多胺和一氧化氮促进莴苣种子萌发时的生理生化变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精胺(Spm)、亚精胺(Spd)和它们的二胺前体腐胺(Put)是小分子脂肪族多聚阳离子,广泛存在于生物有机体中,在植物中介导了多种生理生化过程。一氧化氮(NO)是一种高活性生理活性物质,作为信号分子在植物根系等生长发育过程中起重要作用。我们前期的工作表明,多胺和NO对植物种子萌发及幼苗的生长都有促进作用,对植物侧根发生也有促进作用,且多胺可以诱导植物多种组织产生NO。那么,经多胺和NO处理后,在促进种子萌发过程中,种子贮藏物质和相应水解酶活性有怎样的变化?国内外鲜见相关文献报道。在本研究中,我们选用正常莴苣(Lactuca sativa L.)种子(挂丝红)为材料,研究多胺和一氧化氮促进莴苣种子萌发时的生理生化变化。结果如下:
     低浓度的外源多胺对莴苣种子发萌都有一定的促进作用,其中以0.5 mM Spd效果最佳,其次是Spm,Put作用较小。时间进程曲线研究表明,48 h后多胺这种促早萌作用逐渐消失。0-0.1 mM SNP可以明显促进莴苣种子的萌发,0.1 mM效果最佳,SNP浓度大于0.2 mM时对莴苣种子萌发有抑制作用。时间进程曲线研究表明,在种子萌发前36 h, 0.1 mM SNP对种子萌发的促进作用最为显著,48 h后多胺这种促早萌作用逐渐消失。
     种子内含物质变化的时间进程曲线发现,随着莴苣种子的萌发,蛋白质、粗脂肪和淀粉含量逐渐下降,而可溶性糖含量逐渐增加。用0.5 mM多胺浸种处理后,与对照相比,蛋白质、粗脂肪和淀粉含量下降更显著,但各种多胺处理间差异不大,仅0.5 mM Spd对可溶性糖的增加和淀粉含量的下降作用效果更好。多胺生物合成抑制CHA和MGBG处理,对种子内的蛋白质和淀粉含量的下降均有不同程度的延缓作用,但粗脂肪含量的下降受MGBG的促进。用SNP浸种可明显降低淀粉和增加可溶性糖含量,0.05 mM SNP就有显著的作用效果。时间进程曲线研究表明,种子内的蛋白质、粗脂肪和淀粉含量逐渐下降,而可溶性糖含量逐渐增加,经0.1 mM SNP处理后,蛋白质、粗脂肪含量进一步降低,但与对照相比差异不大;与此不同的是,淀粉含量的下降和可溶性糖含量的增加更显著,处理24 h后,与对照相比差异就达显著性水平。用NO生物合成抑制1.0 mM钨酸钠和0.2 mML-NAME浸种,对种子内含物质含量变化呈现相似的影响。对种子蛋白质和粗脂肪含量的下降有一定的延缓作用,但量值与对照相比差异不大,而对淀粉降解的抑制作用非常明显,36 h后便观察到可溶性糖含量的显著下降。
     测定种子萌发时水解酶活性变化结果表明,α-淀粉酶、脂肪水解酶和硝酸还原酶活性随种子的萌发而逐渐增加,而β-淀粉酶活性在36 h时活性达最高峰后逐渐下降。多胺可显著促进α-淀粉酶和β-淀粉酶活性,最适浓度为0.5 mM,Spd作用最好;对脂肪水解酶活性也有不同的促进作用,但作用浓度需大于0.5 mM时才有效果;而对硝酸还原酶活性则呈现出一定的抑制作用。此外,还发现不同种类的外源多胺对水解酶活性的作用有差异,Spd和Put对α-淀粉酶、β-淀粉酶和脂肪水解酶活性的促进作用大于Spm。多胺生物合成抑制剂CHA和MGBG处理结果表明,两者都可明显抑制α-淀粉酶和β-淀粉酶活性,CHA对β-淀粉酶活性的抑制作用更为显著,CHA的抑制效果好于MGBG。硝酸还原酶活性也受不同浓度的CHA和MGBG的强烈抑制。与CHA显著抑制脂肪水解酶活性不同,MGBG处理脂肪水解酶活性有受促进的趋势,但与对照相比差异不显著。
     SNP处理结果表明,种子的α-淀粉酶和β-淀粉酶活性受低浓度SNP的促进,而受高浓度SNP的抑制;硝酸还原酶活性也受到促进,0.1 mM SNP效果佳;大于0.1 mM SNP对脂肪水解酶活性才有显著的促进作用。时间进程曲线研究表明,α-淀粉酶、硝酸还原酶和脂肪水解酶活性明显受0.1 mM SNP处理的促进,且随种子的萌发而增加;β-淀粉酶活性在36 h时达最大值后逐渐下降,也明显受SNP处理的促进。经1.0 mM T-Na和0.2 mM L-NAME处理后,种子的硝酸还原酶和脂肪水解酶活性受到强烈抑制,处理12 h就有明显的作用效果;对α-淀粉酶活性抑制的作用时间有差异,T-Na在萌发前12 h就起作用,L-NAME在处理36 h后才表现强烈的抑制效果。对β-淀粉酶活性,L-NAME在处理24 h后就表现出强的抑制作用。上述结果暗示,多胺和NO是通过调节α-淀粉酶、β-淀粉酶活性、硝酸还原酶和脂肪水解酶活性,影响种子体内贮藏物质的降解,而影响莴苣种子萌发。其中,对淀粉的降解和可溶性糖的增加作用更为明显。
Spermine (Spm), spermidine (Spd) and their diamine obligate precursor putrescine (Put) are micro molecular aliphatic polycations that are ubiquitous in all plant cells, participate in a wide range of physiological and biochemical processes. Nitric oxide (NO) is a physiologically reactive substance, as a plant cell signaling molecule, it play an important role in plant root growth and other physiological processes. Our previous results suggest that both polyamines and NO promote the seed germination and the development of lateral roots in lettuce, and that polyamines can induce NO production in plant tissues. However, there is no report about what changes the seed storage substances and corresponding hydrolases are in seed germination after treatments with exogenous polyamines and NO ? In this study we choose a normal breed of lettuce seed (Lactuca sativa L. cv. Guasihong) as an experimental material to investigate the role of polyamine and NO in the process of lettuce seed germination. The results are as follows:
