胸腺素β4对循环内皮祖细胞的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮损伤在心血管疾病中的重要性已被广泛认同。成熟内皮细胞能够修复损伤内皮,但是其再生能力有限。因此越来越多的科学研究者关注内皮祖细胞(endothelial progenitor cells, EPCs)在血管修复、重构和血管新生中的作用。尽管目前对于EPCs的确切来源和功能定义仍存有争议,但大量新兴研究表明,EPCs在缺血组织的血管新生、内皮损伤的修复等方面扮演重要角色,然而,多种心血管疾病或心血管疾病危险因素诸如老龄、高血压、高胆固醇血症、吸烟、糖尿病等会使循环EPCs的功能受损,从而限制了基于EPCs的细胞治疗手段在临床中的应用。既然异体输注健康人捐献的EPCs要面临免疫排斥问题,因此我们有理由相信功能修饰(如促进EPCs动员、归巢、存活或分泌保护性生长因子等)自体EPCs可能是将来EPCs-细胞治疗心血管疾病的重要策略。
     胸腺素β4 (thymosinβ4, TB4),一种由43个氨基酸残基组成的小分子量蛋白,广泛分布于人体内多种组织与细胞中。Tβ4介导了多种生物学反应,如血管新生、创伤愈合等。此前研究表明,Tβ4能增强多种干/祖细胞的增殖、迁移、分化等功能,进而促进血管新生及心肌修复。但是,目前国内外尚缺乏Tβ4对循环EPCs的作用及机制的系统研究。我们近期研究发现Tβ4能够通过激活PI3K/Akt/eNOS信号通路促进EPCs迁移,但是Tβ4对于EPCs凋亡、增殖、衰老等功能的影响仍有待进一步研究。
     基于上述考虑,我们提出假设:Tβ4能增强循环EPCs的功能,促进血管内皮损伤的修复,维持血管内皮的完整性,从而增强循环EPCs的心血管保护作用。由于目前国内外对Tβ4影响EPCs的功能及其机制方面的研究甚少,我们首先观察了Tβ4对EPCs活性、增殖、粘附、集落形成和衰老等功能的影响;其次我们研究了Tβ4对EPCs凋亡的作用,并探讨了可能参与其中的信号转导机制;最后我们还观察了Tβ4对EPCs旁分泌作用的影响。以下分三部分对本研究的方法、结果及结论作一简述。
     1胸腺素β4对循环内皮祖细胞功能的影响
     目的:观察外源性Tβ4体外干预对循环EPCs功能的影响。
     方法:采用密度梯度离心法从健康人外周血获取单个核细胞,接种于人纤维连接蛋白包被的培养板,培养7d后,采用激光共聚焦显微镜检测FITC-UEA-I及DiI-acLDL双染色鉴定EPCs,采用流式细胞仪检测其表面标志(VEGFR-2, CD34, CD133),进一步鉴定EPCs。加入不同浓度Tβ4 (1、10、100釉1000ng/mL)干预不同时间后。分别采用MTT比色法、Brdu细胞增殖试剂盒、粘附能力测定、集落形成实验实验和SA-β-半乳糖苷酶染色试剂盒观察EPCs的活性、增殖、粘附、集落形成和衰老。
     结果:Tβ4呈浓度依赖地增加EPCs的活性、增殖、集落形成和粘附能力,在1000ng/mL组达到最大效应(与对照组比较,细胞活性0.410±0.052 vs 0.264±0.035,P<0.05;增殖能力0.802±0.081 vs 0.593±0.042,P<0.05;粘附能力44.4±3.4 vs 17.8±4.3,P<0.05;集落形成能力17.3±3.1 vs 5.7±2.1,P<0.05)。此外,Tβ4干预还显著抑制EPCs的衰老,且呈一定的量效关系,在1000ng/mL时达到最大效应(与对照组比较,20.67±3.06% vs 45.33±3.51%,P<0.05)。
     结论:Tβ4可增强EPCs的细胞活性、增殖和粘附等功能,同时抑制EPCs的衰老,且Tβ4对EPCs功能的作用具有一定的浓度依赖性。
     2胸腺素p4对循环内皮祖细胞凋亡的作用及机制
     目的:观察Tβ4对循环EPCs凋亡的作用并探讨其信号转导机制。
     方法:从健康人外周血分离、培养循环EPCS。细胞培养至7d后,采用去血清培养48h以诱导EPCs凋亡。加入不同浓度的Tβ4处理后,western blot检测EPCs Akt/p-Akt Ser473、eNOS/p-eNOS Ser1177、PTEN/PTEN Ser380、JNK/p-JNK、P38/p-P38釉ERK1/2/p-ERK1/2等信号通路蛋白以及凋亡相关蛋白caspase-3^ caspase-9、Bax、Bcl-2和细胞色素C等凋亡相关蛋白的表达。随后,在分别加入磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase, PI3K)抑制剂、内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)抑制剂、c-jun氨基末端激酶(c-jun N-terminal kinase, JNK)抑制剂等各种信号通路抑制剂预处理EPCs 30min后,再予以1000ng/mL Tβ4干预24h,采用Annexin-V/PI凋亡检测试剂盒检测EPCs的凋亡率。
     结果:Tβ4干预显著抑制去血清诱导的EPCs凋亡和胞浆细胞色素C水平,且呈浓度依赖性。P13K抑制(LY294002和Wortmannin)或JNK抑制剂SP600125能够拮抗Tβ4的抗凋亡作用。此外,Tβ4还抑制了caspase-3、caspase-9的表达和活性,同时上调Bcl-2/Bax比值。Tβ4能够在EPCs能与ILK形成免疫复合物,增加ILK的活性而不影响其表达。ILK-siRNA转染后完全抑制Tβ4对ILK-Akt的激活,从而最终拮抗了Tβ4对EPCs凋亡的作用。
     结论:Tβ4抑制去血清诱导的EPCs凋亡与ILK-Akt的激活有关,此外,JNK MAPK也可能参与了Tβ4对EPCs凋亡作用的调节。
     3胸腺素p4对循环内皮祖细胞旁分泌作用的影响
     目的:观察Tβ4对循环EPCs旁分泌作用的影响。
     方法:从健康人外周血分离、培养循环EPCs。EPCs条件培养液(EPCs-derivedconditioned medium, EPCs-CM)是循环EPCs用不含血清的EBM-2培养24h获得。采用Ki-67免疫荧光检测、Trans-well细胞迁移检测和Martigel胶毛细血管样结构形成分别检测脐静脉内皮细胞(Human umbilical vein endothelial cells, HUVECs)体外增殖、迁移和血管形成能力。荧光定量PCR检测EPCs内VEGF.SDF-1、IGF-1、HGF-1、FGF-2、Tβ4和IL-8的表达。
     结果:EPCs-CM能够显著增强内皮细胞增殖、迁移和毛细血管样结构形成能力。Tβ4干预能够进一步增强EPCs-CM对内皮细胞功能的影响。此外,Tβ4干预增加EPCs内VEGF、FGF-2、IL-8的表达,而对内源性Tβ4、SDF-1α等细胞因子的表达无明显作用。
