WC-Al_2O_3/Cu复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜及铜合金以其良好的导电导热性能,被广泛用于电器电子器件中,随着电子技术及计算机信息技术的迅猛发展,对材料也提出了更高的要求,不仅要求材料具有良好的导电性、而且还应具有较高的强度和软化温度,但铜合金的强度越高电导率就会相应的越低。因此如何解决两者之间的矛盾就成了研究重点。本文采用高能机械球磨-冷压制坯-高温固相烧结-热挤压方法制备出了强度及电导率均较高的铜基复合材料。
     本研究采用的实验方法:高能球磨混合2h的Al_2O_3-WC/Cu复合粉于包套中在一定压力下冷压成形;并对冷压坯进行真空高温固相烧结;对已制得的烧结坯进行了热挤压试验研究;通过挤压后Al_2O_3-WC/Cu复合材料试样的拉伸试验,研究了材料的力学性能;此外,还测得了挤压后不同成分的Al_2O_3-WC/Cu复合材料的电导率及软化温度。本文重点研究了以下内容:
     高能球磨工艺:研究了WC-Al_2O_3/Cu复合粉形貌随球磨时间的变化规律,并得到了增强相WC和Al_2O_3颗粒弥散分布于铜基体中的最佳球磨时间。
     压制性能的研究:研究了5wt%WC-1wt%Al_2O_3/Cu复合粉的压制性能,并得到了压制粉末的压制特性曲线。此外还研究了球磨时间对5wt%WC-1wt%Al_2O_3/Cu复合粉压坯的硬度和相对密度的影响,得出在相同压力下,随着球磨时间的延长,压坯的硬度不断增加,而相对密度却成减小的趋势。
     热挤压工艺:对材料进行了包套挤压,坯料在14.8的挤压比下,致密度可达理论密度的94%以上。通过对挤压后WC-Al_2O_3/Cu试样的拉伸试验,研究了影响复合材料抗拉强度、延伸率的因素。并通过对拉伸件断口的观察分析其断裂行为。
     电性能及软化温度的研究,测得已制备铜基复合材料的电导率及软化温度并对影响它们的因素进行了分析。
Copper and copper alloy are widely used in electrical and electronic devices because of excellent thermal conductivity properties. As the rapid development of electronic technology and computer information technology, we need materials with not only good conductivity, but also high strength and high softening temperature. But the improvement of copper’s strength is at the expense of its conductivity. So how to solve the contradiction between the strength and conductivity is the research focus. And we prepare copper-based composite materials with high strength and conductivity via the process of high-energy mechanical ball milling, cold pressing of billet, and solid state sintering with high temperature, high-temperature hydrostatic extrusion.
     Experimental methods: Firstly, the Al_2O_3-WC/Cu composite powder with 2 hours’high-energy mechanical ball milling is cold-press formed under a certain pressure in the sheath. Then we finish the vacuum high-temperature solid-state sintering to get the sintered billet with higher density. Thirdly, we study on the high-temperature hydrostatic extrusion of four different compositions to improve the density of materials and optimization of material structure. Fourthly, we finish the research on the material’s mechanical properties via the tensile test on Al_2O_3-WC/Cu, which has experienced the process of extrusion. Finally, it comes to the test of conductivity and softening temperature on Al_2O_3-WC/Cu of different composite. In the paper, I focus on the following content.
     High-energy ball milling process: we conduct the research on variation of composite powder’s morphology with milling time, and has obtained the best milling time of reinforced phase (WC& Al_2O_3) dispersed in copper.
     Suppression characteristics: we study on the suppression characteristics of 5wt% WC-1wt% Al_2O_3-WC/Cu composite powder, and have obtained the suppression characteristic curve. In addition, we do research on the effect of milling time on relative density of 5wt% WC-1wt% Al_2O_3-WC/Cu composite powder, and then we find that the relative density of powder is in the trend of decreasing with the extension of milling time at the presupposition of the same pressure. High-temperature hydrostatic extrusion: Through the extrusion, we draw a conclusion that if the billets are extruded at the extrusion ratio of 11.1, the density will be up to 94% of theoretical density. By the tensile test on Al_2O_3-WC/Cu which has experienced the process of extrusion, we study the mechanical properties of copper-based composite materials in four different compositions, revealing composition’s influence on tensile strength and elongation rate. In addition, we have studied the tensile behavior of copper-based composite materials in four different compositions through observation of the tensile fracture.
