玛纳斯河上游积雪变化及其与径流量相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪的动态研究是目前全球变化研究的热点,文章使用美国NSIDC DAAC(National Snow and Ice Data Center Distributed Active Archive Center, USA)提供的MODIS积雪覆盖八日合成数据产品MOD10A2。整个研究过程中,选用2000年11月到2009年4月玛纳斯河流域所涉及的MODIS影像数据作为遥感数据源,结合中国气象局下发1:25万新疆地区DEM数据和其他地理信息数据提取了玛纳斯河上游的积雪覆盖图。利用肯斯瓦特水文站的径流数据和流域相关气象站的数据来研究与雪盖相关性研究,并且还用了美国地质勘察局(USGS)提供的2003年1月4日的TM数据验证了MOD10A2产品数据的精确性,通过以上数据的整理和分析可以主要得到以下结论和成果:
     1)采用EOS/MODIS八日合成数据对积雪进行监测可有效降低云层对遥感影像的影响,以TM影像数据为“真值”,其准确度为95%,精度较高,在一段时间内可有效对地面实施监测,利用2000年11月到2009年4月积雪平均覆盖度,得出积雪覆盖度最大的月份出现在12月。
     2)2000-2009年玛纳斯河上游地区积雪覆盖率总体趋势上呈现低-高-低的走势。平均最大积雪覆盖率为0.876,其标准偏差为8%,变化幅度不大。
     3)1957-2007年玛纳斯河径流量历年平均约为14.459亿m3,从90年代中期开始年径流量显著增加;径流的年内分配不均,1-3月、4-5月、6-9月、10-12月占年径流总量的百分比分别为:4.38%、6.87%、80.14%、8.61%。
     4)利用不同高度带的积雪覆盖率,得到了不同高度带的积雪覆盖率衰减曲线,得出带1内积雪在3月底融化的速度最快,带2内积雪在4月中旬才迅速融化,并在6月融化完毕,带1和带2在6月下旬消融才停止并保持稳定;海拔较高的带3从3月开始的融化速度比较稳定,到6月下旬达到最低;带4的积雪覆盖率比较稳定,从5月下旬开始有下降的趋势,到6月底最低。
     5)研究了雪盖率与径流相关性,得出3月的积雪覆盖率与当年4月径流相关系数为-0.8175,并通过了显著水平0.005的检验;冬春季里最大月份的积雪覆盖率与次年6月径流的相关系数为-0.6496,并通过了显著水平0.05的检验;12月份的平均积雪覆盖率与次年5月份径流的相关系数约为0.5775,并通过了显著水平0.1的检验。
Recent years , the dynamic research of snow is globe change research hotspot.This paper uses the 8 days synthetic data products MODIS/MOD10A2 snow cover which provided by NSIDC DAAC (National Snow and Ice Data Center Distributed Active Archive Center, USA)。In the entire research process, selected Nov.2000 to Apr.2009 Manas River basin involving MODIS image data as the source of remote sensing data, combined with 1:25 million in the Xinjiang region DEM data which China Meteorological Administration issued and other geographic information data extracted the Manas River snow cover map。Using KenSiWat hydrological station river runoff data and it related to weather stations to study the correlation with the snow cover, and also with Jan.4, 2003 of the TM data which provided by US Geological Survey (USGS) Administration to verified the accuracy of MOD10A2 data。We can get mainly following conclusions and results base on coordinating and analyzing the above data:
     1.Using EOS / MODIS 8 days synthetic data for monitoring snow cover can effectively reduce the cloud effects on sense of image, which regard the TM image data as "true value", the result of the accuracy rate is 95%,so the precision is preferly,it can be effectively implemented monitor snow on the ground in a period of time,based Nov.2000 to Apr.2009 even snow coverage, snow , the most snow cover coverage is December.
     2. The snow cover rate trend of Manas upriver region present low-high-low in 2000-2009.The average maximum of snow cover rate is0.876,and its standard deviation is 8%,the variety rang is lesser.
     3. The average runoff in Manas river about 14.459 hundred million stere in 1957-2007 past years,the runoff was increase in evidence at begin of middle 90th,distribute of annual runoff is odds,the percent of gross runoff in January to March、April to May、June to September、October to December is 4.38%、6.87%、80.14%、8.61%.