     结论:Tβ4能够促进EPCs的旁分泌作用,Tβ4增加EPCs内VEGF、FGF-2、IL-8等细胞因子的表达。
The essential role of vascular endothelium in cardiovascular disorders is increasingly recognized. Mature endothelial cells contribute to the repair of endothelial injury, whereas they possess limited regenerative capacities. This has led to growing interest in circulating endothelial progenitor cells (EPCs) among scientific researchers, especially into their roles in vascular repair, remodeling and postnatal neovascularization. Although the exact origin and functional definition of EPCs remains rather controversial, emerging evidence demonstrated that EPCs contribute to neoangiogenesis after tissue ischemia. However, these positive effects after autologous transfusion or mobilization of EPCs are significantly limited by low survival rate, insufficient cell number, and impaired funcition in the patients with cardiovascular risk factors and cardiovascular diseases. Indeed, there is increasing evidence for reduced availability and impaired EPCs function in the presence of cardiovascular risk factors as well as various cardiovascular disease states, such as aging, hypertension, hypercholesterolemia, smoking, and diabetes. Since allogeneic transfusion of EPCs from healthy donors bears the problem of immunologic incompatibilities, it is quite reasonable to regard functional enhancement (such as enhancing mobilization, homing, survival, and secretion of growth factors in a paracrine/autocrine manner) of autologous EPCs as the future strategy for EPCs-based therapy in cardiovascular diseases.
     Thymosinβ4 (Tβ4), a small ubiquitous protein containing 43 amino acids, as the major actin-sequestering molecule in eukaryotic cells, plays pleiotropic roles in tissue development, maintenance, repair, and pathology. Previous study found that Tβ4 can stimulate migration of cardiomyocytes and endothelial cells and promote survival of cardiomyocytes. Despite the extensive identification of multiple biological activities for Tβ4, little progress is actually available for identifying the effects of Tβ4 on circulating EPCs. Our recent study demonstrated that Tβ4 can induce EPCs migration via PI3K/Akt/eNOS signal transduction pathway, but the effect of T(34 on circulating EPCs apoptosis, proliferation and senescence remains unexplored.
     Based on these considerations, we hypothesized that Tβ4 enhanced EPCs functional activity, subsequently promoted endothelial repair process and maintained the integrity of endothelium to perform its cardiovascular protection. To test this hypothesis, we examined the cell viability, proliferation activity, colonies formation, adhesive capacities and senescence of EPCs exposed to Tβ4, and then we studied the effect of Tβ4 on EPCs apoptosis and the signal transduction pathways involved in this process. Finally, we investigated the effects of Tβ4 on paracrine effects of EPCs.
