煤化工生态工业系统优化与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤炭为能源主体的国家,随着中国能源安全问题日趋重要,煤化工已成为社会关注的热点并得到快速发展。本着资源耦合、产品共生和废物循环利用的生态原则,以自然、工业和社会三者共同发展为宗旨,本文构建了煤化工生态工业系统。对该系统进行系统分析、集成和优花眼究,不仅具有理论价值,而且具有重要的现实意义。
     本论文以系统工程与生态工业理论为指导,在对我国能源资源及煤化工产业现状进行深入分析的基础上,通过软件模拟、定量化的系统情景优化和综合分析评价手段研究我国煤化工生态工业系统的发展模式和发展方向,并结合工业生态分析方法探讨煤化工产业系统的演化。
     由于煤制合成气的C/H比例远高于煤制燃料油的生产需要,本文提出了煤基燃料联供联产系统,其中煤炭与富氢物质天然气耦合作为原料。在对各流程单元机理的认知和生产技术比选的基础上,采用Aspen Plus软件进行流程模拟。该系统分别与单独以煤或天然气为基础的系统进行多目标的3E综合评价和比较。研究表明煤基联供联产系统具有CO2排放率降低、能源效率提高等优点。
     基于联供联产理念,本文进一步提出了我国煤化工产业发展为生态工业系统的概念、原理、特点以及产业超结构。本文将系统分解为若干技术产品路线,设计资源、环境及经济的多目标评价指标,建立了我国煤化工生态工业系统的多目标超结构数学模型,通过定量的数学优化得到不同情景目标下煤化工产品结构和技术路线。
     在优化模型基础上,通过影响因素分析,研究产品价格、技术成熟度、政策法规和CO2减排压力等因素对系统的影响。同时通过分析工业生态指标相比于2005年的变化情况,探讨未来的发展方向。研究结果指出煤化工生态工业系统实现了煤炭高附加值利用和产品结构升级,具有更高的资源利用强度和系统链接密度,应取代传统产业模式,成为未来煤化工产业发展的重要方向。
     最后本文针对实际案例,借助已有的优化模型框架、优化方法和工业生态分析手段,对西南某地区的煤化工产业进行研究与分析,取得了实际应用效果。
Chinese energy structure is coal dependent and this situation will remain for a long time. As more and more attention is paid to the energy security, coal-chemical industry has become a hot topic and got developed quickly. It is important to investigate coal-chemical system based on industrial ecological idea for realizing harmonious development of nature, industry and society. The construction of this system is on the basis of three principles: resource coupling, multi-product symbiosis and waste recycling. Exploring the analysis, integration and optimization of this system has not only theoretical value but also significant practical meaning.
     In this research, system engineering and industrial ecology were main theoretical foundation. The current situation of Chinese energy resource and coal-chemical industry were analyzed firstly. Then key technology routes were simulated, scenario optimization of the whole system was realized quantificationally, and the system was compared by synthetical analysis and industrial ecological analysis. Based on these information and comparisons, the development pattern, trend and evolution of coal-chemical eco-industrial system in the future were discussed.
     Because coal is a kind of carbon rich material, C/H ratio of syngas from coal is much higher than needed for producing fuel. Therefore, it was suggested the coal based co-feed and co-production system was used. Natural gas, as hydrogen rich material, was used to complement the use of coal as a feedstock. All the systems were divided into several different subsystems. Based on technology selection and modelling analysis of subsystems, systems were simulated by Aspen Plus. Then coal based co-feed and co-production system was compared with coal or nature gas (NG) based system by energy, environment, and economy (3E) evaluation. The results illustrated that co-feed and co-production system had several advantages, including lower CO2 emission ratio, higher thermal efficiency and so on.
     Based on the study of co-feed and co-production system, coal-chemical eco-industrial system was proposed. The concept, principles, characteristics, and superstructure of the system were presented. The system was decomposed into several technology routes. Multi-objective evaluating index was set by considering resource, environment and economy at the same time. Then the multi-objective and superstructure optimization model were built for coal-chemical eco-industrial system. By quantificational optimization, different industrial structures and technology routes were obtained under different scenarios.
