聚苯胺及苯胺共聚物对聚四氟乙烯膜的亲水改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚四氟乙烯(PTFE)多孔膜在化工分离领域有广泛应用,其表面的亲水化是相关领域的研究热点之一。国内外研究人员围绕PTFE膜的表面改性进行了大量研究,如等离子体处理、化学溅涂等,但是改性后膜材料的接触角都随时间有一定程度的回升。鉴于此,我们采用了新的方法,即采用分散聚合原位沉积成膜的方法在等离子体预处理的PTFE膜上引入刚性聚合物聚苯胺(PANI)或苯胺共聚物进行亲水改性,期望刚性亲水大分子不易运动的特征能够保持亲水改性效果的持久性。
     本文以聚乙烯吡咯烷酮(PVP)为空间稳定剂,过硫酸铵(APS)为氧化剂,盐酸(HCl)水溶液为反应介质,苯胺(An)或者An与第二单体5-氨基邻苯二甲酸(AIA)为反应单体,在溶液中发生氧化聚合反应的同时完成在基体PTFE膜表面的原位成膜,制备了PANI/PTFE和An/AIA共聚物/PTFE复合膜。通过扫描电镜、体式显微镜、X射线光电子光谱、红外光谱、拉曼光谱、接触角等测试,研究了复合膜的表观形貌、膜的结构、生长历程及其亲水改性效果。
     试验结果表明,在An的分散聚合体系中实现PANI在PTFE膜表面的原位成膜,并获得了表面光滑致密的PANI/PTFE复合膜。初步探讨该膜的形成机理为基体通过物理吸附诱导期生成的An阳离子自由基,形成聚合中心,PANI链从这些初级成核中心增长,然后再经过链增长和链结构调整得到有序薄膜。拉曼光谱和红外光谱证实复合膜中的PANI为掺杂态。通过对PANI/PTFE复合膜进行掺杂,制备了可做盐水分离的复合膜,能在保持较高的盐分截留率的情况下有效提高蒸馏通量。接触角测试表明,PANI在PTFE膜表面的沉积可以较好的对其进行亲水改性,并且PANI作为刚性亲水大分子,其分子链不易运动的特征保证了亲水改性的持久性。
     研究了PANI在等离子体预处理的PTFE膜表面的沉积过程。实验结果表明,聚合历程大致分为诱导期、聚合生长期、饱和终止期。适当的等离子体处理缩短了诱导期,加速了苯胺的聚合速率,使峰值温度提高,这是由于等离子处理使PTFE膜的表面纤维结构和化学成分发生变化的结果,但单纯的等离子体处理对PTFE亲水改性不明显。
     拉曼光谱和接触角测试表明,An/AIA共聚物与PANI有类似的化学结构;An/AIA共聚物在PTFE薄膜表面的沉积使其接触角发生巨大变化,亲水性有了很好的改善。相比而言,An/AIA共聚物优于PANI的亲水改性效果,这与加入的第二单体AIA的结构有关。
     研究了PANI在等离子体预处理PTFE基体上的生长过程,结果表明:PANI在基体表面的成膜过程呈三个阶段:含An的结构单元(包括An盐酸盐、阳离子自由基、低聚体)在PTFE基体表面吸附成核阶段(吸附作用包括物理吸附和等离子体处理后过氧自由基活性点的吸附);膜快速成长阶段;成长达到饱和阶段。吸附生长起始于反应的诱导期,贯穿反应全过程,对膜表面质量的影响较大。
Polytetrafluoroethylene(PTFE) porous membranes have been widely used in chemical separation industry, and its hydrophilic modification has been one of the focuses of the relevant researches. Some researchers have done a large number of studies, such as plasma treatment and coating. However, the contact angle of membrane will return in some degree after the treatments. So in this paper, we used a new method: air plasma-pretreated PTFE membranes were subjected to further surface modification by polyaniline and aniline copolymer, with the expect that the hydrophilic characteristics would last longer because of their rigid molecular chains.
