粗糙面散射及其与目标复合散射快速方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波散射对无损探测、通讯、雷达导航、隐身技术、地震勘探和遥感等有重要意义。而粗糙面的电磁散射研究更是在国防军事领域和民用技术领域都具有显著的学术价值和广泛的应用前景。周期起伏表面作为一种基本粗糙面,在频率扫描反射器、耦合器、极化器以及带通滤波器等方面得到了广泛的应用。而目标探测时,有必要以随机粗糙面模拟复杂的地表,进行目标与粗糙面的复合散射研究,以恰当考虑各种地形或海面背景的杂波。本文主要研究了粗糙面电磁散射相关的两类散射问题的快速计算方法:周期表面的散射和目标与随机粗糙面的复合散射。对于第一类问题,提出了变换方法(Transform method)来计算中、轻度起伏时的介质周期表面的散射;之后又提出用复镜像法来加速周期格林函数,以解决矩量法求解周期表面散射时存在的周期格林函数收敛慢的问题。对于第二类问题,提出了KA (Kirchhoff approximation)+MoM (method of moment)的混合方法,它综合了KA算法的高效和MoM算法的广泛适用性的优势。本文的主要工作如下:
     1、将变换方法进行扩展以计算介质周期表面的电磁散射。它是一种用平面场展开槽内场的方法,能高效简便地计算槽内的场点,解决了以往方法或不能计算槽内的场或能计算但较费时的问题,但该方法不能计算深的光栅。
     2、针对矩量法计算周期表面的电磁散射问题时,其积分核周期格林函数收敛慢的问题,提出用复镜像法来加速。再针对高频时一级复镜像法存在的问题,提出了二级复镜像法。当入射频率较高时,复镜像法比Kummer-Poisson方法的计算效率更高,而且当频率越高时,复镜像法的优势将更明显。
     3、将基于表面电流的KA+MoM混合方法推广到介质目标位于理想导体/介质粗糙面上方的情况。混合算法将目标用MoM建模,粗糙面用KA建模,最后可以直接在目标上得到一组目标感应电流和磁流的积分方程,其运算时间和对计算机内存的需求主要取决于目标的网格划分情况。在计算粗糙面对目标的散射场时,根据粗糙面的局部反射特性,可以对粗糙面进行截取以进一步减少计算量。
     4、将KA+MoM混合方法推广到多理想导体目标位于理想导体粗糙面上方的情况。以两个圆柱目标位于高斯粗糙面上方为例,数值分析了相距不同水平距离时两个目标之间的耦合作用。
Many fields in modern science and technology cannot get away from the scattering of electromagnetic waves, such as non-destructive detection, communication, radar navigation, stealth technology, seismic exploration and remote sensing. Research on rough surface electromagnetic scattering has significant academic value and broad application prospects in the national defense and military fields and civilian technology. Periodic surface as a very important optical reflection rough surface, it has been widely used in the frequency scanning reflector, coupler, polarizer and band-pass filter, etc. When detecting target in a complex background, it is necessary to simulate the complex background as random rough surface and carry out the research on the composite scattering from the target above the rough surface, to properly consider the terrain or sea clutter. This paper studies fast method of two type of scattering problems related to the rough surface scattering:periodic surface scattering and the composite scattering of target above rough surface. For the first type problem, we propose a transform method to calculate the scattering from dielectric periodic surface whose surface corrugation is not deep. Then the complex image method is proposed to accelerate the calculation of periodic Green's function, which is kernel of integral equation used in method of moment (MoM). For the second type problem, we propose the hybrid method which combines the analytic Kirchhoff approximation (KA) and numerical MoM. This method is of high efficiency, and as its less limitations, it has more general applicability. The main works are as follows:
     1. The extended transform method is developed for calculating the2-D scattering problem from dielectric periodic interfaces. The method transforms the problem into scattering from two imaginary planes, one of which cuts across the maximum points and another across the minimum points of the periodic interface. Compared with other methods, this method is a high efficient and simple method to solve the scattering field in the trough region of the corrugation, but it can not get accurate result with periodic surface whose surface corrugation is deep.
     2. One-level complex image method to derive closed form periodic Green's function for problem of scattering from perfectly conducting periodic surfaces, is considered. Then the integral equation with the complex images periodic Green's function in the kernel is solved by the method of moments. However as the frequency increases, this one-level complex image method has difficult to find an adequate approximation parameter. So the two-level complex image method is derived to provide compensation for the contribution neglected in the previous one-level approach.
     3. The current based hybrid method combining analytic KA and numerical MoM is developed to solve the two-dimensional (2D) scattering problem of a dielectric target with arbitrary cross section above a conducting/dieletric rough surface under TE-polarize and TM-polarized tapered incident. The KA is used for the calculation of the Gaussian rough surface and MoM for the target, and the integral equations of the induced electric and magnetic currents on the target only can be derived, so the problem depends mainly on the number of unknown of the target. Based on the local specular reflection of the rough surface, the rough surface can be truncated to speed up computation of the scattering contribution from the rough surface to the target.