     On the basis of the optimization model, the analysis of influencing factors were discussed including cost of raw materials and products, maturity degree of technologies, policy and law factors, reduction pressure of CO2 emission and so on. Compared with the data of coal-chemical industry in 2005, the industrial ecological analysis was also discussed in order to find the development pattern and trend of coal-chemical eco-industrial system in the future. Research results showed that coal-chemical eco-industrial system realized high added value utilization of coal and update of product structure. It had higher intensity of resource utilization and link density of system. This system will replace the conventional system, and become the important development direction of coal-chemical industry.
     At last, a practical case was studied. Using the proposed frame of optimization model and method, coal-chemical industry of a southwest area in China was investigated and analyzed.
引文
[1]中华人民共和国国家统计局.中华人民共和国国民经济和社会发展统计公报(1995-2006).北京:中华人民共和国国家统计局, 2008.
    [2] E I A. Annual Energy Review 2007. Washington, DC: Office of Energy Markets and End Use, U.S. Department of Energy, 2008.
    [3]崔民选. 2006中国能源发展报告,北京:社会科学文献出版社, 2006.
    [4]中国煤炭市场网.煤化工产业不能重蹈焦炭电石的覆辙[EB/OL]. [2006-09-09]. http://www.cctd.com.cn/detail/06/09/09/00075127/content.html.
    [5]胡山鹰.我国资源产业的可持续发展策略-基于煤、磷资源产业研究.北京:清华大学化工系生态工业研究中心,国家发改委, 2004.
    [6]吴学红.电石工业现状及发展建议.河南化工, 2001, (12): 4-5.
    [7]冯元琦.化肥的布局品种和节能——为“十一五规划”建言献策.中国农资, 2006, (1): 18-19.
    [8]胡山鹰.化学工业资源节约技术及措施.北京:清华大学化工系生态工业研究中心,中国工程院, 2006.
    [9]曹仑,张卫峰,高力,等.中国合成氨生产能源消耗状况及其节能潜力.化肥工业, 2008, 35(2): 20-24.
    [10]张健,梁钦锋,郭庆华,等.煤化工行业CO2的排放及减排分析.煤化工, 2008, 139(6): 8-12.
    [11]雍永祜,冯孝庭. 21世纪中国煤化工展望.煤化工, 2002, 30(3): 3-7.
    [12] Schobert H H, Song C. Chemicals and materials from coal in the 21st century. Fuel, 2002, 81(1): 15-32.
    [13] Longwell J P, Rubin E S, Wilson J. Coal: energy for the future. Process in Energy and Combustion Science, 1995, 21(4): 269-360.
    [14]李中华.煤化工产业现状及发展对策建议.前进, 2005, (10): 35-36.
    [15]汪应洛.煤化工产业园区“三位一体”发展战略的探讨.中国工程科学, 2008, 10(12): 39-44.
    [16]马中学.煤化工技术的发展与新型煤化工技术.甘肃石油和化工, 2007, (4): 1-5.
    [17]魏力.世界煤化工发展趋势.辽宁化工, 2007, 36(1): 32-37.
    [18]徐振刚,杜铭华.新型煤化工及其在我国的发展.煤化工, 2003, 36(6): 4-8.
    [19]谢克昌.新一代煤化工和洁净煤技术利用现状分析与对策建议.中国工程科学, 2003, 5(6): 15-24.
    [20]范维唐,杜铭华.中国煤化工现状及展望.煤化工, 2005, 116(1): 1-5.
    [21]新华网.国务院常务会通过轻工业和石化产业调整振兴规划[EB/OL]. [2009-02-19]. http://news.xinhuanet.com/newscenter/2009-02/19/content_10851562_1.htm.
    [22]李好管,黄怡然.炼焦化学工业技术进展.煤化工, 2002, 30(2): 3-8.