     The experiment used PVP as steric stabilizer, APS as the oxidizer, HCl as reaction medium, annilie or aniline(An) and 5-aminoisophthalic acid(AIA) as the monomer. Polyaniline(PANI) or An/AIA copolymer was in-situ deposited onto the surface of PTFE membranes during dispersion polymerization of An with PTFE membranes dipped in. The membrane morphology, chemical structure, the growth and hydrophilic modification of PANI were characterized by SEM, Micrographs, XRD, FTIR, Raman spectrum and Contact angle measurement.
     The results indicated that PANI/PTFE composite membranes were prepared successfully using in-situ dispersion polymerization. It was proposed that the growth mechanism of PANI membrane occurred through the quick absorption of An monomer cation radicals on the PTFE surfaces by physical absorption to form polymerization centers, and then the chain grew to PANI membrane. Raman spectrum and FTIR indicated that PANI of composite membrane was doped. And the composite membrane was used as distillation with higher blocking of salt and higher flux. The Contact angle measurement showed that there was a good change on hydrophilic modification of PTFE membrane by in-situ deposited PANI.
     The polymerization process of PANI on PTFE pretreated by plasma was studied. The results indicated that polymerization included induction period, growth and saturation period. Plasma processing could shorten induction period, enhance polymerization rate and increase the apex temperature in that plasma treatment could modify structure and chemical component of PTFE membrane. But the hydrophilic modification was not obvious by single plasma treatment.
     SEM and Contact angle measurement showed that the chemistry structure of An/AIA copolymer was similar with PANI. There was a good change on hydrophilic modification of PTFE membrane by depositing An/AIA copolymer, with comparison, the modification effect of An/AIA copolymer on PTFE micro-porous membrane was superior to PANI’s because of the structure of AIA.
     The process of growth of PANI on PTFE pretreated by plasma was studied. The results indicated it contained three periods: adsorption nucleation(including physical absorption and peroxy radicals absorption), growth and growth saturation. The growth started at induction period, ran through the whole process with an important effect on the quality of membrane.
引文
1.郑领英,王学松.膜技术[M].北京:化学工业出版社,2000,145-156.
    2.郭瑞丽,李玲.膜分离技术及其应用简介[J].新疆大学学报,2003,20(4):410-413.
    3.刘芙蓉,金鑫丽,王黎等.分离过程及系统模拟[M].北京:科学出版社,2001,257-269.
    4.任建新.膜分离技术及其应用[M].北京:化学工业出版社,2001,68-75.
    5.柴红,张学明.互联网上的膜信息资源[J].膜科学与技术,2001,21(1):57-63.
    6.王世荣,张敬贤.高分子分离膜材料的最新研究进展[J].舰船防化,2005(3):31-37.
    7.安树林.膜科学技术适用教程[M].北京:化学工业出版社,2005,13-14.
    8.徐铜文.膜化学技术[M].合肥:中国科技大学出版社,2003:20-21.
    9.吴学明,赵玉玲,王锡臣.分离膜高分子材料及进展,塑料,2001,30(2):42-45.
    10. X G Jian, Y Dai, G H He, et al. Preparation of UF and NF ploy(phthalazin ether sulfone ketone)s membrane for high temperature application.[J]. Journal of membrane Sci. 1999,
    161: 185-191.
    11.蹇锡高,张守海,戴英.新型磺化聚砜酮复合纳滤膜[J].膜科学与技术,2001,21:11-14.
    12. Y Z Meng, A S Hay, X G Jian, et al. Appl. Synthesis of novelpoly(phthalazinone ether sulfone ketone)s and improvement oftheir melt flow properties.[J]. Journal of Apllied Polym.Sci, 1997, 66:1425-1432.
    13. X G Jian, Y Dai, L Zeng, et al. Appl. Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation.[J]. Journal Applied Polymer. Science, 1999, 71: 2385-2390.
    14.邵刚.膜法水处理技术[M].北京:冶金工业出版社,2001.124-128.
    15.汪洪生,陈雍森.国外模技术进展及其在水处理中的应用[D].膜科学与技术,1999,19(4):17-19.
    16.林斯清.海水和苦咸水淡化[J].水处理技术,2001,27(1):57-59.
    17. D.Paul,S.K.Sikdar.Clean production with membrane technology[J].Clean Products and Processes, 1998, 1(1)
    18.李旭祥.分离膜制备与应用[M].北京:化学工业出版社,2003.156-164
    19.汪强兵,王建永,张清.分离膜的发展及应用[J].稀有金属快报.