     Treatments with exogenous polyamines at low concentrations promoted early germination of lettuce seed. Spm was more effective than Put, but less than Spd. The detection of time course of seed germination showed that the promoting effect of polyamines disappeared after 48 h. In addition, treatment with 0-0.1 mM SNP markedly promoted seed germination with optimal concentration at 0.1 mM, whereas 0.2 mM SNP failed to increase germination. The detection of time course of seed germination showed that the promoting effect of 0.1 mM SNP on the germination of lettuce seed was obvious in 36 h after treatment, and this effect disappeared in 48 h.
     The detection of reserve changes showed that the protein, crude fat and starch contents decreased and soluble sugar increased gradually with seed germination. In contrast with the control, the protein, crude fat and starch contents significantly declined after treatments with 0.5 mM polyamines. The differences between polyamine treatments were not observed and only 0.5 mM Spd had strong effects on the decline of starch content and the increment of soluble sugar. Treatments with polyamine synthetic inhibitors (MGBG and CHA) could retard the decreases of the protein and starch contents in various degrees, whereas the crude fat content was inhibited by MGBG.
     The imbibition with NO donor SNP could obviously reduce starch content and increase soluble content, and 0.05 mM SNP had significant effects. The detection of time course showed that the contents of the protein, crude fat and starch declined and the soluble sugar increased gradually. After treatments with 0.1 mM SNP, the protein and crude fat contents further decreased, but no differences occurred in contrast with the control. Conversely, only starch content decreased and the soluble sugar increased rapidly, the differences after treatments for 24 h were obvious as contrast with the control. The similar effects of the biosynthetic inhibitor of nitric oxide (1.0 mM tunsgate and 0.2 mM L-NAME) on seed reserves were observed. They both had a certain retarding effect on the decline of the protein and the crude fat contents though with no differences as contrast to the control, while the starch degradation was strongly inhibited and the soluble sugar content reduced only after treatment for 36 h.
     The determination of the activities of various hydrolases during seed germination showed that the activities ofα-amylase, nitrate reductase and lipase increased gradually with lettuce seed germination, andβ-amylase activity declined after its activity reached the peak at 36 h. The imbibition with exogenous polyamines at different concentrations could significantly enhancedα-amylase andβ-amylase activities with optimal concentration at 0.5 mM, and Spd was most effective. Lipase activity was also increased but the polyamine concentrations over 0.5 mM were needed, while nitrate reductase activity reduced. In addition, different kinds of polyamines showed different effects, the promoting effects of Spd and Put onα-amylase,β-amylase and lipase activities were more effective than Spm.