     Electrical properties and softening temperature: we conduct test on electrical properties and softening temperature of copper-based composite materials in four different compositions and obtain composition’s influence on material’s properties.
引文
1张红霞,胡树兵,涂江平等.机械合金化制备颗粒增强铜基复合材料的研究进展[J].湖北汽车工业学院学报, 2004, 18(2): 43-46.
    2何启基.金属的力学性能[M].北京:冶金工业出版社, 1982: 93-95.
    3张生龙,尹志民等.高强高导铜合金设计思路及其应用[J].材料导报, 2003, 17(11): 26-29.
    4 Leiberlin.弥散硬化改善铜合金热强度的一种低成本技术[M].《铜加工》, 1984
    5彭北山,宁爱林.提高弥散强化铜合金强度的主要方法[J].冶金丛刊, 2004, 5(153): 4-6.
    6卢光熙,侯增寿.金属学教程[M].上海:上海科学技术出版社,. 1985: 26-29.
    7宁爱林,申奇志.彭北山等.不同增强相弥散强化铜的导电性[J].湖南有色金属, 2004, 18(6): 34-36.
    8 WANG Nai-yan, TU Jiang-ping, YANG You-zhi, et al. Preparation and microstructure of nanoscale TiB2/Cu insitu composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 151-154.
    9 HU Rui. New production techniques of high strength and high conduct electricity copper matrix composites [J].Ordnance Material Science and Engineering, 1998, 21(6): 39-43.
    10 ZHENG Ji, ZHAO Nai-qin, LI Bao-yin, et al. Study on the properties and technologies of inner-oxidation Cu-Cr-Al_2O_3composite material [J]. Transactions of Materials and Heat Treatment, 2001, 22(4): 48-51.
    11李晓杰,王占磊,谢兴华等. WC/Al_2O_3颗粒增强Cu基复合材料爆炸粉末烧结实验研究[J].爆炸与冲击, 2006, 26(4): 356~360.
    12汪峰涛,吴玉程,王涂根等.粉末冶金法制备纳米颗粒增强Cu基复合材料[J].材料热处理学报, 2007, 28(5): 10-14.
    13彭茂公,亢若谷等.高强高导弥散强化铜材料可锻性研究[J].兵器材料科学与工程, 2003, 26(1): 23-28.
    14张立勇,王孟君等. WC含量对弥散强化铜Cu/WC组织性能的影响[J].稀有金属, 2003, 27(1): 108-110.
    15王孟君,张立勇等.碳化钨弥散强化铜的高温烧结及高温退火[J].金属热处理, 2003, 28(9): 20-22.
    16齐增生.新型接触材料Cu-Al_2O_3合金[D].天津:天津大学硕士学位论文, 1990: 48-52.
    17曹静萍.上海有色金属. 1985 13(2): 20-25.
    18凤仪,钟宇,应镁芳.功能材料[M].北京:冶金出版社, 1992: 372-376.
    19陈民芳,赵乃勤,由臣等. WC/Cu复合材料粉末冶金烧结工业研究. 1998, 22(3): 28-30.
    20雷秀娟,王峰会,胡锐等. Al_2O_3-Cu纳米复合材料的制备工艺及强化机理[J].机械科学与技术, 2004, 23(1): 90-91.
    21 Morris M.A, Morris D.G. Materials Sicence and Engineering, 1989, A111: 115-127.
    22何顺钦,谢明,陈力等. Al_2O_3弥散强化铜的研究现状与发展设想[C].中国有色金属学会第六届学术年会论文集, 2005(10): 219-223.