    [23]徐振刚,陈亚飞.我国煤化工的技术现状与发展对策.煤炭科学技术, 2007, 35(08): 6-12.
    [24]鲍卫仁,关有俊,吕永康,等.等离子体煤热解与气化工艺的研究进展.现代化工, 2003, 23(12): 10-14.
    [25]吕永康.等离子体热解煤制乙炔及热力学和动力学分析[博士学位论文].太原:太原理工大学, 2003.
    [26] Bao W R, Chang L P, Lu Y K. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma. Process Safety and Environmental Protection, 2006, 84(B3): 222-226.
    [27]杨巨生,杨燕,鲍卫仁,等.煤等离子热解制乙炔反应器结构优化模拟.煤炭学报, 2007, 32(1): 69-72.
    [28] Cheng Y, Wu C N, Zhu J X, et al. Downer reactor: from fundamental study to industrial application. Power Technology, 2008, 183(3): 364-384.
    [29]蒋德军.合成氨工艺技术的现状及其发展趋势.现代化工, 2005, 25(8): 9-16.
    [30]彭爱华,李新春. Shell粉煤气化技术在合成氨装置上的应用.化肥工业, 2006, 33(4): 41-43.
    [31]苗长润,鲍喜军.合成氨工艺技术的现状及其发展趋势.民营科技, 2008, (9): 35.
    [32] Smith I M, Topper J M. Potential for co-utilisation of coal with oher fuels to reduce greenhouse gas emissions. London, UK: IEA Clean Coal Center, 2002.
    [33] Song X P, Guo Z C. A new process for synthesis gas by co-gasifying coal and natural gas. Fuel, 2005, 84(5): 525-531.
    [34] Song X P, Guo Z C. Production of synthesis gas by co-gasifying coke and natural gas in a fixed bed reactor. Energy, 2007, 32(10): 1972-1978.
    [35] Zhao Y H, Hao W, Xu Z H. Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management, 2006, 47(11-12): 1416-1428.
    [36] Pan Y G, Velo E, Roca X, et al. Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel, 2000, 79(11): 1317-1326.
    [37] Mcilveen-Wright D R, Pinto F, Armesto L, et al. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste. Fuel Processing Technology, 2006, 87(9): 793-801.
    [38] Mcilveen-Wright D R, Huang Y, Rezvani S, et al. A technical and environmental analysis of co-combustion of coal and biomass in fluidised bed technologies. Fuel, 2007, 86(14): 2032-2042.
    [39] Kumabe K, Hanaoka T, Fujimoto S, et al. Co-gasification of woody biomass and coal with air and steam. Fuel, 2007, 86(5-6): 684-689.
    [40] Koukouzas N, Katsiadakis A, Kariopouios E, et al. Co-gasification of solid waste and lignite - a case study for western macedonia. Waste Management, 2008, 28(7): 1263-1275.
    [41]张飞,姜健准,张明森,等.甲醇制低碳烯烃催化剂的制备与改性.石油化工, 2006, 35(10): 919-923.
    [42]汪家铭.日本MFR新型甲醇合成塔.四川化工, 2006, 91(1): 54-55.
    [43]徐兆瑜.甲醇产业的发展和工艺技术新进展.化工技术与开发, 2008, 37(10): 20-26.
    [44]蔡飞鹏,林乐腾,孙立.二甲醚合成技术研究概况.生物质化学工程, 2006, 40(5): 37-42.
    [45]娄伦武,王波.二甲醚合成工艺技术现状.贵州化工, 2006, 31(4): 9-15.
    [46]任飞,王金福.浆态床一步法二甲醚产业化技术突破与进展.化工科技市场, 2005, 28(2): 22-25.
    [47] Ogawa T. Direct dimethyl ether synthesis. Journal of Natural Gas Chemistry, 2003, (12): 219-227.
    [48]陈腊山. MTO/MTP技术的研发现状及应用前景.化肥设计, 2008, 46(1): 3-5.