     In agreement with these results, treatments with the polyamine biosynthetic inhibitors, CHA and MGBG, could significantly inhibit the activities ofα-amylase andβ-amylase activities. The inhibitory effect of CHA onβ-amylase activities was more obvious and better than MGBG. Similarly nitrate reductase activity was also strongly retarded by CHA and MGBG at different concentrations. Unlike with CHA, MGBG imbibition could slightly promote lipase activity though with no difference as contrast with the control.
     The results caused by NO donor SNP treatment showed that the activities ofα-amylase andβ-amylase in lettuce seeds were promoted by low SNP, but inhibited by high SNP concentration. The nitrate reductase activity was also improved with optimal concentration at 0.1 mM SNP. The concentration exceeding 0.1 mM SNP exhibited a promotive effect on lipase activity. The detection of time course showed that the activities ofα-amylase, nitrate reductase and lipase increased with lettuce seed germination, and significantly enhanced by 0.1 mM SNP treatment.β-amylase activity declined after it reached the peak at 36 h and also improved by SNP.
     After treatments with NO biosynthetic inhibitor tunsgate and L-NAME, the nitrate reductase and lipase activities strongly reduced, the effects occurred only at 12 h after inhibitor treatments. There was difference of inhibitory effect ofα-amylase on acting time between tunsgate and L-NAME,. Tunsgate showed its inhibitory effect at 12 h after seed germination, while L-NAME behaved at 36 h.β-amylase activity decreased only at 24h after L-NAME treatment.
     Altogether, Polyamines and nitric oxide may regulate the germination of lettuce seeds through manipulating the activities ofα-amylase,β-amylase, nitrate reductase and lipase and affecting reserve degradation. Treatment with polyamine and nitric oxide mainly caused starch degradation and soluble sugar increment.
引文
[1] Smith TA. Polyamine[J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1985, 36: 117-143.
    [2] Cohen SS. Polyamine oxidases and dehydrogenases[M], in Cohen SS(Ed). A guide to the polyamine. Oxford University Press, New York, 1998: 69-93.
    [3] Sebela M, Radova, Angelini R, Tavladoraki P, Frebort I, Pec P. FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants [J]. Plant Science, 2001, 160: 197-207.
    [4] Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: recent development [J]. Plant Science, 1999, 140: 103-125.
    [5] Cervelli M, Tavladoraki P, Agostino S, Angelini R. Isolation and characterization of three polyamine oxidase genes from Zea mays[J]. Plant Physiology, 2000, 38: 667-677.
    [6]何生根,黄学林,傅家瑞.植物的多胺氧化酶[J].植物生理学通讯, 1998, 34: 213-218.
    [7] Applewhite PB, Kaur-Sawhney R, Galston A. A role for spermidine in the bolting and flowering of Arabidopsis [J]. Physiologia Plantarum, 2000, 108: 314-320.
    [8] Aziz A. Involvement of polyamines in the control of fruitlet physiological abscission in grapevine[J]. Physiologia Plantarum, 2001, 113: 20-58.
    [9] Hummel I, Couee I, Amrani A E I, Martin-Tanguy J, Hennion F. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica[J]. Journal of Experimental Botany, 2002, 373: 1463-1473.
    [10] Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory functions[J]. Trend in Plant Science, 2005, 10: 195-200.
    [11] Durner J, Klessig D F. Nitric oxide as a signal in plants[J]. Current Opinion in Plant Biology, 1999, 2: 369-374.
    [12] del Río L A, Javier C F, Barroso J B. Nitric oxide and nitric oxide synthase activity in plants[J]. Phytochemistry, 2004, 65: 783-792.
    [13]刘新,张蜀秋,娄成后.植物体内一氧化氮的来源及其与其它信号分子之间的关系[J].植物生理学通讯, 2003, 5: 513-518.
    [14]张艳艳,刘友良.一氧化氮在植物体内的来源和功能[J].西北植物学报, 2004, 24(5): 921-929.
    [15] Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning[J]. Plant, Cell and Environment, 2001, 24: 267-278.
    [16] Delledonne M. NO news is good news for plants[J]. Current Opinion in Plant Biology, 2005, 8: 390-396.
    [17]潘瑞炽,植物生理学[M].北京:高等教育出版社,2006, 218-219.
    [18] Irena S. Stimulation of dark germination of light-sensitive lettuce seeds by polyamines[J]. Acta Physiologiae Plantarum, 1988, 10(1): 11-16.
    [19]贺军民,黄维生,王晓明等.多胺和赤霉素在莴苣种子萌发中的作用及其相互关系[J].西北植物学报, 1994, 14: 33-38.
    [20] Kopyra M,Gwozdz EA.Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of lupinusluteus [J]. Plant Physiology and Biochemistry, 2003, 41:1011-1017.