    20.谷大建,徐巍.膜分离技术的应用及研究进展[J].中国药业,2008,17(6):58-59.
    21.陈海军.膜分离技术及其在食品工业中的应用[J].高等函授学报(自然科学版),2008,21(4):39-41.
    22.林开建.膜分离技术及其在医药工业中的应用[J].化学工程与装备,2006,(3):48-51.
    23.顾爱萍,白玉洁.膜分离技术在石油化工领域中的应用与发展[D].天津化工,2001,(5):16-18.
    24.董子丰.气体膜分离技术在石油化工中的应用[J].膜科学与技术,2000,20(3):38-41.
    25.王保国,吕宏凌,杨毅.膜分离技术在石油化工领域的应用进展[J].石油化工,2006,35(8):705-708.
    26.唐娜,刘家祺,马敬环.用于膜蒸馏的膜材料的现状[J].2003,22(8)808-810.
    27.冯春生,吴庸烈,李国民.膜蒸馏用F2.4微孔膜的初步研究[C].第四界全国膜和膜过程学术报告会,南京,2002.
    28.王许云,张林,陈欢林.膜蒸馏技术最新研究现状及进展,化工进展[J].2007,26(2):168-172.
    29.高虹,田瑞,杨晓宏.高分子聚合膜材料的研究进展,内蒙古石油[J].2008,4(3)3-4.
    30. Huanga J, Lee W.[J].Materials Chemistry and Physics,2001,68 180-196.
    31.吴人杰等.高聚物的表面与界面[M].北京:科学出版社,1998:234.
    32.孙海翔,张林,陈欢林.聚四氟乙烯膜的亲水化改性研究进展[J].化工进展,2006,25(4):378-382.
    33.孙晓宁,王成群.聚四氟乙烯膜的表面改性研究[J].辽宁化工,2006,36(7):440-442.
    34.王春江.聚四氟乙烯生产现状与改性进展[J].贵州化工,2007,32(4):16-18.
    35. Badey JP, EspucheE, Sage D, et a1. [J].Polymer,1996,37:1377-1386.
    36. Yamada Y, Yamada T, Tasaka S, et a1. [J].Macromolecules,1996,29:4331-4339.
    37. Wilson D J, Williams R L, Pond R C.[J].Surface and Interface Analysis,2001,31:385-396.
    38. Wilson D J, Williams R L, Pond R C.[J].Surface and Interface Analysis,2001,31:397-408.
    39. Yasuda H. Plasma Polymerizafion [M].Orlando, Academic Press, Inc.1985.
    40. Andre M, Hassan J, Francois S, et a1. [J].Macromolecular Chemistry and Physics, 1996, 197(7): 2331-2341.
    41. ShoichetMS, McCartyT J. [J].Macromolecules, 1991, 24,982-986.
    42. Mohammed M A, Rossback, V. [J].Journal of Applied Polymer Science, 1993, 50(6):929- 939.
    43. Turmanova S, Trifonov A, Kalaijiev O, et a1.[J].Journal of Membrane Science,1997,127: 1-7.
    44.吴明明,巫少龙.聚四氟乙烯的改性及应用[J].化工新型材料,2004,3(21)35-36.
    45.孙玉红.聚四氟乙烯的性能与应用[J].高新技术,2008,12,6.
    46. Wienecke M, Bunescu M, Pietrzak M, et a1.[J].Synthetic Metals,2003,138:165-171.
    47. Xu JB, LangeS, Bartley JP, et al. [J].Journal of Membrane Science, 2004, 240:81-89.
    48.陈冰,朱有水,王红卫.低温等离子体处理在聚四氟乙烯改性中的应用[J].化学工业与工程技术.2006,27(4):26-28.
    49.左安友,袁作彬,翁祝林.等离子体对材料表面作用机理分析[J].湖北民族学院学报(自然科学版)2008,26(2)
    50.周武庆,孙奉娄.等离子体在PTFE表面改性方面的研究[J].化学工程师,2006(2):25-26.
    51.任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究[J].进展材料导报,2007,1(1):56-59.