     Part 1:Effects of exogenous thymosinβ4 on activity of circulating endothelial progenitor cells
     Emerging evidence indicates that circulating endothelial progenitor cells (EPCs) contribute to neoangiogenesis after tissue ischemia. Here we aimed to investigate the effects of exogenous thymosin (34 (TβM) on circulating EPCs from healthy volunteers. EPCs, isolated from peripheral blood, were cultured on fibronectin-coated dishes. EPCs were characterized as adherent cells double positive for DiLDL-uptake and lectin binding under a laser scanning confocal microscope. They were further documented by demonstrating the expression of VE-cadherin, KDR, CD34 and AC133 by flow cytometry. Cells were treated with Tββ4 (lng/mL, 10ng/mL, 100ng/mL and 1000ng/mL) or vehicle control. Cell viability, proliferation, adhesion, colony-formation and sensence of EPCs were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Brdu incorporation, adhesion assay, colony-forming assay and acidicβ-galactosidase staining respectively. Incubation of EPCs with Tβ4 significantly increased the cell viability, proliferation, adhesion, and colony-formation of EPCs, reached a maximum at 1000ng/mL. In addition, Tβ4 significantly inhibited EPCs senescence in a dose dependent manner. Together, these results revealed that T04 can dose-dependently improve cell activities of EPCs including cell viability, proliferation, adhesive capacities and colony-formation of EPCs, meanwhile inhibit EPCs senescence in a dose dependent manner.
     Part 2:Effects and mechanisms of thymosinβ4 on circulating endothelial progenitor cells apoptosis
     Thymosinβ4 (Tβ4) has been suggested to regulate multiple cell signal pathways and a variety of cellular functions such as cell migration, proliferation, survival and angiogenesis. Here, we investigated the effect of Tβ4 on endothelial progenitor cells (EPCs) apoptosis induced by serum deprivation and the corresponding signal transduction pathways involved in this process. Circulating EPCs, isolated from healthy volunteers, were cultured in the absence or presence of T04 and various signal cascade inhibitors. Apoptosis was evaluated with Annexin V immunostaining and cytosolic cytochrome c expression. Incubation of EPCs with Tβ4 caused a concentration dependent increase in cell viability and proliferation activity. It also caused an inhibitory effect on EPCs apoptosis, which was abolished by PI3K inhibitors (either LY294002 or Wortmannin) or JNK MAPK inhibitor SP600125. In addition, the expression and activity of caspase-3 and-9 were decreased by T(34, which markedly increased the Bcl-2/Bax ratio within EPCs. Furthermore, Tβ4 was immunoprecipitated with integrin-linked kinase (ILK), accompanied by augmentation of ILK activity. Transfection of EPCs with ILK-siRNA resulted in abolishment of the activation of ILK-Akt and the ameliorative effect on apoptosis by Tβ4. Together, T(34 mediated inhibitory effect on EPCs apoptosis under serum deprivation can be attributed, at least in part, to ILK-Akt activation. The activation of JNK MAPK might also be involved in this process.
     Part 3:Effects of thymosinβ4 on paracrine effects of circulating endothelial progenitor cells
     Emerging evidence suggests that paracrine effects of EPCs play a pivotal role in various processes of tissue repair. We previously demonstrated that thymosinβ4 (Tβ4) can increase the cell viability, proliferation, adhesive capacities and colony formation of EPCs. In present study, we aimed to investigate the roles of Tβ4 on EPCs paracrine effects. EPCs, isolated from healthy volunteers, were cultured and characterized as described previously. EPCs-derived conditioned medium (EPCs-CM) was obtained from culture EPCs subjected to trophic deprivation 24 h. HUVECs proliferation, migration and in vitro angiogenesis were assayed with Ki-67 immunofluorescence assay, trans-well migration assay and capillary-like tube formation on Matrigel gel respectively. EPCs-CM significantly improved endothelial function in vitro including proliferation, migration and capillary-like tube formation, which can be further enhanced by treatment with exogenous Tβ4. Furthermore, Tβ4 increased the expression of pro-angiogenic factors (such as VEGF, FGF-2 and IL-8) within EPCs. Taken together, Tβ4 can significantly enhace the paracrine effects of EPCs on endothelial cells, increased secretion of pro-mitogenic cytokines (such as VEGF, FGF-2 and IL-8) from EPCs may involve in this process.
引文
[1]Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells:limitations for therapy? Arterioscler Thromb Vasc Biol.2006; 26(2):257-266.
    [2]Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation.2002; 106(24):3009-3017.
    [3]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature.2001; 410(6829):701-705.
    [4]Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bonemarrow cell transfer after myocardial infarction:the BOOST randomized controlled clinical trial. Lancet.2004; 364(9429):141-148.
    [5]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A.2000; 97(7):3422-3427.
    [6]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001; 7(4):430-436.
    [7]Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation.2001; 103(5):634-637.
    [8]Yamamoto K, Kondo T, Suzuki S, et al. Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs:therapeutic effect by stem cell transplantation. Arterioscler Thromb Vasc Biol.2004; 24(12):e192-e196.
    [9]Smart N, Risebro CA, Melville AA, et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature.2007; 445(7124):177-182.
    [10]Hinkel R, El-Aouni C, Olson T, et al. Thymosin β4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation. 2008; 117(17):2232-2240.
    [11]Qiu FY, Song XX, Zheng H, et al. Thymosin beta4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol.2009; 53(3):209-214.
    [12]Zheng H, Dai T, Zhou B, et al. SDF-lalpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis.2008; 201(1):36-42.
    [13]Zheng H, Shen CJ, Qiu FY, et al. Stromal cell-derived factor 1 alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. J Cell Physiol.2010; 223(3):757-763.