    [21] Beligin MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation,inhibits hypocotyls elongation,three light-inducible response in paints [J]. Planta, 2000, 210: 215-221.
    [22]孙永刚,凌腾芳,王家杰等.外源一氧化氮供体硝普钠对小麦种子萌发早期淀粉酶及其亚细胞分布的影响[J].作物学报, 2008, 34(9): 1608-1614.
    [23] Bagga S, Rochford J, Klaene Z, Kuehn G D, Phillips G C. Putrescine aminopropyltransferase is responsible for biosynthesis of spermidine, spermine, and multiple uncommon polyamines in osmotic stress-tolerant Alfalfa[J]. Plant Physiology, 1997, 114: 445-454
    [24] Galston A W, Kaur-Sawhney R. Polyamines as endogenous growth regulators. in: Davies R J(ed). Plant hormones[M]. Kluwer Academic Publishers. Netherlands 1995, 158-178.
    [25]李六林,张绍铃.多胺在植物花发育中的作用[J].西北植物学报, 2006, 26 (6): 1282-1289.
    [26]杜红阳,刘怀攀,李潮海,杨青华.植物体内特殊形态多胺与水分胁迫关系研究进展[J].河南农业科学, 2007, (12): 9-13.
    [27]赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节[J].植物生理学通讯, 2000a, 36 (1): 1-6
    [28] Cvikrova M, Mala J, Hrubeova M, Eder J, Zon J, Machaekova I. Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis[J]. Plant Physiology Biochemistry, 2003, 41: 251-259.
    [29] Mauricio H M, Jesus N R, Catalina P. Changes in polyamine content are related to low temperature resistance in potato plants[J]. Aeta Biologiea Colombiana, 1999, 4: 27-47.
    [30] Liu HP, Zhu ZX, Liu TX, Li CH. Effects of osmotic stress on the kinds, forms and levels of Polyamines in wheat coleoptiles[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (3) 293-297
    [31] Elizabeth T, Martin-Tangu YJ. Floral induction and floral development of strawberry[J]. Plant Growth Regulation, 1995, 17: 157-165.
    [32] Kong L, Attree SM, Fowke LC. Effects of polyethylene glycol and methylglyoxal bis(guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Pieea giauea)[J]. Plant Science, 1998, 133: 211- 220.
    [33] Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches)[J]. Plant Growth Regulation, 2001, 34 (l): 135-148.
    [34] Galston A W, Kaur-Sawhney R. Polyamines as endogenous growth regulators. in: Davies R J(ed). Plant hormones[M]. Kluwer Academic Publishers. Netherlands 1995, 158-178.
    [35] Kumar A, Altabella T, Taylor M A, Tiburcio A F. Recent adances in polyamine research[J]. Trends in Plant Science, 1997, 2: 124-130.
    [36] Serafini-Fracassini D. Plant transglutaminase[J]. Phytochemistry, 1995, 40: 355-365.
    [37] Tiburcio A F, Altabella T, Borrel A. Polyamine metabolism and its regulation[J]. Physiologia Plantarum, 1997, 100: 664-674.
    [38] Hanfrey C, Sommer S, Mayer M J, Burtin D, Michael, A J. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity[J]. Plant Journal. 2001, 27: 551-60.
    [39] Walden R, Cordeiro A, Tiburcio A F. Polyamines: small molecules triggering pathways in growth and development[J]. Plant Physiology, 1997, 113: 1009-1013
    [40] Kusano T, Yamaguchi K, Berberich T, Takahashi Y. Advances in polyamine research in 2007[J]. Journal of Plant Research, 2007, 120: 345-350.
    [41] Suzuki Y, Yanagisawa H. Purification and properties of maize polyamine oxidase: a flavprotein[J]. Plant Cell Physiology, 1980, 21: 1085-1094.
    [42] Smith T A. Polyamine oxidase (oat seedlings)[J]. Methods Enzymol, 1983, 94: 311-314.
    [43] Kleutz M D, Adamsons K, Flynn J E. Optimized preparation and determination of pea seedling amine oxidase[J]. Preparative Biochemistry, 1980, 10: 615-631.
    [44] McGuirl M A, McCahon C D, McKeown K A. Purification and characterization of pea seedling amine oxidase for crystallization studies[J]. Plant Physiology, 1994, 104: 1205-1211.
    [45] Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of Arabidopsis genes involved in biosynthysis of polyamines in abiotic stress responses and developmental stages[J]. Plant Cell Environ, 2003, 26: 1917-1926.