    [49]任诚.非石油路线制取低碳烯烃的生产技术及产业前景.精细化工中间体, 2007, 37(5): 6-9.
    [50]闫国春. MTO技术最新进展评述.内蒙古石油化工, 2007, (7): 52-54.
    [51]刘中民.甲醇制取低碳烯烃(DMTO)技术成果与项目的研究开发及工业性试验.中国科学院院刊, 2006, 21(5): 406-408.
    [52]谢继东,李文华,陈亚飞.煤制氢发展现状.洁净煤技术, 2007, 13(2): 77-81.
    [53]谢继东,李文华,陈亚飞.煤制氢技术的初步方案及性能分析.洁净煤技术, 2008, 14(1): 39-42.
    [54] Weimer T, Berger R, Hawthorne C, et al. Lime enhanced gasification of solid fuels: examination of a process for simultaneous hydrogen production and CO2 capture. Fuel, 2008, 87(8-9): 1678-1686.
    [55] Calabro A, Deiana P, Florini P, et al. Possible optimal configurations for the ZECOMIX high efficiency zero emission hydrogen and power plant. Energy, 2008, 33(6): 952-962.
    [56] Cormos C C, Starr F, Tzimas E, et al. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture. International Journal of Hydrogen Energy, 2008, 33(4): 1286-1294.
    [57] Damen K, Van Troost M, Faaij A, et al. A comparison of electricity and hydrogen production systems with CO2 capture and storage - part B: Chain analysis of promising CCS options. Progress in Energy and Combustion Science, 2007, 33(6): 580-609.
    [58] Gnanapragasam N.V., Reddy M B V. Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: assessment of system operation and resource requirements. International Journal of Hydrogen Energy, 2009, 34(6): 2606-2615.
    [59] Baykara S.Z., Bilgen E. Synthesis gas and H2 production from solar gasification of albertan coal. Energy Conversion and Management, 1985, 25(4): 391-398.
    [60] Wang J, Jiang M, Yao Y. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 2009, In Press.
    [61] Dolan M. Ni-based amorphous alloy membranes for hydrogen separation at 400°C. Journal of Membrane Science, 2009, 236(2): 549-555.
    [62]胡山鹰,李有润,沈静珠.生态工业系统集成方法及应用.环境保护, 2003, (1): 16-19.
    [63]周哲,李有润,沈静珠,等.煤工业的代谢分析及其生态优化.计算机与应用化学, 2001, 18(3): 193-198.
    [64]陈定江,李有润,沈静珠,等.生态工业园区的MINLP模型.过程工程学报, 2002, 2(1): 75-80.
    [65]王兆华,尹建华,武春友.生态工业园中的生态产业链结构模型研究.中国软科学, 2003, (10): 149-152.
    [66]徐振刚.多联产是煤化工的发展方向.洁净煤技术, 2002, 8(2): 5-7.
    [67]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统——资源/能源/环境整体优化与可持续发展.中国工程科学, 2000, 2(8): 59-68.
    [68] Neathery J, Gray D, Challman D, et al. The pioneer plant concept: co-production of electricity and added-value products from coal. Fuel, 1999, 78(7): 815-823.
    [69]高林.煤基化工—动力多联产系统开拓研究[博士学位论文].北京:中国科学院研究生院(工程热物理研究所), 2005.
    [70]林汝谋,金红光,高林.化工动力多联产系统及其集成优化机理.热能动力工程, 2006, 21(4): 331-337.
    [71]陈斌.化工动力多联产系统及化学能梯级利用机理研究[博士学位论文].北京:中国科学院研究生院(工程热物理研究所), 2007.
    [72]郑安庆.双气头多联产系统的模拟与评价[硕士学位论文].北京:太原理工大学, 2008.
    [73]麻林巍,倪维斗,李政,等.以煤气化为核心的甲醇、电的多联产系统分析(上).动力工程, 2004, 24(3): 451-456.
    [74]麻林巍,倪维斗,李政,等.以煤气化为核心的甲醇、电的多联产系统分析(下).动力工程, 2004, 24(4): 603-608.