    [14]Wang X, Chen J, Tao Q, et al. Effects of ox-LDL on number and activity of circulating endothelial progenitor cells. Drug Chem Toxicol.2004; 27(3):243-255.
    [15]Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res.2003; 92(9):1049-1055.
    [16]Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc Res.2008; 78(3):413-421.
    [17]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med.2000; 6(4):389-395.
    [18]Botta, R. et al. Heart infarct in NOD-SCID mice:therapeutic vasculogenesis by transplantation of human CD34+cells and low dose CD34+KDR+cells. FASEB J.2004; 18:1392-1394.
    [19]Ott, I. et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J.2005; 19: 992-994.
    [20]Koponen, J.K. et al. Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol. Ther.2007; 15:2172-2177.
    [21]Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. May 3 2005;45(9):1441-1448.
    [22]Umemura T, Soga J, Hidaka T, et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens. Nov 2008;21(11):1203-1209.
    [23]Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. Oct 2005;23(10):1831-1837.
    [24]Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond). Sep 2004;107(3):273-280.
    [25]Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vase Biol. Aug 2004;24(8):1442-1447.
    [26]Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. May 3 2005;45(9):1449-1457.
    [27]Schomig K, Busch G, Steppich B, et al. Interleukin-8 is associated with circulating CD 133+ progenitor cells in acute myocardial infarction. Eur Heart J. 2006;27(9):1032-1037.
    [28]Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J.2007; 28(16):2018-2027.
    [29]Min TQ, Zhu CJ, Xiang WX, et al. Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc Drugs Ther.2004; 18(3):203-209.
    [30]Sosne G, Qiu P, Goldstein AL, Wheater M. Biological activities of thymosin beta4 defined by active sites in short peptide sequences. FASEB J.2010; 24(7):2144-2151.
    [31]Bock-Marquette I, Saxena A, White MD, et al. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature.2004; 432(7016):466-472.
    [32]Smart N, Risebro CA, Melville AA, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature.2007; 445(7124):177-182.
    [33]Yu X, Song M, Chen J, et al. Hepatocyte growth factor protects endothelial progenitor cell from damage of low-density lipoprotein cholesterol via the PI3K/Akt signaling pathway. Mol Biol Rep.2010; 37(5):2423-2429.
    [1]Sosne G, Siddiqi A, Kurpakus-Wheater M. Thymosin-beta4 inhibits corneal epithelial cell apoptosis after ethanol exposure in vitro. Invest Ophthalmol Vis Sci. 2004;45(4):1095-1100.
    [2]Hsiao HL, Wang WS, Chen PM, et al. Overexpression of thymosin beta-4 renders SW480 colon carcinoma cells more resistant to apoptosis triggered by FasL and two topoisomerase II inhibitors via downregulating Fas and upregulating Survivin expression, respectively. Carcinogenesis.2006;27(5):936-944.
    [3]Sosne G, Albeiruti AR, Hollis B, et al. Thymosin beta4 inhibits benzalkonium chloride-mediated apoptosis in corneal and conjunctival epithelial cells in vitro.Exp Eye Res.2006; 83(3):502-507.
    [4]Ho JH, Chuang CH, Ho CY, et al. Internalization is essential for the antiapoptotic effects of exogenous thymosin beta-4 on human corneal epithelial cells. Invest Ophthalmol Vis Sci.2007; 48(1):27-33.
    [5]Moon EY, Song JH, Yang KH. Actin-sequestering protein, thymosin-beta-4 (TB4), inhibits caspase-3 activation in paclitaxel-induced tumor cell death. Oncol Res. 2007; 16(11):507-516.
    [6]Ho JH, Tseng KC, Ma WH, et al. Thymosin beta-4 upregulates anti-oxidative enzymes and protects human cornea epithelial cells against oxidative damage. Br J Ophthalmol.2008; 92(7):992-997.
    [7]Yang H, Cui GB, Jiao XY, et al. Thymosin-beta4 attenuates ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes by inhibiting apoptosis. Cell Mol Neurobiol.2010; 30(1):149-160.
    [8]Tapp H, Deepe R, Ingram JA, et al. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro. Biotech Histochem.2009;84(6): 287-294.
    [9]Bock-Marquette I, Saxena A, White MD, et al. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature.2004;432:466-472.
    [10]Lee SJ, So IS, Park SY, et al. Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett.2008;582(15):2161-2166.
    [11]Fujii H, Li SH, Szmitko PE, Fedak PW,& Verma S (2006) C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vasc Biol.26(11):2476-2482.
    [12]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408.
    [13]Nho RS, Xia H, Kahm J, et al. Role of integin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a betal integrin viability signaling pathway. J Biol Chem. 2005;280(28):26630-26639.
    [14]Geng YJ. Molecular signal transduction in vascular cell apoptosis. Cell Res. 2001;11(4):253-264.
    [15]Koul D, Shen R, Bergh S, et al. Targeting integrin-linked kinase inhibits Akt signaling pathways and decreases tumor progression of human glioblastoma. Mol Cancer Ther.2005;4(11):1681-1688.