    [46] Malmberg R L, Watson M B, Galloway G L, Yu W. Molecular genetic analyses of plant polyamines[J]. Critical Reviews in Plant Sciences, 1998, 17:199-224.
    [47] Liu K, Fu H, Bei Q, Luan S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements[J]. Plant Physiology, 2000, 124: 1315-1326.
    [48] Alcázar R, Marco F, Cuevas J C, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnol Lett, 2006, 28: 1867-1876.
    [49] Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2007, 34: 35-45.
    [50] Kusano T, Yamaguchi K, Berberich T, Takahashi Y. The polyamine spermine rescues Arabidopsis from salinity and drought stresses[J]. Plant Signal and Behavior, 2007, 2: 250-251.
    [51]王颖,何生根,伍春莲等.多胺代谢和种子萌发[J].种子, 2003, (2): 53- 56.
    [52] Villanueva VR, Huang H. Effect of polyamine inhibition on pea seed germination [J]. J Plant Physiol, 1993, 141: 336-340.
    [53] Sen K, Choudhuri MM, Ghosh B. Changes in polyamine contents duringdevelopment and germination of rice seeds[J]. Phytochemistry, 1981, 20: 631-633.
    [54] Torrigiani P, Scoccianti V. Regulation of cadaverine and putrescine levels in different organs of chick-pea seed and seedlings during germination[J]. Physiol Plant, 1995, 93: 512-518.
    [55] Kyriakidis DA. Effect of plant growth hormones and polyamines on ornithine decarboxylase activity germination of barley seeds[J]. Physiol Plant, 1983, 57: 499-504. [56李子银,张劲松,陈受宜.水稻盐胁迫应答基因的克隆[J].中国科学@, 1999, 29:561-570.
    [57] Hummel I, Couee I, El Amrani A, Martin-Tanguy J, Hennion F. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica[J]. J Exp Bot, 2002, 373, 1463-1473.
    [58] Lee TM. Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro[J]. Plant Sci, 1997, 122, 111-117.
    [59] Hausman J F, Kevers C, Gaspar T. Auxin-polyamine interaction in the control of the rooting inductive phase of plplar shoots in vitro[J]. Plant Science, 1995, 110: 63-71.
    [60] Aribaud M, Kevers C, Martin-Tanguy J, Gaspar T H. Low activity of amine-oxidases and accumulation of conjugated polyamines in disfavour of organogenic programs in chrysanthemum leaf disc explants[J]. Plant Cell Tiss Org cult. 1999, 55: 85-94.
    [61] Guo Xing Su, Wen-Hua Zhang, You-Liang Liu. Involvement of Hydrogen Peroxide Generated by Polyamine oxidative degradation in the development of lateral roots in soybean[J]. Journal of Integrative Plant Biology, 2006, 48 (4): 426-432.
    [62] Havelange A, Lejeune P, Bernier G., Kaur-Sawhney R, Galston A W. Putrescine export from leaves in relation to floral transition in Sinapis alba[J]. Physiologia Plantarum, 1996, 96: 59-65.
    [63] Martin-Tanguy J.The occurrence and possible function ofhydroxyl-cinnamoyl acid and amides in plants [J]. Plant Growth Regulation, 1985, 3: 381-399.
    [64] Kaur-Sawhney R, Tiburcio A F, Galston A W. Spermidine and flower-bud differentiation in thin-layer explants of tobacco[J]. Planta, 1988, 173: 282-284.
    [65] Martin-Tanguy J, Sun L Y, Burtin D, Vernoy R, Rossin N, Tepfer D. Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene (correlations with changes in polyamine metabolism and DNA methylation)[J]. Plant Physiology, 1996, 111(1): 259-267.
    [66] Song J J, Nada K, Tachibanas S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.)[J]. Plant and Cell Physiology, 2002, 43: 619-627.
    [67] Cohen E, Arad S M, Heimer Y M, Mizrahi Y. Participation of ornithine decarboxylase in early stages of tomato fruit development[J]. Plant Physiology, 1982, 70: 540-543.
    [68]王晓云,邹琦.多胺与植物衰老关系研究进展[J].植物学通报,2002,19(1):11-20.
    [69] Tiburcio A F, Campos J L, Figueras X, Besford R T. Recent advances in the understanding of polyamine functions during plant development[J]. Plant Growth Regulation, 1993, 12: 331-340.
    [70]王晓云,马池珠,李向东.多效唑对花生叶片多胺含量及衰老的调节作用[J].西北植物学报, 2001, 21: 323-328.