     4.With the snow coverage of different heights, obtained snow cover decay curve of different heights ,and snow melting rate of the first zone is fastest by the end of March, rapidly snow melt of the second zone start in the middle of April and complete in June,the first and second zone stop and remain stable until late June; the higher elevation of third zone is more stable start in March and arrive the minimum at the end of June; the snow cover rate of fourth zone more stable, the downward trend begin in late May and get minimum by the end of June.
     5.Investigated the relativity of snow cover and runoff, the correlation coefficient of between the average snow coverage in March and the runoff of April be about -0.8175, and through a significant level of 0.005 test;the correlation coefficient between the most snow cover month in winter and spring and the following year runoff of June is -0.6496, and through a significant level of 0.05 test; the correlation coefficient of between the average snow coverage in December and the following year runoff in May be about 0.5775, and through a significant level of 0.1 test.
引文
[1]冯学智,李文君,史正涛,等.卫星雪盖监测与玛纳斯河融雪径流模拟[J].遥感技术与应用,2000,15(1):18~21.
    [2]崔彩霞,魏荣庆,李杨.在塔里木河上游地区积雪长期变化趋势及其对径流量的影响[J].干旱区地理,2005,28(5):569-573.
    [3]张志良,郑听.新疆洪水及洪水资源[J].水利学报,2005,(增刊):260~263.
    [4]仇家琪,徐俊荣,陈亚宁,等.天山北坡春季雪洪形成的气候因子分析[J].干旱区地理,1995,18(1):43~50.
    [5] Matinec J,Rango.Application of a Snowmelt-Runoff Model Using Landsat Data[R].Nordic Hydrologyt,1979.
    [6] Melloh R . A Synopsisand Comparison of Selected Snow melt Algorithms[R].CRRELReport,1999:12-13.
    [7]李弘毅,王建.SRM融雪径流模型在黑河流域上游的模拟研究[J].冰川冻土,2008,30(5):769~775.
    [8] V.M.Khan, L.Holko.Snow cover characteristics in the Aral Sea Basin from different data sources and their relation with river runoff[J].Journal of Marine Systems,76 (2009):254~262.
    [9] L.Egli,T.Jonas, R.Meister.Comparison of different automatic methods for estimating snow water equivalent[J] . Cold Regions Science and Technology.(2009).
    [10]李江风.乌鲁木齐河山区冰雪水资源及径流量丰枯频率[J].新疆气象,2002,25(1):30~33.
    [11] Thomas H.Painter,Karl Rittger.Retrieval of subpixel snow covered area,grain size,and albedo from MODIS[J] . Remote Sensing of Enviro-nment.113(2009):868~879.
    [12]曹云刚,刘闯.一种简化的MODIS亚像元积雪信息提取方法[J].冰川冻土,2006,28(4):562~567.
    [13]郝晓华,王建,李弘毅.MODIS雪盖制图中NDSI阈值的检验—以祁连山中部山区为例[J].冰川冻土,2008,30(1):132~138.
    [14] Hall,D.K.,Riggs,G.A.,Salomonson,V.V.Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer,(MODIS) data.Remote Sensing of Environment,(1995)54:127~140.
    [15] Klein,A.G.,Hall,D.K.,Riggs,G.A.Improving snow-cover mapping In forests,through the use of a canopy reflectance model.Hydrological Processes,(1998).12:1723~1744.
    [16] Miia Salminena, Jouni Pulliainen.The behaviour of snow and snow free surface reflectance in boreal forests: Implications to the performance of snow covered area monitoring[J].Remote Sensing of Environment,(2009).
    [17] J.L.Foste, D.K.HallSeasonal snow extent and snow mass in South America using SMMR and SSM/I . passive microwave data (1979–2006)[J].Remote Sensing of Environment,(2009)113:291~305.
    [18]梁继,张新焕,王建.基于NDVI背景场的雪盖制图算法探索[J].遥感学报,2007,11(1):85~93.
    [19]杨铁利,何全军.MODIS数据的云检测处理[J].鞍山科技大学学报,2006,29(2):162~166.
    [20]何新林,董先军,周建伟.玛纳斯河春季径流量中长期预报的灰色预测模式[J].石河子大学学报(自然科学版),1998,2(3):227~230.