    [16]Zheng H, Dai T, Zhou B, et al. SDF-lalpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis.2008;201(1):36-42.
    [17]Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res.2009;82(2):250-260.
    [18]Leslie NR, Downes CP. PTEN:The down side of PI 3-kinase signalling. Cell Signal.2002; 14(4):285-295.
    [19]Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell. 2002;110(6):737-749.
    [20]Smith JA, Zhang R, Varma AK, et al. Estrogen partially down-regulates PTEN to prevent apoptosis in VSC4.1 motoneurons following exposure to IFN-gamma. Brain Res.2009;1301:163-170.
    [21]Vazquez F, Ramaswamy S, Nakamura N, et al. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol.2000;20(14):5010-5018.
    [22]Ramirez R, Carracedo J, Nogueras S, et al. Carbamylated darbepoetin derivative prevents endothelial progenitor cell damage with no effect on angiogenesis. J Mol Cell Cardiol.2009;47(6):781-788.
    [23]Ma FX, Zhou B, Chen Z, et al. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J Lipid Res.2006;47(6):1227-1237.
    [24]Shen B, Gao L, Hsu YT, et al. Kallistatin attenuates endothelial apoptosis through inhibition of oxidative stress and activation of Akt-eNOS signaling. Am J Physiol Heart Circ Physiol.2010;299(5):H1419-1427.
    [25]Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes.2003;52(11): 2795-2804.
    [26]Bellis A, Castaldo D, Trimarco V, et al. Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol.2009;29(8):1207-1212.
    [27]Jiang H, Liang C, Liu X, et al. Palmitic acid promotes endothelial progenitor cells apoptosis via p38 and JNK mitogen-activated protein kinase pathways. Atherosclerosis.2010;210(1):71-77.
    [28]Sun C, Liang C, Ren Y, et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol.2009;104(1):42-49.
    [29]Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase:a cancer therapeutic target unique among its ILK. Nat Rev Cancer.2005;5(1):51-63.
    [30]Hannigan GE, Coles JG, Dedhar S. Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ Res.2007;100(10):1408-1414.
    [31]Legate KR, Montanez E, Kudlacek O, et al. ILK, PINCH and parvin:the tIPP of integrin signalling. Nat Rev Mol Cell Biol.2006;7(1):20-31.
    [1]Kumar AH, Caplice NM. Clinical potential of adult vascular progenitor cells. Arterioscler Thromb Vasc Biol.2010;30(6):1080-1087.
    [2]Asahara T, Krasinski KL, Chen D, et al. Circulating endothelial progenitor cells in peripheral blood incorporate into reendothelialization after vascular injury. Circulation.1997; 96:1-725.
    [3]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EmboJ.1999; 18(14):3964-3972.
    [4]Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium.Circulation.2005; 111(17):2198-2202.
    [5]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A.2000; 97(7):3422-3427.
    [6]Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol.2002; 30(8):967-972.
    [7]Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003; 108(20):2511-2516.
    [8]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.2003; 107(8):1164-1169.
    [9]Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res.2008; 103(11):1204-1219.
    [10]Cho HJ, Lee N, Lee JY, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med. 2007; 204(13):3257-3269.
    [11]Pula G, Mayr U, Evans C, et al. Proteomics Identifies Thymidine Phosphorylase As a Key Regulator of the Angiogenic Potential of Colony-Forming Units and Endothelial Progenitor Cell Cultures. Circ Res.2009; 104(1):32-40.
    [12]Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol.2005; 39(5):733-742.
    [13]Hinkel, R, El-Aouni, C, Olson, T, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation.2008; 117(17):2232-2240.
    [14]Herr D, Rodewald M, Fraser HM, et al. Regulation of endothelial proliferation by the renin-angiotensin system in human umbilical vein endothelial cells. Reproduction.2008; 136(1):125-130.
    [15]Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res.2004; 94(5): 678-685.
    [16]Korf-Klingebiel M, Kempf T, Sauer T, et al. Bone marrow cells are a rich source of growth factors and cytokines:implications for cell therapy trials after myocardial infarction. Eur Heart J.2008; 29(23):2851-2858.
    [17]Di Santo S, Yang Z, Wyler von Ballmoos M, et al. Novel cell-free strategy for therapeutic angiogenesis:in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One.2009; 4(5):e5643.
    [18]Santhanam AV, Smith LA, He T, et al. Endothelial progenitor cells stimulate cerebrovascular production of prostacyclin by paracrine activation of cyclooxygenase-2. Circ Res.2007;100(9):1379-1388.
    [19]Kim JY, Song SH, Kim KL, et al. Human Cord Blood-derived Endothelial Progenitor Cells and their Conditioned Media Exhibit Therapeutic Equivalence for Diabetic Wound Healing. Cell Transplant.2010.
    [20]Dubois C, Liu X, Claus P, et al. Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. J Am Coll Cardiol.2010; 55(20):2232-2243.
    [21]Markel TA, Wang Y, Herrmann JL, et al. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol.2008; 295(6):H2308-2314.
    [22]Barcelos LS, Duplaa C, Krankel N, et al. Human CD 133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res.2009; 104(9):1095-1102.
