部科技, 2009年8卷10期: 37-39.
    [85] R. Joselin, T. Chelladurai. Burst Pressure Prediction of Composite Pressure Chambers Using Acoustic Emission Technique: A Review [J]. Journal of Failure Analysis and Prevention, 2011, Volume 11, Number 4: 344-356.
    [86] E. Rhian Green. Acoustic Emission in Composite Laminates[J]. Journal of Nondestructive Evaluation, 1998, Volume 17, Number 3: 117-127.
    [87]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程报, 2007, 26(增1): 2794-2799.
    [88]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998, 20(2): 82-85.
    [89] Xu Jiang, Li Shu-chun, Tao Yun-qi, Tang Xiao-jun, Wu Xin. Acoustic emission characteristic during rock fatigue damage and failure[J]. Procedia Earth and Planetary Science, Volume 1, Issue 1, September 2009: 556-559.
    [90] M.C. He, J.L. Miao, J.L. Feng. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, Volume 47, Issue 2, February 2010: 286-298.
    [91]滕山邦久,声发射技术的应用[M].冯夏庭译,北京:冶金工业出版社, 1996.
    [92]应崇福.超声学.北京:科学出版社. 1990, 136-139.
    [93]孙成栋.岩石声学测试[M],北京:地质出版社, 1981.
    [94]袁振明.声发射检测.北京:国防工业出版社, 1981.
    [95]刘国华.声发射信号处理关键技术研究.浙江大学博士论文, 2008.1.
    [96] J. Park. M., Him. H. C. The effects of attenuation and dispersion on the waveform analysis of acoustic emission [J], Phys. D: Appl. Phys., 1989, 22: 617-622.
    [97]张铁岗.矿井瓦斯综合治理技术.北京:煤炭工业出版社,2001.144~152.
    [98]张铁岗.矿井瓦斯综合治理示范工程:国家“九五”重点科技攻关项目成果[M].北京,煤炭工业出版社. 2004.4.
    [99]冯英波,矿井灾害监测声发射信号噪声抑制方法的研究,中国矿业大学硕士论文, 2008.
    [100] P.G.Bently and M.J.Beesley. Acoustic Emission Measurements on PWR Weld Material with Inserted Defects using Advanced Instrument [J]. J. Acoustic Emission. 1988, 7(2): 59-79.
    [101] D.Groot. Acoustic emission characteristics of C/E ribbed shells during compressive failure [J]. J. Acoustic Emission. 1998, 12(2): 65-70.
    [102] R.Hou, A.Hunt, R.A.Williams. Acoustic monitoring of pipeline flows: Particulate slurries [J]. Powder Technology. 1999, 106: 30-36.
    [103] M.Cawthorne, S. Ziola. Modal acoustic emission monitoring of helicopter rotor systemdynamic component during bench fatigue test[J]. Review of progress in quantitative non-destructive evaluation. 1996, 16: 214-220.
    [104]杨占才,张来斌,王朝晖,樊建春.发动机活塞-缸套磨损故障的声发射诊断方法研究[D].全国第九届声发射会议(论文集),成都, 2001: 97-100.
    [105] R.S. Barga, M.A. Friesel, R.B. Melton. Classification of acoustic emission waveforms for nondestructive evaluation using neural networks [J]: Proceedings of the Conference on Applications of Artificial Neural Networks, NDT & E International, Volume 25, Issue 1, 1992: 40.
    [106] I. Grabec, E. Kuljani?. Characterization of Manufacturing Processes Based upon Acoustic Emission Analysis by Neural Networks [J]. CIRP Annals - Manufacturing Technology, Volume 43, Issue 1, 1994: 77-80.
    [107] I. Grabec, W. Sachse. Intelligent processing of ultrasonic signals for quantitative NDE: Review of Progress in Quantitative Nondestructive Evaluation [J], NDT & E International, Volume 25, Issue 1, 1992: 38.
    [108]沈功田,耿荣生,刘时风.声发射信号的参数分析方法,无损检测,2002, 24(2): 72-77
    [109] SDAES数字声发射检测仪说明.北京声华兴业科技有限公司.2007, (14).
    [110] GB/T18182-2000.金属压力容器声发射检测及结果评价方法.第一版.北京:中国标准出版社出版,2000.
    [111] D.W.Prine. Inspection of Nuclear Reactor Welding by Acoustic Emission[J]. Welding Design and Fabrication. 1977, 50(1): 74.
    [112]金周庚,朱成,潘向华,宋国贵.碳-氧复合材料破坏类型声发射特性[D].第四届全国声发射会议(论文集).黄岛. 1989: 211-213.
    [113] H.V.Ravindra. Some aspects of acoustic emission signal processing [J]. Journal of Materials Processing Technology. 2001, 109: 242-247.
    [114] A.Rice. Characteristics of acoustic emission sensors employed for tool condition monitoring [J]. Proceedings of the Seventh Workshop on supervising and diagnostics of Machining Systems. Technical University of Wroclaw. CIRP, Darpacz. 1996: 241-252.