    [71] Staml E R J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms[J]. Science , 1992 ,258 :1898-1902.
    [72] Wojtaszek P. Nitric oxide in plants: To NO or not to NO[J]. Phytochemistry, 2000, 54(1): 1-4.
    [73] Marietta M A. Nitric oxide synthase structure and mechanism[J]. Journal of Biological Chemistry, 1993, 268: 12231-12234.
    [74] Furchgott R F. Special topic: nitric oxide[J]. Annals Review of Physiology, 1995, 57: 659-682.
    [75] Barroso J B, Corpas F J, Carreras A, Sandalio L M, Valderrama R, Palma J M, JoséA. Lupiá?ez J A, del Río L A. Localization of nitric oxide synthase in plant peroxisomes[J]. Journal of Biological Chemistry, 1999, 274(51): 36729-36733.
    [76] Kuo W N, Ku T W, Jones D L, Jn-Baptiste J. Nitric oxide synthase immuno-reactivity in baker's yeasts, lobster, and wheat germ[J]. Biochemical Archives, 1995, 11: 73-78.
    [77]Sen S, Cheema I R. Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue[J]. Biochemical Archives, 1995, 11: 221-227.
    [78] Ribeiro E A, Cunha F Q, Tamashiro W M S C, Martins I S. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells[J]. FEBS letters, 1999, 445: 283-286.
    [79] Butt Y K C, Lum J H K, Lo D C L. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies[J]. Planta, 2003, 216: 762-771.
    [80] Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G , Jeandroz S, Pugin A, Wendehenne D. Nitric oxide in plants: production and cross-talk with Ca2+ signaling[J]. Molecular Plant, 2008, 1: 218-228.
    [81] Corpas F J, Barroso J B, Carreras A, Quiros M, Leon A M, Romero-Puertas M C. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants[J]. Plant Physiology, 2004, 136: 2722-2733.
    [82] Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro[J]. Journal of Experimental Botany, 2002, 53: 103-110.
    [83] Planchet E., Gupta K J, Sonoda M, Kaiser W M. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport[J]. Plant Journal, 2005, 41: 732-743.
    [84] Stohr C, Strube F, Marx G, Ullrich W R, and Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite [J]. Planta, 2001, 212: 835-841.
    [85] Zottini M ,Costa A ,Demichel E R ,Ruzzene M ,Carimi F ,Loschiavo M. Salicylic acid activates nitric oxide synthesis in Arabidopsis[J]. Journal of Experimental Botany, 2007, 58(6): 1397-1405.
    [86] Desikan R, Griffiths R, Hancock J, and Neill S. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana[J]. Proceedings of the National Academy Sciences of the United States of America, 2002, 99: 16314-16318.
    [87] Bright J, Desikan R, Hancock J T, Weir I S, and Neill S J. ABA-induced NOgeneration and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J]. Plant Journal, 2006, 45: 113-122.
    [88] Zhang H, Shen W B, Xu L L. 2003. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Botanica Sinica 45, 901-905.
    [89] Garces H., Durzan D, and Pedroso M C. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana[J]. Annals of Botany, 2001, 87: 567-574.
    [90] Godber, B L J, Doel J J, Sapkota G P, Blake D R, Stevens C R, Eisenthal R, Harrison R. Reduction of nitrite to nitric oxide catalysed by xanthine oxidoreductase[J]. Journal of Biological Chemistry, 2000, 275: 7757-7763.
    [91] Harrison R. Structure and function of xanthine oxidoreductase: where are we now [J]. Free Radical Biology and Medicine, 2002, 33: 774-797.
    [92] Corpas F J, Palma J M, Sandalio L M, Valderrama R, Barroso J B, del Río L A. Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativum L.) leaves [J]. Journal of Plant Physiology, 2008, 165: 1319-1330.
    [93] Boucher J L, Genet A, Vadon S, Delaforge M, Mansuy D. Formation of nitrogen oxides and citrulline upon oxidation of N omega-hydroxy-L-arginine by hemeproteins[J]. Biochemical and biophysical Research Communications, 1992, 184(3): 1158-1164.
    [94] Tun N N, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh E I S, Scherer G F E. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings[J]. Plant Cell Physiology, 2006, 47(3): 346-354.
    [95] Silveira V, Santa-Catarina C, Tun N N, Scherer F, Handro W, Guerra M P, Folh E I S. Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze[J]. Plant Science, 2006, 171: 91-98.
    [96] Horemans N, Foyer C H, Asard H. Transport and action of ascorbate at the plant plasma membrane [J]. Trends in Plant Science, 2000, 5: 263-267.