    [23]Li Z, Guo J, Chang Q, Zhang A. Paracrine role for mesenchymal stem cells in acute myocardial infarction. Biol Pharm Bull.2009;32(8):1343-1346.
    [24]Bautz F, Rafii S, Kanz L, et al. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol.2000; 28(6):700-706.
    [25]He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells:role of interleukin-8. Am J Physiol Heart Circ Physiol.2005; 289(2):H968-972.
    [26]Scheubel RJ, Holtz J, Friedrich I, et al. Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting. Int J Cardiol.2010;139(2):134-141.
    [27]Smadja DM, Bieche I, Susen S, et al. Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med.2009;13(8B):2534-2546.
    [28]Nan JL, Li JJ, He JG. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway. Chin Med J (Engl).2009; 122(16):1922-1928.
    [29]Yin Y, Huang L, Zhao X, et al. AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol. 2007; 50(1):61-67.
    [30]Yang Z, von Ballmoos MW, Faessler D, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis.2010; 211(1):103-109.
    [1]Goldstein AL, Slater FD, White A. Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci USA.1966; 56:1010-1017.
    [2]Huff T, Muller C, Otto A, et al. β-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol.2001; 33:205-220.
    [3]Sanders MC, Goldstein AL, Wang Y. Thymosin{beta}4 (Fx Peptide) is a potent regulator of actin polymerization in living cells. PNAS.1992; 89:4678-4682.
    [4]Stanka Stoeva SHWV. A novel β-thymosin from the sea urchin:extending the phylogenetic distribution of β-thymosins from mammals to echinoderms. J Pept Sci.1997; 3:282-290.
    [5]Low TL, Hu SK, Goldstein AL. Complete amino acid sequence of bovine thymosin β4:a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA.1981; 78:1162-1166.
    [6]Low TL, Goldstein AL. Chemical characterization of thymosin beta 4. J Biol Chem.1982; 257:1000-1006.
    [7]Goldstein AL, Hannappel E, Kleinman HK. Thymosin β4:actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med.2005; 11 421-429.
    [8]Lere B, Massimo L, Bruce RZ. Thymosin β5 expression in tumor cell lines with varying metastatic potential. Clin Exp Metastasis.1998; 16:227-233.
    [9]Bao L, Loda M, Janmey PA, et al. Thymosin b 15:a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med.1996; 2:1322-1328.
    [10]Sun HQ, Kwiatkowska K, Yin HL. Actin monomer binding proteins. Curr Opin Cell Biol.1995; 7:102-110.
    [11]Ghosh M, Song X, Mouneimne G, et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science.2004; 304:743-746.
    [12]Lappalainen P, Drubin D. Cofilin promotes rapid actin filament turnover in vivo. Nature.1997; 388:78-82.
    [13]Faix J, Rottner K. The making of filopodia. Curr Opin Cell Biol.2006; 18:18-25.
    [14]Chen H, Bernstein B, Bamburg J. Regulating actin-filament dynamics in vivo. Trends Biol Sci.2000; 25:19-23.
    [15]Van Troys M, Dewitte D, Goethals M, et al. The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J.1996; 15:201-210.
    [16]Malinda KM, Sidhu GS, Banaudha KK, et al. Thymosin{alpha} 1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol.1998; 160:1001-1006.
    [17]Mu H, Ohashi R, Yang H, et al. Thymosin betalO inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. Cell Motil Cytoskeleton.2006; 63(4):222-230.
    [18]Koutrafouri V, Leoniadis L, Avgoustakis K, et al.Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim Biophys Acta.2001; 1568:60-66.
    [19]Koutrafouri V, Leondiadis L, Ferderigos N, et al. Synthesis and angiogenetic activity in the chick chorioallantoic membrane model of thymosin β15. Peptides.2003; 24:107-115.
    [20]Lee SH, Son MJ, Oh SH, et al. Thymosin b10 inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res.2005; 65:137-148.
    [21]Philp D, Huff T, Gho YS, et al. The actin binding site on thymosin b4 promotes angiogenesis. FASEB J.2003; 17:2103-2105.
    [22]Gomez-Marquez J, del Amo F, Carpintero P, et al. High levels of mouse thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta.1996; 1306:187-193.
    [23]Carpintero P, Franco dA, Anadon R, et al. Thymosin β10 mRNA expression during early postimplantation mouse development. FEBS Lett.1996; 394:103-106.
    [24]Hall AK. Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer.1991; 48:672-677.
    [25]Grant D, Kinsella J, Kibbey M, et al. Matrigel induces thymosin (34 gene in differentiating endothelial cells. J Cell Sci.1995; 108:3685-3694.
    [26]Malinda K, Goldstein A, Kleinman H. Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J.1997; 11:474-481.
    [27]Grant DS, Rose W, Yaen C, et al. Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis.1999; 3:125-135.
    [28]Malinda K, Sidhu G, Mani H, et al. Thymosin b4 accelerates wound healing. J Invest Dermatol.1999; 113:364-368.
    [29]Cha HJ, Jeong MJ, Kleinman HK. Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst.2003; 95:1674-1680.
    [30]Grillon C, Rieger K, Bakala J,et al. Involvement of thymosin β4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett.1990; 274:30-34.