    [115]刘孝敏, K. M. Holford.钢板裄架疲劳裂纹生长模型和声发射特征的研究[J].中国科学技术大学学报. 1998, 28(3): 326-330.
    [116] M. Shiwa. Analysis of acoustic emission waveforms[J]. J. Acoustic Emission. 1990, 10(2): 35-41.
    [117] R. M. Belchamber et al. Evaluation of Pattern Recognition Analysis of Acoustic Emission from Stressed Polymers and Composites [J]. J. Acoustic Emission, 1985, 4(4): 71-84.
    [118] C.R.L.Murthy et al. Application of Pattern Recognition Concepts to Acoustic EmissionSignals Analysis[J]. J. Acoustic Emission. 1987, 6(1): 19-28.
    [119] Akiyoshi Chichibu, et al. Principal Components Analysis of AE Waveform Parameters for Investigating an Instability of Geo-technical Structures[J]. J. Acoustic Emission.1993,11(4): 47-56.
    [120]耿荣生.声发射信号的波形分析技术[A].中国无损检测学会第七届年会/国际无损检测技术交流研讨会论文集[C].汕头: 1999: 566-569.
    [121] Blum T, Suzuki I, Inasaki I. AE monitoring systems for the detection of single-point and multipoint cutting tool failures[J]. Journal of Acoustic Emission, 1988, 7(4): 179-184.
    [122] Lemaster RL, Dornfeld DA. Apparatus for coupling an acoustic emission transducer to a rotating circular saw [J]. Journal of Acoustic Emission, 1988, 7(2): 103-110.
    [123] Brown ER, et al. Acoustic emission source discrimination using a piezopolymer based sensor [J]. Materials Evaluation, 1999, 57(5): 515-520.
    [124] Imsi S. et al. Output characteristics of a thin-film piezoelectric AE sensor for magnetic head-disk interaction[J]. JMSE International Journal C, 1997, 40(1): 33-41.
    [125]梁家惠.声发射检测中的压电换能器[J].无损检测,第2002年12月24卷第12期: 526-531.
    [126]梁家惠,林耀海.声发射研究中的宽频带接收换能器[J].应用声学, 1987, 6(3): 25-29.
    [127] Hutchins DA, Bresse LF, Palmer SB. Measurements with a thick conical piezoelectric transducer[J]. JASA, 1989, 85(6): 2417-2422.
    [128] Koberna M. Broadband acoustic emission sensor with a conical active element in practice[J]. Journal of Acoustic Emission, 1993, 11(2): 61-63.
    [129] Proctor TM. A high fidelity piezoelectric tangential displacement transducer for acoustic emission[J]. Journal of Acoustic Emission, l988, 7(l): 41-47.
    [130]张贤达.现代信号处理[M].北京:清华大学出版社, 2002.
    [131]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社, 2003.
    [132]陈逢时.小波变换理论及其在信号处理中的应用[M].北京:国防工业出版社, 1995.
    [133]杨福生.小波变换的工程分析与应用[M].北京:科学出版社, 2000.
    [134] Ingrid Daubechies.小波十讲[M].李建平,杨万年译,北京:国防工业出版社, 2004.
    [135]徐晨,赵瑞珍.小波分析与应用算法.北京:科学出版社, 2004.
    [136]飞思科技产品研发中心.小波分析理论与MATLAB 7实现.北京:电子工业出版社, 2005.
    [137]邹银辉,文光才等.岩体声发射传播衰减理论分析与试验研究[J].煤炭学报, 2004, 29(6): 663-667.
    [138]汪新凡.小波基选择及其优化[J].株洲工学院学报, 2003, 17(5): 33-35.
    [139]程正军,张运陶.基于MATLAB的小波包分析在信号降噪中的应用[J].西华师范大学学报(自然科学版), 2004, 25(1): 48-54.
    [140]张平,施克仁,耿荣生等.小波变换在声发射检测中的应用[J].无损检测. 2002, 24(10): 436-442.
    [141]张平.集成化声发射信号处理平台的研究[D],博士学位论文,清华大学机械工程系, 2002.
    [142] Mitakovi D, Grabec I, Sedmark S. Simulation of AE Signals and Signal Analysis Systems. Ultrasonics[J], 1985, 23(5): 227-232.
    [143]陆菜平,窦林名,吴兴荣.岩体微震监测的频谱分析与信号识别[J],岩土工程学报, 2005, 27(7): 773-775.
    [144]王丙义.信息分类与编码[M].北京:国防工业出版社. 2003.
    [145]曹彦波,李永强,胡秀玉等.地震现场灾情信息编码研究[J].地震研究, 2010年33卷3期: 344-348.
    [146]杨叔子,吴雅,轩建平.时间序列分析的工程应用.华中科技大学出版社. 2007.
    [147]梅海彬,龚俭.一种基于时间序列面向预警的警报分析方法[J].计算机科学, 2007, 34(12): 68-72.
    [148] YanPing Huang, ChungChian Hsu, Sheng Hsuan Wang. Pattern recognition in time series database: A case study on financial database[J]. Expert Systems with Applications. 2007, 33(1): 199-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700