    [75] Chiesa P, Consonni S, Kreutz T, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology - part A: performance and emissions. International Journal of Hydrogen Energy, 2005, 30(7): 747-767.
    [76] Kreutz T, Williams R, Consonni S, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology - part B: economic analysis. International Journal of Hydrogen Energy, 2005, 30(7): 769-784.
    [77]张晋.以煤气化为核心的多联产系统的能量分析[硕士学位论文].北京:清华大学, 2003.
    [78]薛永锋.气化过程对多联产系统能量利用率作用的分析[硕士学位论文].大连:大连理工大学, 2006.
    [79]杨敏.煤炭多联产系统的综合评价与决策支持[硕士学位论文].北京:华北电力大学, 2008.
    [80] Dewulf J, Van Langenhove H. Integrating industrial ecology principles into a set of environmental sustainability indicators for technology assessment. Resources Conservation and Recycling, 2005, 43(4): 419-432.
    [81] Odum H T. Environmental accounting: emergy and environmental decision making. New York: John Wiley, 1996.
    [82]商华.工业园生态效率测度与评价[博士学位论文].大连:大连理工大学, 2007.
    [83]邓玉勇,杜铭华,雷仲敏.基于能源—经济—环境(3E)系统的模型方法研究综述.甘肃社会科学, 2006, (3): 209-212.
    [84]邓玉勇,杜铭华,雷仲敏.基于3E分析方法的洁净煤技术评价.煤炭学报, 2007, 32(10): 1088-1092.
    [85]雷仲敏,邱立新,张同功,等.洁净煤技术评价方法研究.青岛科技大学学报(自然科学版), 2005, 26(6): 551-554.
    [86]华贲.经济与资源、环境协调的全方位评价法.华北电力大学学报, 2004, (6): 1-4.
    [87]汪应洛.系统工程理论、方法及应用(第二版).北京:高等教育出版社, 1998.
    [88]毕晓丽,洪伟.生态环境综合评价方法的研究进展.农业系统科学与综合研究, 2001, 17(2): 320-421.
    [89]田朝辉.中小企业核心竞争力的模糊综合评价.沿海企业与科技, 2005, (7): 14-15.
    [90]杨茉,付金龙,李石山,等.工业企业可持续发展多目标二级模糊综合评价.沈阳工业学院学报, 2004, 23(2): 56-60.
    [91]李峰,张宪强,张会.区域工业经济发展质量趋势的多目标模糊决策模型评价.中国科技信息, 2008, (1): 280-282.
    [92]徐振刚.煤基能化联产系统集成优化与评价方法[博士学位论文].北京:煤炭科学研究总院, 2004.
    [93]王云波,李政,倪维斗.层次分析法在多联产系统综合性能评价中的应用.动力工程, 2006, 26(4): 580-586.
    [94] Liang Z H, Yang K, Sun Y W, et al. Decision support for choice optimal power generation projects: fuzzy comprehensive evaluation model based on the electricity market. Energy Policy, 2006, 34(17): 3359-3364.
    [95] Aragones-Beltran P, Aznar J, Ferris-Onate J, et al. Valuation of urban industrial land: an analytic network process approach. European Journal of Operational Research, 2008, 185(1): 322-339.
    [96] Krajnc D, Glavic P. A model for integrated assessment of sustainable development. Resources Conservation and Recycling, 2005, 43(2): 189-208.
    [97] Quaddus M A, Siddique M. Modelling sustainable development planning: a multicriteria decision conferencing approach. Environment International, 2001, 27(2-3): 89-95.
    [98]张斌,李政,江宁,等.基于Aspen Plus建立喷流床煤气化炉模型.化工学报, 2003, (8): 1182-1779.
    [99] Alie C F. CO2 capture with MEA: integrating the absorption process and steam cycle of an existing coal-fired power plant[Master Thesis]. Canada: University of Waterloo, 2004.