    [31]Rieger KJ, Saez-Servent N, Papet MP, et al. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyllysyl-proline. Biochem J.1993; 296(Pt 2):373-378.
    [32]Cavasin MA, Rhaleb NE, Yang XP, et al. Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension.2004; 43:1140-1145.
    [33]Liu JM, Lawrence F, Kovacevic M, et al. The tetrapeptide AcSDKP, an inhibitor' of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood.2003; 101:3014-3020.
    [34]Bonnet D, Lemoine FM, Frobert Y, et al. Thymosin β4, inhibitor for normal hematopoietic progenitor cells. Exp Hematol.1996; 24:776-782.
    [35]Frohm M, Gunne H, Bergman AC, et al. Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem.1996; 237:86-92.
    [36]Philp D, Badamchian M, Scheremeta B, et al. Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen.2003; 11:19-24.
    [37]Philp D, Goldstein AL, Kleinman HK. Thymosin [beta]4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev.2004; 125:113-115.
    [38]Sosne G, Chan C, Thai K, et al. Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res.2001;72: 605-608.
    [39]Sosne G, Hafeez S, Greenberry AL, et al. Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res.2002; 24:268-273.
    [40]Sosne G, Siddiqi A, Kurpakus-Wheater M. Thymosin-{beta}4 Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In vitro. Invest Ophthalmol Vis Sci.2004; 45:1095-1100.
    [41]Sosne G, Christopherson PL, Barrett RP, et al. Thymosin-{beta}4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury.Invest Ophthalmol Vis Sci.2005; 46:2388-2395.
    [42]Sosne G, Qiu P, Christopherson PL, et al. Thymosin beta 4 suppression of corneal NF[kappa]B:a potential anti-inflammatory pathway. Exp Eye Res.2007; 84: 663-669.
    [43]Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem.2006; 3:1877-1893.
    [44]Tillmanns J, Carlsen H, Blomhoff R, et al. Caught in the act:in vivo molecular imaging of the transcription factor NF-kappaB after myocardial infarction. Biochem Biophys Res Commun.2006; 342:773-774.
    [45]Hall G, Hasday JD, Rogers TB. Regulating the regulator:NF-kappaB signaling in heart. J Mol Cell Cardiol.2006; 41:580-591.
    [46]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell.2002; 109: S81-S96 (Suppl).
    [47]Morishita R, Sugimoto T, Aoki M, et al. (1997) In vivo transfection of cis element "decoy" against nuclear factor kappaB binding site prevents myocardial infarction. Nat Med 1997; 3:894-899.
    [48]Clark E, Golub T, Lander E, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature.2000; 406:532-535.
    [49]Ridley A. Molecular switches in metastasis. Nature.2000; 406:466-467.
    [50]Kobayashi T, Okada F, Fujii N, et al. Thymosin-β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol.2002; 160:869-882.
    [51]Diamond DL, Zhang Y, Gaiger A, et al. Use of proteinchip(TM) array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (seldi-tof ms) to identify thymosin [beta]-4, a differentially secreted protein from lymphoblastoid cell lines. J Am Soc Mass Spectrom.2003; 14:760-765.
    [52]Wang W-S, Chen P-M, Hsiao H-L, et al. Overexpression of the thymosin β-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene.2003; 22:3297-3306.
    [53]Yamamoto T, Gotoh M, Kitajima M, et al. Thymosin [beta]-4 expression is correlated with metastatic capacity of colorectal carcinomas. Biochem Biophys Res Commun.1993; 193:706-710.
    [54]Verghese-Nikolakaki S, Apostolikas N, Livaniou E, et al. Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer.1996; 74:1441-1444.
    [55]Santelli G, Califano D, Chiappetta G, et al. Thymosin beta-10 gene overexpression is a general event in human carcinogenesis.Am J Pathol.1999; 155: 799-804.
    [56]Viglietto G, Califano D, Bruni P, et al. Regulation of thymosin beta10 expression by TSH and other mitogenic signals in the thyroid gland and in cultured thyrocytes. Eur J Endocrinol.1999; 140:597-607.
    [57]Lee S-H, Zhang W, Choi J-J, et al. Overexpression of the thymosin b-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene.2001; 20:6700-6706.
    [58]Kusinski M, Wdzieczak-Bakala J, Liu JM, et al. AcSDKP:a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg.2006; 391:9-12.
    [59]Jo JO, Kang YJ, Ock MS, et al. Thymosin β4 expression in human tissues and in tumors using tissue microassays. Appl Immunohitochem Mol Morphol.2010; 22:234-37.
    [60]Caers J, Hose D, Kuipers I, et al. Thymosin beta4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma. Haematologica.2010; 95(1):163-7.
    [61]Smart N, Hill AA, Cross JC, et al. A differential screen for putative targets of the bHLH transcription factor Handl in cardiac morphogenesis. Mech Dev.2002; 119:S65-S71.
    [62]Bock-Marquette I, Saxena A, White MD, et al. Thymosin (34 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature.2004; 432:466-472.
    [63]Smart N, Risebro CA, Melville AAD, et al. Thymosin b4 induces adult epicardial progenitor mobilization and neovascularization. Nature.2007; 445:177-182.