    52. Morra M,Occhiello E,et a1.On the aging of plasma -treated polydimethylsiloxane surface.[J]. Colloid Interf Sci,1990,137(1):11
    53. Nakamatsu J,Delgado-Aparicio L F,et al.Aging of plasma-treated poly(tetrafluoroethylene) surfaces.[J]. Adhes SciTechn,1999,13:753
    54. Long Hua, Hu Shaoliu, Wang Youqing, et a1.Polymersurface modification with lasers[C]. Seventh InternationalConference On Laser and La ser-Infoemation Technologies, Proceedings of SPIE, 2002, 4644.
    55. Macdiarmid A C, Chiang J C, Halpern M, et al.“Polyaniline”:Interconversion of metallic and insulated forms[J].Mol.Cryst.Liq.Cryst, 1985,121:173-180.
    56.殷顺湖,徐建,洪樟连等.灵巧电致变色复合材料器件及应用[J].材料导报,1995,6:70-79.
    57.李新贵,夏宇,黄美荣.导电高分子的电致变色性及其在智能窗上的应用[J].材料开发与应用,2003,19(2):31-36.
    58.于黄中,陈明光,贝承训等.导电聚苯胺的特性、应用及进展[J].高分子材料科学与工程,2003,19(4):18-21.
    59.贺举.导电高分子聚苯胺的合成及其应用[J].科技信息,2008(18)
    60.王爱银,阚景晴.导电聚苯胺的合成性能及应用[J].科技创新2008(25):5-6.
    61.周震涛,杨洪业,王克俭.聚苯胺的化学合成、结构及导电性能[J].华南理工大学学报.1996,24(7)
    62.宋桂贤,吴雄岗.聚苯胺的合成及应用研究进展[J].安徽化工,2008,34(5)
    63. DIAZAF, LOGAAJA. Electroactive polyanilinefilm [J].Electroanal Chem.1980, l11 (1):ll1.
    64.龙晋明,王少龙,王静.不锈钢表面电化学合成导电聚苯胺膜的研究[J].材料保护,2003,36(12):23-26.
    65.颜流水,魏洽,王承宜.聚苯胺膜的电化学合成机理及掺杂行为[J].功能材料,2000,31(5):548-550.
    66. DEBERRY D W.Modification of the electroc hemical and corrosion behavior of stainless steel with e1ectractive coating [J].Journal of the Electrochemical Society, 1985,132(5): 1022-1026.
    67. Ali Olad,Reza Nabavi Application of polyaniline for the reduction of toxic Cr(VI) in water [J].Journal of Hazardous Materials,2007,147(3):845- 851.
    68. E.K. Chatzidaki,E.P. Favvas,S.K. Papageorgiou,N.K. Kanellopoulos, N.V.Theophilou New polyimide–polyaniline hollow fibers:Synthesis, characterization and behavior in gas separation [J].European Polymer Journal,2007,43(12):5010-5016.
    69.刘维锦,沈家瑞.聚苯胺导电纤维的湿法纺制[J].纺织科学研究,1999,(4):1.
    70. Deeher, G.Hong, J. Makromo1.Chem.Macromo1.Symp.1991, 46,321.
    71. Zhang, X. Shen, J.C.Adv.Master.1999, 11, 1139.
    72.沈家骢.超分子层状结构,组装与功能,科学出版社,北京,2004.
    73.何琳,林贤福,陈志春等.α-淀粉酶在阴离子化PET表面的自组装膜及其AFM研究[J].化学学报,2002,60,377.
    74. Fou, A.C.Rubner, M.F. Macromolecules 1995, 28, 7ll5.
    75.罗正平,张秋禹,谢刚等.分散聚合研究[J].高分子通报,2002,5:35-40.
    76.党高飞,付志峰.分散聚合技术及其研究进展[J].高分子通报,2008(10):41-45.
    77.张凯,范敬辉,吴菊英等.分散聚合反应的研究进展[J].化工技术与开发2007,36(2)42-45.
    78. C.M.Tseng, Y.Y.Lu, M.S, et al. Uniform polymer particles by dispersion polymerization in alcohol [J].Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24 (11): 2995-3007.
    79. Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene [J]. Canadian Journal of Chemistry, 1985, 63:209-216.
    80. Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357(2):477-486.
