食物中的羽毛对北极狐肠道微生物种(类)和丰度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食肉动物在进食过程中会不可避免的食入毛发或羽毛,在长期的进化中肠道微生态系统已经适应了肠道中有毛发的存在。毛发或羽毛通常不能被消化,那么毛发对于微生态系统具有哪些作用,一直未被研究。我们以人工驯养的北极狐(Alopex lagopus)作为实验动物,在其正常日粮中添加无菌粉碎的羽毛,通过T-RFLP技术检测粪便细菌的种类和丰富度变化规律。结果显示,饲喂羽毛之前,用Rsa I和Bfa I组合酶切累计检测到176种(类)不同的细菌,用Bsl I酶切累计检测到205种(类)不同的细菌。饲喂羽毛之后,用Rsa I和Bfa I组合酶切以及用Bsl I酶切累计检测到的细菌种(类)分别是366种(类)和406种(类)。而且,在Rsa I和Bfa I组合酶切后共有65种(类)细菌T-RFs仅出现在饲喂羽毛之前,148种(类)细菌T-RFs仅出现在饲喂羽毛之后,237种(类)细菌T-RFs在饲喂羽毛前后均可检出。Bsl I酶切后共有85种(类)细菌T-RFs仅出现在饲喂羽毛之前,135种(类)细菌T-RFs仅出现在饲喂羽毛之后,250种(类)细菌T-RFs在饲喂羽毛前后均可检出。定量分析表明,粪便细菌的总量在饲喂羽毛前后没有显著变化。此外,细菌种类的变化规律有着明显的个体特异性,没有整体上的规律性。上述结果表明,饲喂羽毛前后肠道内细菌总量均达到容纳量,但是羽毛存在的条件下,不同种类细菌的丰度出现均衡化倾向,原来丰度很低的种类通过PCR检测不到,在饲喂羽毛后丰度得到提高,可以被检测出来。这种均衡化倾向预示着肠道微生态系统能流途径增多,复杂度和稳定性均得到提高,对维持和提升动物体生理功能具有潜在意义。此外,由于每只个体肠道内起始细菌种类和相对丰度的不同,导致这一变化过程有着明显的个体特异性,这预示着不同个体的微生态系统对相同的环境有着不同的适合度。
Carnivores intake hair and feather of their prey species and the gut microbiota should have become adapted to the existence of hair and feather during their long evolution process. Hair and feather are constituted of keratins that are almost not digestible in the gut. This raises a question how hair and feather impact on the gut microbiota. This question has not yet been investigated up to now though it is critical to understand the adaptation and evolution of carnivores. We used farmed Arctic fox (Alopex lagopus) as experimental animal to compare the species diversity and abundance of gut microbiota before and after sterilized feather was added to their ration by using the terminal restriction fragment length polymorphism (T-RFLP) technique. The results indicated that, before the addition of feather,176 and 205 kinds of bacteria were detected by using enzymatic digestion of 16S rRNA gene respectively with combination of Rsa I and Bfa I and singly Bsl I. After the addition of feather, the number of bacterial kinds/species detected in the two enzymatic digestions became 366 and 406 respecitively. Moreover, when digested with Rsa I and Bfa I,65 kinds/speceis of bacteria were only detected before addition of feather, and 148 kinds/speceis were only detected after addition of feather,237 kinds/speceis were common to both before and after feather addition. When digested with Bsl I,85 kinds/speceis were only detected only before addition of feather, 135kinds/speceis were only detected after addition of feather, and 250 kinds/speceis were common to both before and after feather addition. Quantitative analysis showed that total abundance of gut bacteria had no substantial changes throughout the whole research. The change of bacterial species had significant individual specificity but no significant general trends. These results suggested the richness of gut microbiota reached its maximum capacity despite of influence of feather. However, the addition of feather resulted in equilibrium of relative abundance among all species of bacteria. i.e. bacteria with undetectable initial abundance became detectable due to the increment of abundance after feather addition. This implied that energetic flow paths of gut microbiota could be manifolded and altered, and such manifold and alteration could potentially improve the complexity and stability of the microecosystem, which has improved outcomes and sustainability of physiological functions. We further proposed that the individual specificity of such changes resulted from the influence of feather could be due to the variation of initial species and their abundance among individual foxes. This suggested different individual fox should have different process and outcomes (fitness) in adaptations in gut microbiota to a same environmental changes.