    [100] Tijmensen M J A. The production of Fischer Tropsch liquids and power through biomass gasification. Netherlands: Utrecht University, 2000.
    [101] Rabaey J M. Exploring the power dimension. California, USA: Custom Integrated Circuits Conference, 1996.
    [102] Lee C, Lee S J, Yun Y. Effect of air separation unit integration on integrated gasification combined cycle performance and NOx emission characteristics. Korean Journal of Chemical Enegineering, 2007, 24(2): 368-373.
    [103] Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes. Fule Processing Technology, 2001, 70(2): 115-134.
    [104] Deprez-Toeter L. Optimisation of clean, coal-based polygeration through the application of advanced membrane technology. Amsterdam, Netherlands: Shell Global Solutions, 2006.
    [105] Sirdeshpande A R, Ierapetritou M G, Andrecovich M J, et al. Process synthesis optimization and flexibility evaluation of air separation cycles. AICHE Journal, 2005, 51(4): 1190-1200.
    [106]顾福民.国内外空分发展现状与展望(上).低温与特气, 2005, 23(3): 11-17.
    [107]杨涌源.空分设备与煤气化联合循环发电的结合方式与流程选择.深冷技术, 2004, (2): 1-5.
    [108]邓世敏,段立强,官亦标,等. IGCC中空分系统特性及其对整体性能影响.工程热物理学报, 2003, 24(2): 186-189.
    [109]顾福民.国外大型空分设备发展历程回顾与展望.冶金动力, 2003, (5): 31-41.
    [110] Allam R. J., Castle-Smith H. Air separation units, design and future development [EB/OL]. [2000-05-09]. http://www.airproducts.com/NR/rdonlyres/6753032F-A8B8-4339-A12F -BB1A8DB46735/0/ECOS.pdf.
    [111] Smith A R, Klosek J. Next-generation integration concepts for air separation units and gas turbines. Transactions of the ASME, 1997, 119(4): 298-304.
    [112] Praxair Technology, Inc. Air separation process overview. Praxair Technology, Inc., 2000
    [113] Higman C, Van der Burgt M, Gasification. USA: Elsevier Science, 2003.
    [114]欧阳朝斌,赵月红,郭占成.合成气制备工艺研究进展及其利用技术.现代化工, 2004, (6): 10-13.
    [115] Zheng L G, Furinsky E. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations. Energy Conversion and Management, 2005, 46(11-12): 1767-1779.
    [116]焦树建.燃气—蒸汽联合循环,北京:机械工业出版社, 2004.
    [117] Shell Global Solutions. The Shell coal gasification process-for sustainable utilization of coal. Shell Global Solutions, 2004
    [118]何正兆,杨小艳,吕庆元,等. Shell煤气化技术在我国的应用前景及设计实践.化肥设计, 2003, 41(4): 5-10.
    [119]周齐宏.基于合成气的联供—联产系统研究[硕士学位论文].北京:清华大学, 2005.
    [120] Simbeck D R. Coal gasification guidebook: status, spplications, and technologies. USA: Electric Power Research Institute, 1993.
    [121] Gunardson H H, Abrardo J M. Produce CO-rich synthesis gas. Hydrocarbon Processing, 1999, 78(4): 87.
    [122] Lurgi Ag. Reforming[EB/OL]. [2007]. http://lurgi.info/website/fileadmin/user_upload/1_ PDF/2_Technologie/englisch/07_Reforming-E.pdf.
    [123] National Research Council. The Hyrdogen economy: opportunities, cost, barriers, and R&D needs, Washington D.C.: The National Academies Press, 2004.
    [124]张斌,李政,倪维斗.天然气自热重整器模拟及性能分析.天然气工业, 2003, 23(5): 95-99.
    [125] Consonni S, Vigano F. Decarbonized hydrogen and electricity from natural gas. International Journal of Hydrogen Energy, 2005, 30(7): 701-718.
    [126] Christensen T S, Primdahl I I. Improve syngas production using autothernal reforming. Hydrocarbon Processing, 1994, 73(3): 39.