    81. Stephen C Hobaica. Stability of polyaniline in airand acidic water[J]. Journal of polymer science, Part B: Polymer Physics, 2003, 41:807-822.
    82.陶雪钰,陈骁,熊忠等.原位聚合沉积透明导电聚苯胺薄膜的研究进展[J].化学推进剂与高分子材料,2005,3(6):23-26.
    83.刘萍云,张长瑞,冯坚等.层层自组装原位聚合聚苯胺复合膜成膜机理研究[J].化学学报,2007,65(8):742-748.
    84. P W Atkins. Physical Chemical [M], 3rd edition, Oxford University Press, Oxford, 1986, (Chapter 31):762.
    85. I Sapurina, A Riede, J Stejskal. In-situ polymerized polyaniline films.3: film formation [J]. Synth.Met, 2001, 123:503.
    86.景遐斌,唐劲松,王英等.掺杂态聚苯胺链结构的研究[J].中国科学,1990,(1):15-20
    87.周宇清,雷良才,景遐斌等.掺杂态聚苯胺的共振拉曼光谱研究[J].高分子学报,1992(4):438-443.
    88.毛尚良.减压膜蒸馏法的研究[J].水处理技术,1994,20(5):267-270.
    89.林斯清,张维润.海水淡化的现状与未来[J].水处理技术,2000,26(1):7-12.
    90. Li Baoan, Sirkar K K.Novd membrane and device for vacuum membrane distillation-based desalination process [J].J Membr Sci, 2005, 257:60-75.
    91. Ho, K.S. Synth.Met.2002, 126,151.
    92. Kill G,Hunter D H,Intyre N S N.Reactions of polyethylene surfaces with the downstream products of air plasma:gas phase and surface spectroscopic studies[J].J of Polym Sci,Part A:Ploymer Chemistry,1996,34(12):2299-2310.
    93. Yasuda H.Plasma for modification of polymers[J].J Maromol Sci Chem,1976, A10(3):383-420.
    94. Zahran A H,Nofal E. Irradiation of poly(viny chloride) with H2 plasma [J].J of Appl Polym Sci,1979,24(7):1723-1737.
    95. Inagaki N,Tasaka S,Kawai H.Surface modification of aromaric polyamide film by oxygen plasma [J].J of Polym Sci,Part A:Polymer Chemistry,1995,33(13):2001-2011.
    96. Savitha, P.; Sathyanaryana, D. N. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3040.
    97. Xin, L.-Y.; Zhang, X. G.; Zhang, G.-Q.; Schen, C.-M. J.Appl. Polym. Sci. 2005, 96, 1539.
    98. Cotarelo, M. A.; Huerta, F.; Quijada, C.; Cases, F.; Vazquez, J. L. Synth. Met. 2005, 148, 81.
    99. Yang, C.-H.; Yang, T. C.; Chih, Y. K. J. Electrochem. Soc.2005, 152, E273.
    100. Li, X.-G.; Zhou, H.-J.; Huang, M.-R. Polymer 2005, 46, 1523.
    101. Manisankar, P.; Vedhi, C.; Selvanathan, G.; Somasundaram, R. M. Chem. Mater. 2005, 17, 1722.
    102. Stejskal J,Sapurina I,Prokes J,et a1.in-situ polymerized polyaniline films[J]. Synth Met,1999,105:195-202.
    103.生瑜,陈建定,朱德钦.聚苯胺/纳米二氧化硅复合材料I.原位氧化合成制备[J].功能高分子学报,2004,17(1):5-10.
    104. Liao Chuanping, Gu Mingyuan.Electroless deposition of polyaniline film via autocatalytic polymerization of aniline [J]. Thin Solid Films, 2002, 408: 37-42.
    105. Kim B J,Oh S G,Han M G,et a1.Preparation of PANI-coated poly(styrene-CO-styrene sulfonate)nanoparticles[J]. Polymer,2002,43(1):l11-ll6.
    106.张丽惠,陈亚芍,刘鹏.塑料工业,2003,31(6):17.
    107. Chen Y S, Hirayama N Gomi M, et a1.[J]. Korean Institute SurfEng,1999,32 (3):344.
    108.邱哗,王真,洪品杰.化学物理学报,1997,10(3):280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700