引文
[1]Hersteinsson P, Macdonald D W. Interspecific competition and the geographical distribution of red and Arctic foxes Vulpes vulpes and Alopex lagopus. Copenhagen, 1992,64:505-515
    [2]Kaikusalo A, Angerbjorn A. The Arctic fox population in Finnish Lapland during 30 years,1964-93. Ann Zool Fennici,1995,32:69-77
    [3]Angerbjorn A, Tannerfeldt M, Erlinge S. Predator-prey relations:Arctic foxes and lemmings. J Anim Ecol,1999,68:34-49
    [4]Samelius G Lee M. Arctic fox, Alopex lagopus, predation on lesser snow geese, Chen caerulescens, and their eggs. Canadian Field Naturalist,1998,112:700-701
    [5]朴厚坤,佟煜仁.新色型突变棕色貉毛色遗传初探.经济动物学报,2009,13(2):80-82
    [6]张锦程,马文军,杨春和,张夕省.饲料营养成分与毛皮动物代谢病.河北畜牧兽医,2005,21:9
    [7]郑星道,梁洪国,郑红华.银狐自咬症的诊断和防治.中国兽医杂志,2007,43:6
    [8]Allwood A C, Walter M R, Kamber B S. Stromatolite reef from the Early Archaean era of Australia. Nature,2006,441:714-718
    [9]Woese C R. On the evolution of cells. Proc Natl Acad Sci USA,2002,99:8742-8747
    [10]Butterfield N J, Knoll A H, Swett K. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science,1990,250:104-107
    [11]Aas J A, Paster B J, Stokes L N. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol,2005,43:5721-5732
    [12]Pei Z, Bini E J, Yang L. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA,2004,101:4250-4255
    [13]Bik E M, Eckburg P B, Gill S R. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA,2006,103:732-737
    [14]Gorbach S L, Plaut A G, Nahas L. Studies of intestinal microflora. Ⅱ. Microorganisms of the small intestine and their relations to oral and fecal flora. Gastroenterology,1967, 53:856-867
    [15]Zaidel O, Lin H C. Uninvited Guests:the impact of small intestinal bacterial overgrowth on nutritional status. Pract Gastroenterol,2003,7:27-34
    [16]Backhed F, Ley R E, Sonnenburg J L. Host-bacterial mutualism in the human intestine. Science,2005,307:1915-1920
    [17]Ley R E, Turnbaugh P J, Klein S. Microbial ecology:human gut microbes associated with obesity. Nature,2006,444:1022-1023
    [18]Marteau P, Pochart P, DoreJ. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol,2001,67:4939-4942
    [19]Savage D C. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol,1977, 31:107-133
    [20]Furuse M, Okumura J. Nutritional and physiological characteristics in germ-free chickens. Comp Biochem Physiol A Physiol,1994,109:547-556
    [21]Wostmann B S. Germfree, Gnotobiotic. Animal models:background and applications. Boca Raton, FL:CRC Press,1996
    [22]Favier C F, de Vos W M, Akkermans A D L. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe,2003,9:219-229
    [23]Matsumiya Y, Kato N, Watanabe K. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J Infect Chemother,2002, 8:43-49
    [24]Martin R, Langa S, Reviriego C. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr,2003,143:754-758
    [25]Mai V, McCrary Q M, Sinha R. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity:an observational study in African American and Caucasian American volunteers. Nature J,2009,8:49
    [26]Albert M J, Mathan V I, Baker S J. Vitamin B12 synthesis by human small intestinal bacteria. Nature,1980,283:781-782
    [27]Dryden L P, Hartman A M, Bryant M P, Robinson I M, Moore L A. Production of Vitamin B12 and Vitamin B12 analogues by pure cultures of ruminal bacteria. Nature, 1962,195:201-202
    [28]Davis M E. Studies on the microbial flora of the large intestine of horse by continuous culture in an artificial colon. Vet Sci Com,1979,3:39-44
    [29]Deblauwe I, Dupain J, Nguenang G M. Insectivory by gorilla gorilla gorilla in southeast Cameroon. Int J Primatol,2003,24(3):493-502
    [30]Prates H M, Bicca-Marques J C. Coprophagy in captive brown capuchin monkeys (Cebus apella). Neotropi Primates,2005,13(3):18-21
    [31]Metges C C, El-Khoury A E, Henneman L. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am J Physiol Endocrinol Metab, 1999,277:597-607