    [21]张伟,何新林,刘兵.SVM在玛纳斯河流域径流预测中的应用与研究[J].人民黄河,2008,30(5):35~37.
    [22]张伟,何新林,刘兵,等.天山北麓玛纳斯河径流规律的分析[J].石河子大学学报(自然科学版),2008,26(1):80~82.
    [23]曹松.浅谈玛纳斯河流域生态环境现状及对策[J].水利科技与经济,2008,14(12):995~996.
    [24]史兴民,杨景春,李有利,等.玛纳斯河流域地貌与地下水的关系[M].地理与地理信息科学.2004,20(3):56-58.
    [25]袁玉江.用树木年轮重建天山中部近350年来的降水量[J].冰川冻土,2001,2(1):34~41.
    [26]何新林,郭生练.气候变化对新疆玛纳斯河流域水文资源的影响[J].水科学进展,1998,9(1):77~83.
    [27]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号影响和前景初步探讨[J].冰川冻土,2002,24(3):219~226.
    [28]唐湘玲.新疆玛纳斯河流域气候变化及其对径流量的影响研究[D].新疆:新疆师范大学,2006,4.
    [29]张文建.地球观测系统(EOS)中分辨率成像光谱仪(MODIS)—科学意义,仪器介绍和在我国环境遥感中的应用展望[R].EOS/MODIS资料接收应用培训教材,中国气象局监测网络公司,2001.
    [30]刘玉洁,杨忠东等.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001,1-3.
    [31] Hall,D.K.,Riggs,G.A.,Salomonson,V.V,et al.MODIS snow cover products[J].Remote Sensing of Environment,2002,83,pp.181~194.
    [32]黄晓东.基于遥感与GIS技术的北疆牧区积雪监测研究[D].甘肃:兰州大学,2009,5.
    [33] Xie H J,Zhou X B,Vivoni E,et al.GIS Based NEXRAD Precipitation Database:Automated Approaches for Data Proeessing and Visualization [J].Computers and Geoscience,2005,31(1):65~76.
    [34]侯慧姝,杨宏业.MODIS积雪产品及研究应用概述[J].遥感技术与应用,2009,24(2):252-256.
    [35]韩庆红,王普才,徐兴波,等.东北地区雪盖与夏季降水的相关分析[J].安徽农业科学.2009,37(12):5574-5575.
    [36]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2008,78.
    [37]梅安新,彭望禄,秦其明等.遥感导论[M].北京:高等教育出版社,2001,155-156.
    [38] Hall D.K,Riggs G.A,Salomonson V.V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradio meter data.Remote Sensing of Environment,1995,54:127~140.
    [39]魏凤英.现代气候统计诊断预测技术[M].北京:气象出版社,1999(9).
    [40]王建.卫星遥感雪盖制图方法对比与分析[J].遥感技术与应用,1999,14(4):29~36.
    [41] Holven B N.Characteristics of maximum value composite images for temporal AVHRR data[J].Remote Sense,1986,7:1435~1445.
    [42]吴杨.基于遥感和地面数据的藏北积雪动态分布和影响因素的研究[D].江苏:南京信息工程大学,2007,27.
    [43]马清霞,李彰俊,李金田.内蒙古地区冬季降雪异常年与北半球月平均500hPa环流特征分析明[J].内蒙古气象,2002(2):15~18.
    [44]崔炳玉.气候变化和人类活动对滹沱河水资源变化影响[J].地理研究,2004,11.
    [45]马金珠.新疆和田地区地下水资源及可持续开发利用[J].中国沙漠,2002,22(3):242~248.
    [46]秦大河.中国西部环境演变评估[M].科学出版社,2002.
    [47]杨青,何清.塔里木河流域的气候变化、径流量及人类活动间的相互影响[J].应用气象学报,2003,14(3):85~88.
    [48]刘景时.气候变化对冰川融水型河流水情影响[J].干旱区资源与环境,1994,8(2):40~46.
    [49]甘新远.浅析奎屯河流域冰雪变化特征及其对径流的影响[J].中国西部科技,2009,8(4):41~42.
    [50]袁卫,庞皓,曾五一,等.统计学[M].北京:高等教育出版社,2005,28.
    [51]杨针娘.中国冰川水资源[M].兰州:甘肃科学技术出版杜,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700