    23李达人. W-Cu粉末热挤压致密工艺及塑性变形工艺研究博士学位论文[D].哈尔滨:哈尔滨工业大学, 2009: 23-28.
    24刘珍,梁伟.纳米材料制备方法及其研究进展[J].材料科学与工艺, 2000, 8(3): 103-108.
    25 Jena P.K., Brocchi E.A[J]. Materials Sicence and Engineering, 2001, A313: 180-182.
    26 Lee D.W., Tolochkoo., Choi C.J., et al. Powder Metallurgy. 2002, 45(3): 267-271.
    27 Ob S T. Processing and properties of copper dispersed alumina matix nanocomposites[J]. Nan-Structured Materials, 1998, 12(2): 267-268.
    28 SCHMID F, KHATTAK C.P. Correlation of sapphire quality with uniformity and optical properties[C]. Proc. SPIE, 1997, 3060: 250-257.
    29 LIDA F. JOHNSON, MARK B. Compressive coatings for strengthened sapphire [C]. Proc. SPIE, 1997, 3705: 130-141.
    30李学丹,万学英,姜祥祺等.真空沉积技术[M].杭州:浙江大学出版社, 1994: 32-35.
    31韩胜利,田保红,宋克兴等. Al_2O_3弥散强化Cu基复合材料高温拉伸行为研究[J].材料开发与应用, 2003, 19(3): 4-7.
    32程建奕,汪明朴,李周等. Cu-Al_2O_3纳米弥散强化铜合金的短流程制备工艺及性能[J].材料科学与工艺, 2005, 13(2): 127-134.
    33胡锐,商宝禄,李华伦等.高强度高导电Cu基复合材料的新型制造技术[J].兵器材料科学与工程, 1998, 21(6): 40-44.
    34陈一胜,段鹏征,闫丰等.弥散强化铜基复合材料的制备[J].特种铸造及有色合金, 2003, 26(11): 728-730.
    35 Chry Santhou A, Erbaccio G. Journal of Materials Science[M], 1995, 30: 6339-6344.
    36 LEE A K, Sanchez-Caldera L E, OKTAY S T, etc. Advanced Mater. Prco[M]. 1992, 31(8):26-28.
    37王春华. SiCp/Cu复合材料电导特征的研究[D].郑州:郑州大学博士学位论文, 2007: 3-5.
    38 DONG Ming. Explosive sintering of powder material [J]. Development and Application of Materials, 1995, 10(3): 29-33.
    39李晓杰,王占磊,谢兴华等. WC/Al_2O_3颗粒增强Cu基复合材料爆炸粉末烧结实验研究[J].爆炸与冲击, 2006, 26(11): 356-360.
    40 O.N.Senkov, M.Cavusoglu and F.H.Froes. Synthesis and Characterization of a TiAl/Ti5Si3 Composite with a Submicrocrystalline Structure [J]. Materials Science and Engineering, 2001, A300: 85-93.
    41黄培云.粉末冶金原理[M].北京:冶金工业出版社, 2008: 267-269.
    42 Van Put J. W.et.al..Int.J, Retract. Met. Hard Mater. 1991, V.10, No.3, 123-126.
    43 TerryN.Tiegs. paul F.Becher. Terry N. Tiegs, Paul F. Becher. Sintered A1_2O_3-SiC-whisker composites [J]. Am.Ceram.Soc.Bull, 1987, 66(2): 339-342.
    44梁淑华、范志康、肖鹏.Al_2O_3颗粒增强铜基复合材料的组织.铸造设备研究[J]. 1998,3: 20-22.
    45张国亮,粉末冶金TiAl基合金制备与组织性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2007, 33-35.
    46 YUYan-mei, YANG Gen-cang, LI Hua-lun. Anewmethod for fabrication of Cu-Al_2O_3composite by internal oxidation [J]. Powder Metallurgy Technology. 2000, 18(4): 252-256.
    47 LI Jin-xue, HU Rui, LI Jin-shan et al. Study on fine grains Al_2O_3/Cu composites [J]. Powder Metallurgy Technology, 2002, 20(5): 276-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700