    [32]Shirkey T W, Siggers R H, Goldade B G. Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med,2006,231:1333-1345
    [33]Castillo M, Martin-Orue S M, Nofrarias M. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet Microbiol,2007,124:239-247
    [34]Johansen F E, Pekna M, Norderhaug I N. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretary component deficient mice. Exp Med,1999,190:915-922
    [35]Mayer L, Shlien R. Evidence for function of la molecules on gut epithelial cells in man. J Exp Med,1987,166:1471-1483
    [36]So A L, Pelton-Henrion K, Small G. Antigen uptake and trafficking in human intestinal epithelial cells. Digest Dis Sci,2000,45:1451-1461
    [37]Ismail A S, Hooper L V. Epithelial cells and their neighbors. I V. Bacterial contributions to intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol,2005, 289:G779-G784
    [38]Hooper Lora V. Bacterial contributions to mammalian gut development, Trends Microbiol,2004,12(3):129-134
    [39]Kohler T, McCormick B A, Walker W A. Bacterial-enterocyte crosstalk:cellular mechanisms in health and disease. J Pediatr Gastroenterol Nutr,2003,36:175-185
    [40]Mavris M, Sansonetti P. Epithelial cell responses. Best Prac Res Clin Gastroenterol, 2004,18:373-386
    [41]Shao L, Serrano D, Mayer L. The role of epithelial cells in immune regulation in the gut. Semin Immunol,2001,13:163-175
    [42]Cani P D, Delzenne N M. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care,2007,10:729-734
    [43]Backhed F, Ding H, Wang T. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA,2004,101:15718-15723
    [44]Dumas M E, Barton R H, Toye A. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA, 2006,103(33):12511-12516
    [45]Ley R E, Backhed F, Turnbaugh P. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA,2005,102:11070-11075
    [46]Turnbaugh P J, Ley R E, Mahowald M A. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031
    [47]Sanz Y, Santacruz A, De Palma G Insights into the roles of gut microbes in obesity. Interdiscipl Perspect Infect Dis,2008,10:1155
    [48]Quigley E M M. New Perspectives on the role of the intestinal flora in health and disease. J Gastrointestin Liver Dis,2006,15(2):109-110
    [49]Ben-Yosef M, Jurkevitch E, Yuval B. Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol, 2008,33:145-154
    [50]Carey J R. Insect biodemography. Annu Rev Entomol,2001,46:79-110
    [51]Teaford M F, Ungar P S. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci USA,2000,97:13506-13511
    [52]Ungar P S, Grine F E, Teaford M F. Diet in early Homo:a review of the evidence and a new model of adaptive versatility. Annu Rev Anthropol,2006,35:209-228
    [53]Aiello L C, Wheeler P. The expensive-tissue hypothesis:the brain and the digestive system in human and primate evolution. Curr Anthropol,1995,36:199-221
    [54]Ley R E; Lozupone C A, Hamady M. Worlds within worlds:evolution of the vertebrate gut microbiota. Nat Rev Microbiol,2008,6:776-778
    [55]Perry G H, Dominy N J, Claw K G Diet and the evolution of human amylase gene copy number variation. Nature Genet,2007,39:1256-1260
    [56]Falush D, Wirth T, Linz B. Traces of human migrations in Helicobacter pylori populations. Science,2003,299:1582-1585
    [57]Flint H J, Bayer E A, Rincon M T. Polysaccharide utilization by gut bacteria:potential for new insights from genomic analysis. Nat Rev Microbiol,2008,6:121-131
    [58]Xu J, Mahowald M A, Ley R E. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol,2007,5:1574-1586
    [59]Hattori M, Taylor T D. The human intestinal microbiome:a new frontier of human biology. DNA Res,2009,16:1-12
    [60]Frank D N, St Amand A L, Feldman R A, Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA,2007,104:13780-13785
    [61]Matsuki T, Watanabe K, Fujimoto J. Use of 16S rRNA gene targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol,2004,70:7220-7228