    [127] De Groote A M, Froment G F. Simulation of the catalytic partial oxidation of methane to syngas. Applied Catalysis A, 1996, 138(2): 245-264.
    [128] J. R. Ladebeck, J. P. Wagner. Catalyst development for water-gas shift// Vielstich W, Lamm A, Gasteiger H A. Handbook of fuel cells– fundamentals, technology and applications. Chichester: John Wiley & Sons, Ltd, 2003: 190-201
    [129] Luengnaruemitchai A, Osuwan S, Gulari E. Comparative studies of low-temperature water– gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts. Catalysis Communications, 2003, 4(5): 215-221.
    [130] Amos W A. Biological water-gas shift conversion of carbon monoxide to hydrogen. US: National Renewable Energy Laboratory, 2004.
    [131] Institute of Petroleum Technology. Removal of carbon dioxide from natural gas for LNG production. Norwegian University of Science and Technology: Norwegian University of Science and Technology, 2005.
    [132] Salako A E. Removal of carbon dioxide from natural gas for LNG production [EB/OL]. [2005-12]. http://www.ipt.ntnu.no/~jsg/ studenter/ prosjekt/ Salako2005.pdf.
    [133] Lurgi AG. Lurgi's MPG Gasification plus rectisol gas purification–advanced process combination for reliable sysngas production. San Francisco: Gasification Technologies. 2005.
    [134] Opdal O A. Production of synthetic biodiesel via Fischer-Tropsch synthesis. Norway: Biomass-To-Liquids in Namdalen, 2006. http://www. zero.no/ transport/ bio/ BtL%20 Namdalen.pdf
    [135]张述伟,陆明亮,徐志武,等.低温甲醇洗系统模拟与分析.化肥设计, 1994, 32(1): 25-31.
    [136]牛刚,黄玉华,王经.低温甲醇洗技术在天然气净化过程中的应用.天然气化工(C1化学与化工), 2003, 28(2): 26-29.
    [137]匿名.低温甲醇洗脱硫、脱碳工艺[EB/OL]. [2007-01-28]. http://www.baisi.net/ thread- 14439-1-1.html.
    [138] Wong S. CO2 capture–post combustion flue gas separation. Asia-Pacific Economic Cooperation, 2005.
    [139] Herzog H, Golomb D. Carbon capture and storage from fossil fuel use. Encyclopedia of Energy, 2004,1: 277-287.
    [140] Chapel D G. Recovery of CO2 from flue gases. Saskatoon, Saskatchewan, Canada: Commercial Trends: Canadian Society of Chemical Engineers Annual Meeting, 1999.
    [141] Dry M E. High quality diesel via the Fischer–Tropsch process– a review. Journal of Chemical Technology and Biotechnology, 2001, 77: 43-50.
    [142] Zwart R W R, Boerrigter H. High efficiency co-production of substitute natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass. Energy & Fuels , 2005, 19: 591-597.
    [143]宋维端.甲醇工业,北京:化学工业出版社, 1991.
    [144] Perregaard J. Methanol synthesis at near-critical conditions combined with ATR synthesis gas technology: the technology choice for large-scale methanol production. Catalysis Today, 1995, 106(1-4): 99-102.
    [145]楼韧,任筱娴,徐荣良,等. JW甲醇合成塔在大型装置中的应用.天然气化工(C1化学与化工), 2005, 30(1): 38-41.
    [146]李天文,曹永生.甲醇合成工艺进展.现代化工, 1999, 19(9): 8-11.
    [147]储伟,吴玉塘,罗仕忠,等.低温甲醇液相合成催化剂及工艺的研究进展.化学进展, 2001, 13(2): 128-134.
    [148] Chmielniak T, Sciazko M. Co-gasification of biomass and coal for methanol synthesis. Applied Energy, 2003, 74(3-4): 393-403.
    [149] Cifre P G, Badr O. Renewable hydrogen utilisation for the production of methanol. Energy Conversion and Management, 2007, 48(2): 519-527.