    [64]Dathe V, Brand-Saberi B. Expression of thymosin beta4 during chick development. Anat Embryol (Berl).2004; 208:27-32.
    [65]Schultheiss TM, Xydas S, Lassar AB. Induction of avian cardiac myogenesis by anterior endoderm. Development.1995; 121:4203-4214.
    [66]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med.2000; 6:389-395
    [67]RisauW. Mechanisms of angiogenesis. Nature.1997; 386:671-674.
    [68]von Kodolitsch Y, Franzen O, Lund GK, et al. Coronary artery anomalies Part Ⅰ: recent insights from molecular embryology. Z Kardiol.2004; 93:929-937.
    [69]Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J.2002; 29:255-261.
    [70]Manasek FJ. Embryonic development of the heart. Ⅱ. Formation of the epicardium. J Embryol Exp Morphol.1969; 22:333-348.
    [71]Viragh S, Challice CE. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec.1981; 201:157-168.
    [72]Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, et al. Cellular precursors of the coronary arteries. Tex Heart Inst J.2002; 29:243-249.
    [73]Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol.2004; 276:43-57.
    [74]Ward NL, Dumont DJ. The angiopoietins and Tie2/Tek:adding to the complexity of cardiovascular development. Semin Cell Dev Biol.2002; 13:19-27.
    [75]Chen TH, Chang TC, Kang JO, et al. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol.2002; 250:198-207.
    [76]van Tuyn J, Atsma DE, Winter EM, et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells.2006; 25:271-278.
    [77]Lepilina A, Coon AN, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell.2006; 127:607-619.
    [78]Lien CL, Schebesta M, Makino S, et al. Gene expression analysis of zebrafish heart regeneration. PLoS Biol.2006; 4(8):e260.
    [79]Bock-Marquette I, Shrivastava S, Pipes GC, et al. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol. 2009; 46(5):728-738.
    [80]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium.Nature.2001; 410:701-705.
    [81]Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature.2004; 428: 664-668.
    [82]Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J.2006; 20:661-669.
    [83]Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest.1999; 103:1231-1236.
    [84]Rafii S, Lyden D, Benezra R, et al. Vascular and haematopoietic stem cells:novel targets for antiangiogenesis therapy? Nat Rev Cancer.2002; 2:826-835.
    [85]Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med.1999; 5:434-438.
    [86]Kalka C, Isner JM. Cardiac and vascular gene therapy in cardiology. Current status and future prospects. Internist (Berl).2002; 43(Suppl 1):S66-S75.
    [87]Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest.2002; 109:337-346.
    [88]Wei J, Blum S, Unger M, et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell.2004; 5:477-488.
    [89]Vajkoczy P, Blum S, Lamparter M, et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis.J Exp Med.2003; 197:1755-1765.
    [90]Kupatt C, Horstkotte J, Vlastos GA, et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance, vascularization and tissue recovery in acute and chronic ischemia. FASEB J.2005; 19:1576-1578.
    [91]Huff T, Rosorius 0, Otto AM, et al. Nuclear localisation of the G-actin sequestering peptide thymosin (34. J Cell Sci.2004; 117:5333-5341.
    [92]Jo JO, Kim SR, Bae MK, et al. Thymosin β4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-la-dependent manner. BiochimBiophys Acta.2010; 1803(11):1244-1251.
    [93]Golla R, Philp N, Chintipalli J, et al. Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-β4. Cell Motil Cytoskeleton.1997; 38:187-200.
    [94]Moon HS, Even-Ram S, Kleinman HK, et al. Zyxin is upregulated in the nucleus by thymosin beta4 in SiHa cells. ExpCell Res.2006; 312:3425-3431.
    [95]Sosne G, Xu L, Prach L, et al. Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res.2004; 293:175-183.
    [96]Chang C, Werb Z. The many faces of metalloproteases:cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol.2001; 11:S37-S43.
    [97]Hannappel E, Leibold W. Biosynthesis rates and content of thymosin β4 in cell lines. Arch Biochem Biophys.1985; 240:236-241
    [98]Huang WQ, Wang QR. Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp Hematol 29:12-18.
    [99]Huang HC, Hu CH, Tang MC, et al. Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase.Oncogene.2006; 26(19):2781-2790.
    [100]Huff T, Otto AM, Muller CS, et al. Thymosin beta4 is released from human blood platelets and attached by factor ⅩⅢa (transglutaminase) to fibrin and collagen.FASEB J.2002; 16:691-696.
    [101]Mora CA, Baumann CA, Paino JE, et al. Biodistribution of synthetic thymosin beta 4 in the serum, urine, and major organs of mice. Int J Immunopharmacol. 1997; 19:1-8
    [102]Han T, Liu Y, Liu H, et al. Serum thymosin beta4 levels in patients with hepatitis B virus-related liver failure. World J Gastroenterol.2010; 16(5):625-630.
    [103]Ruff D, Crockford D, Girardi G, et al. A randomized, placebo-controlled, single and multiple dose study of intravenous thymosin beta4 in healthy volunteers. Ann N Y Acad Sci.2010;1194:223-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700