    [97] Bethke P C, Badger M R, Jones R L. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell, 2004, 16: 332-341.
    [98] Beligni M V, Fath A, Bethke P C, Lamattina L, Jones R L. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers[J]. PlantPhysiology, 2002, 129: 1642-1650.
    [99] Giba Z, Grubiic D, Konjevic R. Nitrogen oxides as environ- mental sensors for seeds[J]. Seed Science Research, 2003, 13: 187-196
    [100] Bethke P C, Libourel I G L, Jones R L. Nitric oxide reduces seed dormancy in Arabidopsis[J]. Journal of Experimental Botany, 2006, 57: 517-526.
    [101] Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible response in plants[J]. Planta, 2000, 210: 215-221.
    [102] Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants[J]. Nitric Oxide, 1999, 3 (3): 199-208
    [103] Gouve?a C M C P, Souza J F, Magalha?es A C N, Martins I S. NO-releasing substances that induce growth elongation in maize root segments[J]. Plant Growth Regulation, 1997, 21: 183-187.
    [104] Pagnussat G C, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis[J]. Plant Physiology, 2002, 129: 954-956.
    [105] Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato[J]. Planta, 2004, 218: 900–905.
    [106] Leshem Y. Nitric oxide in plants.London,UK: Kluwer Academic Publishers, 2001.
    [107] Leshem Y Y , Pinchasov Y. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa(Duch.)and avocados Persea americana(Mil1.)[J]. Journal of Experimental Botany, 2000, 51:l471-l473.
    [108] Ferrer M A, Barcelo A R. Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans[J]. Plant Cell Environ, 1999, 22:891-897
    [109] Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers[J]. Journal of Experimental Botany, 2001, 52(363): 1981-1989.
    [110] Durner J, Wendehenne D, Klessig D F. Defense genes induction in tobacco bynitric oxide, cyclic GMP and cyclic ADP ribose[J]. Proceedings of the National Academy of Sciences of the United States of American, 1998, 95: 10328-10333.
    [111] Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance [J]. Nature, 1998, 394: 585-588.
    [112] Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers[J]. Journal of Experimental Botany, 2001, 52(363): 1981-1989.
    [113] Zhao L,Zhang F,Ouo J,Yang Y,Li B,Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J].Plant Physiology, 2004, 134:849-857.
    [114]刘开力,凌腾芳,刘志兵等.外源NO供体SNP浸种对盐胁迫下水稻幼苗生长的影响[J].植物生理学通讯, 2004, 40(4): 419-422.
    [115]樊怀福,郭世荣,李娟等.外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响[J].生态学杂志,2007,26(12): 2045-2050.
    [116] Lamattina L, Beligni M V, Garcia M C. Method of enhancing the metabolic function and the growing conditions of Plants and seeds[J]. United State Patent, 2001, 6: 242-384.
    [117]马向丽,魏小红,龙瑞军等.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报, 2005, 25(6): 1269-1274.
    [118]付士磊,何兴元,陈玮等. NO对不同耐旱性杨树光合作用的影响[J].辽宁工程技术大学学报, 2007, 26(2): 308-311.
    [119]柴家荣,管仁军,刘敬.烤烟种子萌发活动中有关酶及物质动态研究[J].昆明学报,2009,31(3):16-19.
    [120]杨文钰,关华.种子萌发生理研究进展[J].种子,2002,5:16-19
    [121]周永斌,殷有,苏宝玲等.外源一氧化氮供体对几种植物种子的萌发和幼苗生长的影响[J].植物生理学通讯,2005,46(3):21-24.
    [122]Hendrick SB,Taylorson RB.Promotion of seed germination by nitrate,nitrite,hydroxylamine,and ammonium salts[J]. Plant Physiology, 1974, 54: 304-309.
    [123] Bethke P C, Libourel I G L, Jones R L. Nitric oxide reduces seed dormancy in Arabidopsis[J]. Journal of Experimental Botany, 2006, 57: 517-526.
    [124] Bethke P C, Libourel I G L, Aoyama N, Chung Y Y, Still D W and Jones R L. The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy[J]. Plant Physiology, 2007,143: 1173-1188.
    [125] Huang H, Villanueva V R. Inhibition of polyamine biosynthesis and seed germination in Picea ablies[J]. Phytochemistry, 1992, 31: 3353-3356.
    [126] Locke J M, Bryce J H, Morris P C. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley[J]. Journal of Experimental Botany, 2000, 51(352): 1843-1849.