    [150]李琼玖,唐嗣荣,顾子樵,等.近代甲醇合成工艺与合成塔技术(下).化肥设计, 2004, 42(1): 3-8.
    [151]李琼玖,唐嗣荣,顾子樵,等.近代甲醇合成工艺与合成塔技术(上).化肥设计, 2003, 41(6): 5-20.
    [152]赵亮富,赵玉龙,吕朝晖,等.浆态床反应器中甲醇合成反应的数学模拟.燃料化学学报, 2001, 29(4): 363-367.
    [153]刁杰,王金福,王志良,等.甲醇合成反应热力学分析及实验研究.化学反应工程与工艺, 2001, 17(1): 10-16.
    [154]麻林巍,倪维斗,李政,等.用于多联产的浆态床液相法甲醇合成模拟研究.煤炭转化, 2004, 27(2): 7-12.
    [155]中华人民共和国国家质量监督检验检疫总局. GB338-2004工业甲醇国家标准.北京:中国标准出版社, 2004.
    [156] Zhou L, Hu S Y, Li Y R, et al. Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity. Chemical Engineering Journal, 2008, 136(1): 31-40.
    [157] JFE Holdings Inc. DME production technology (JFE Direct Synthesis Process)[EB/OL]. [2002]. http://www.jfe-holdings.co.jp/en/dme/02-seizo.html.
    [158] Adachi Y, Komoto M, Watanabe I, et al. Effective utilization of remote coal through dimethyl ether synthesis. Fuel, 2000, 79(3-4): 229-234.
    [159]肖海成,李影辉,徐显明,等.甲醇合成反应器评述.河南化工, 2002, (7): 3-7.
    [160] AOTS distance training. Types of power generation and their attributes [EB/OL]. http://d-training.aots.or.jp/ioe/ioe4-1.html.
    [161] Topolski J, Badur J. Efficiency of HRSG within a combined cycle with gasification and sequential combustion at GT26 turbine. Poland: Proceedings of 2nd International Scientific Symposium on Technical, Economical and Environmental Aspects of Combined Cycle Power Plants COMPOWER'2000, 2000.
    [162]徐文渊.天然气利用手册,北京:中国石化出版社, 2002.
    [163]陈文敏.煤的发热量和计算公式(修订二版),北京:煤炭工业出版社, 1982.
    [164]周齐宏,胡山鹰,陈定江,等.基于合成气的联供联产系统的3E分析.计算机与应用化学, 2006, 23(3): 193-197.
    [165]钟史明.具有火用参数的水和水蒸汽性质参数手册,北京:水利电力出版社, 1989.
    [166]国家发展改革委.关于加强煤化工项目建设管理促进产业健康发展的通知[EB/OL].[2006-07-07]. http://www.ndrc.gov.cn/gyfz/gyfz/t20060713_76372.htm.
    [167] Zhou L, Hu S Y, Li Y R, et al. Study on systems based on coal & natural gas for producing DME. Industrial & Engineering Chemistry Research, 2009, In Press.
    [168]新华网.我国煤炭资源亟需保护和合理利用[EB/OL].[2005-06-16]. http://www.jxmkaqjc.gov.cn/2005-6/2005619173141.htm.
    [169]新华社. 2010年我国天然气需求量1000亿立方米缺口较大[EB/OL].[2007-05-02]. http://www.gov.cn/jrzg/2007-05/02/content_604178.htm.
    [170]刘国舜.我国煤化工产业物流和能流分析[本科学位论文].北京:清华大学, 2008.
    [171]杨瓅,胡山鹰,梁日忠,等.中国鲁北生态工业模式.过程工程学报, 2004, 4(5): 467-474.
    [172]陈亮,王如松,杨建新.鲁北工业生态系统分析.环境科学学报, 2005, 25(6): 721-726.
    [173]周丽,胡山鹰,陈定江,等.现代煤化工产业基地发展模式与实例分析.现代化工, 2007, 27(2): 5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700