    [62]Zoetendal E G, Akkermans A D, de Vos W M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol,1998,64:3854-3859
    [63]Heilig H G H J, Zoetendal E G, Vaughan E E, Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol,2002,68:114-123
    [64]Palmer C. Development of the human infant intestinal microbiota. PLoS Biol,2007, 5:1556-1573
    [65]Behar A, Yuval B, Jurkevitch E. Enterobacteria mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol,2005,14:2637-2643
    [66]Miyata R, Noda N, Tamaki H. Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutiterm.es takasagoensis. Biosci Biotechnol Biochem,2007,71(5):1244-1251
    [67]Knapp BA, Podmirseg SM, Seeber J. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biol Biochem,2009,41:2299-2307
    [68]Peterson D A, McNulty N P, Guruge J L. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe,2007,2:328-339
    [69]Lanyon C V, Rushton S P, O'Donnell A G. Murine scent mark microbial communities are genetically determined. FEMS Microbiol Ecol,2007,59:576-583
    [70]Lombardo M P. Access to mutualistic endosymbiotic microbes:an underappreciated benefit of group living. Behav Ecol Sociobiol,2008,62:479-497
    [71]MacArthur R. Fluctuations of animal populations and a measure of community stability. Ecology,1955,35:533-536
    [72]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol,1993,59(3):695-700
    [73]章戴荣,白林,周东胜.利用T-RFLP技术分析微生物的多样性.微生物学报,2007,47(2):290-294
    [74]任南琪,赵阳国,高崇洋,王爱杰.TRFLP在微生物群落结构与动态分析中的应用.哈尔滨工业大学学报,2007,10
    [75]De la Hey D C. The importance of birds in the diet of otter Lutra lutra on Shapwick Heath. Biosci Horiz,2008,1(2):143-147
    [76]Kapel C M O. Diet of Arctic foxes (Alopex lagopus) in Greenland. Arctic,1999,52(3): 289-293
    [77]Agashima K J, Hisada T, Sato, M Mochizuki J. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of acterial populations in human feces. Appl Environ Microbiol,2003,1251-1262
    [78]Xu J, Mahowald M A, Ley R E. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol,2007,5:1574-1586
    [79]Fredrik Backhed, Ruth E. Ley, Justin L. Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon. Host-Bacterial Mutualism in the Human Intestine. Science,2005,1915-1920
    [80]Simpson J.M, Martineau B, Jones W E, Ballam J M. Characterization of Fecal Bacterial Populations in Canines:Effects of Age, Breed and Dietary Fiber. Microb Ecol,2002, 44:186-197
    [81]Fuglei E, Mydland L T. Comparative nutrient digestibility of arctic foxes (Alopex lagopus) on Svalbard and farm-raised blue foxes (Alopex lagopus). Comp Biochem Physiol-Part A:Mol Integr Physiol.2003,134 (1):63-68
    [82]Fredrik, Dalerumand, AngerbjornArctic Fox (Alopex lagopus) Diet in Karupelv Valley, East Greenland,during a Summer with Low Lemming Density. Arctic,2000,53(1):1-8
    [83]Anthony R M, Barten N L, Seiser P E. Foods of arctic foxes (Alopex lagopus) during winter and spring in western Alaska. J Mammal,2000,81(3):820-828
    [84]Khawar S L, Watson K, Jones G L. A comparative electrophoretic analysis of mammalian hair and avian feather Proteins. Int J Biochem Cell Biol,1997,29(2):367-380
    [85]Wilson R H, Lewis H B. The cystine content of hair and other epidermal tissues. J Biol Chem,1927,73:543-553
    [86]Goodman D. The theory of diversity-stability relationships in ecology. Quart Rev Biol, 1975,50:237-266
    [87]Bell T, Newman J A, Silverman B W. The contribution of species richness and composition to bacterial services. Nature,2005,436:1157-1160
    [88]Kinross J M, von Roon A C, Holmes E. The human gut microbiome:implications for future health care. Curr Gastroenterol Reports,2008,10(4):396-403
    [89]Iapichino G, Callegari M L, Marzorati S. Impact of antibiotics on the gut microbiota of critically ill patients. Med Microbiol,2008,57:1007-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700