    [127] Bueno M, Garrido D, Matilla A. Gene expression induced by spermine in isolated embryonic axes of chick-pea seeds[J]. Physiologia Plantarum, 1993, 87: 381-388.
    [128]白旭,苏国兴,孙娜等. 2009.外源多胺对莴苣种子萌发诱导效应及其与一氧化氮的关系[J].西北植物学报, 29(9): 1860-1866.
    [129]袁小丽,傅家瑞,李卓杰. CaCl2和多胺对萌发花生种子乙烯释放和提高种子活力的影响[J].中山大学学报(自科版) , 1990, 29 (4): 92-99.
    [130] Sarath G,Bethke PC,Jones R,Baird LM. Nitric oxide accelerates seed germination in warm-season grasses[J].Planta,2006,223:1154-1164.
    [131]孙娜,王立伟,张凤芝等.外源多胺在莴苣幼苗侧根发育中的诱导作用以及其与一氧化氮的关系[J].园艺学报,2010,37(8):1273-1278.
    [132]张志良主编.植物生理学实验指导(第二版)[M ].北京:人民教育出版社, 1990. 138~139.
    [133]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [134] Su GX, Wen-HuaZhang, You-LiangLiu. Involvement of Hydrogen Peroxide Generated by Polyamine oxidative degradation in the development of lateral roots in soybean[J]. Journal of Integrative Plant Biology, 2006, 48 (4): 426-432
    [135]段辉国.亚精胺对小麦离体叶片中蛋白质含量与蛋白酶的影响[J].四川师范学院学报, 2000, 21 (1): 44-47.
    [136] Guo Xing Su, Wen-Hua Zhang, You-Liang Liu. Involvement of Hydrogen Peroxide Generated by Polyamine oxidative degradation in the development of lateral roots in soybean[J]. Journal of Integrative Plant Biology, 2006, 48 (4): 426-432.
    [137]苏国兴.精胺(Spm)在植物响应逆境中的特异作用[J].植物生理学通讯,2008, 44(5): 1007-1011.
    [138] Staml E R J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms[J]. Science , 1992 ,258 :1 898-1902.
    [139] Wojtaszek P. Nitric oxide in plants: To NO or not to NO[J]. Phytochemistry, 2000, 54(1): 1-4.
    [140]程红炎,宋松泉.植物一氧化氮生物学的研究进展[J].植物学通报,2005,22:723-737.
    [141] Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers[J].Journal of Experimental Botany, 2001, 52(363): 1981-1989.
    [142] Kolbert Z,Bartha B,Erdei L.Exogenous auxn-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordial[J]. Journal of Plant Physiology, 2008.165,967-975.
    [143] Desikan R, Griffiths R, Hancock J, and Neill S. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana[J]. Proceedings of the National Academy Sciences of the United States of America, 2002, 99: 16314-16318.
    [144] Batak I, Devic M,Gibal Z,Grubisic D,Poff KL,Konjevic R.The effects of potassium nitrate and NO-donors on phytochrome A-and phytochrome B-specific induced germination of Arabidopsis thaliana seeds[J].Seed Science Research, 2002, 12: 253-259.
    [145] Dana Z, Ulrich Z, Isak G, Ian D, Thomas H, Wolf B, Peter H, Jorg D. Innate immunity in Arabidopsis thaliana:lipopolysaccharides activate nitric oxide synthase(NOS) and induce defense genes[J]. Plant Biology, 2004, 101: 15811-15816.
    [146] Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis[J]. Plant Physiology, 2007.144, 206-217.
    [147] Grun S, Lindermayr C, Sell S, Durner J. Nitric oxide and gene regulation in plants [J]. Journal of Experimental Botany, 2006, 57: 507-516.
    [148] Yang J, Zhang J, W angZ, et al. Activities of starch hydro lytic enzymes and sucro se2pho sphate synthase in the stem s of rice subjected towater stress during grain filling[J]. J Exp Bo t, 2001, 52 (364): 2169- 2179.
    [149] Todaka D, M atsush ima H, Mo rohash i Y. W ater stress enhances beta2amylase activity in cucumber cotyledons[J]. J Exp Bo t, 2000, 51 (345): 739- 745.
    [150] Hwang Y S, Thomas B R, Rodriguez R L. D ifferential exp ression of rice alpha2amylase genes during seedling development underanoxia[J]. PlantMo l Bio l, 1999, 40 (6): 911- 920.
    [151]黄学林,陈润政.种子生理试验手册[M] .北京:中国农业出版社, 1998.
    [152]张志良主编.植物生理学实验指导(第二版)[M].北京:人民教育出版社, 2005. 41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700