     4. The current based hybrid method is generalized for multiple targets above a conducting rough surface under TE-polarized tapered incident. Taking two cylindrical targets above a PEC rough surface as an example, the coupling effect between two targets with different horizontal distance is analized.
引文
[1]Chen Ruimin, West James C. Analysis of scattering from rough surfaces at large incidence angle using a periodic-surface moment method. IEEE transcations on Geoscience and Remote sensing,1995,33(5):1206-1213.
    [2]Tsang L, Kong J A, Ding K H. Scattering of electromagnetic waves:Numerical simulations, New York:Wiley,2001.
    [3]Rayleigh. On the dynamical theory of gratings. Proc. Roy. Soc.,1907,79:399-416
    [4]Schmahl G, Rudolph D. Holographic diffraction gratings, in:Wolf E and Amsterdam Ed, Progress in Optics XIV, The Netherlands:North-Holland,1976,197-244.
    [5]LaCase E O, Tamarkin Jr, Tamarkin P. Underwater sound reflection from a corrugated surface. J. Appl. Phys.,1956,27:138-148.
    [6]Uretsky J L. Reflection of a plane sound wave from a sinusoidal surface. J. Acoust. Soc. Amer.,1963,35:1293-1294.
    [7]Hoinkes H. The physical interaction potential of gas atoms with single-crystal surfaces determined from gas-surface diffraction experiments. Rev. Modern Phys., 1980,52:933-970.
    [8]Millar R F. On the Rayleigh assumption in scattering by a periodic surface. Pro. Cambridge Phil. Soc.,1969,65:773-791.
    [9]Millar R F. On the Rayleigh assumption in scattering by a periodic surface, Proc. Cambridge Phil. Soc.,1971,69:217-225.
    [10]Waterman P C. Scattering by periodic surfaces. J. Acoust. Soc. Amer.,1975, 57:791-802.
    [11]Masel R I, Merrill R P, Miller W H. Quantum scattering from a sinusoidal hard wall: Atomic diffraction from solid surface. Phys. Rev. B,1975,12:5545-5551.
    [12]Chuang S L, Kong Jin Au. Scattering of waves from periodic surface. Proceedings of the IEEE,1981,69:1132-1144.
    [13]Kong J A. Electromagnetic wave theory, New York:Wiley,1986
    [14]Harrington R F. Field computation by moment methods. The MacMillan Company, 1968.
    [15]Wallinga G S, Rothwell E J, Chen K M, et, al. Efficient computation of the two-dimensional periodic Green's function. IEEE Trans Antennas Propagat,1999, 47:895-897
    [16]Baekelandt B, Zutter D de, Olyslager F. Arbitrary order asymptotic approximation of a Green's function series. AEU Int. J. Electron. Commun,1997,51:224-230.
    [17]Jorgenson R E, Mittra R. Efficient calculation of the free-space periodic Green's function. IEEE Trans. Antennas Propag,1990,38:633-642.
    [18]Singh S, Richards W F, Zinecker J R, et, al. Accelerating the convergence of series representing the free space periodic Green's function. IEEE Trans. Antennas Propag, 1990,38:1958-1962.
    [19]Mathis A W, Peterson A F. A comparison of acceleration procedures for the two-dimensional periodic Green's function. IEEE Trans. Antennas Propag,1996, 44:567-571.
    [20]Rogier H. New series expansions for the 3-D Green's function of multilayered media with 1-D periodicity based on perfectly matched layers. IEEE Trans. Microwave Theory Tech,2007,55:1730-1738.
    [21]Capolino F, Wilton D R, Johnson W A. Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method. IEEE Trans. Antennas Propagat,2005,53:2977-2984.
    [22]Singh S, Singh R. On the use of Shanks's transform to accelerate the summation of slowly converging series. IEEE Trans Microwave Theory Tech,1991,39:608-610.
    [23]Singh S, Singh R. A convergence acceleration procedure for computing slowly converging series. IEEE Trans. Microwave Theory Tech.,1992,40:168-171.
    [24]Singh S, Singh R. On the use of Levin's T-transform in accelerating the summation of series representing the free-space periodic Green's functions. IEEE Trans. Microwave Theory Tech.,1993,40:884-886.
    [25]Singh S, Singh R. On the use of chebyshev-toeplitz algorithm in accelerating the numerical convergence of infinite series. IEEE Trans. Microwave Theory Tech., 1992,40:171-173.
    [26]Whitman G, Schwering F. Scattering by periodic metal surfaces with sinusoidal height profiles-A theoretical approach. IEEE Trans. Antennas Propagat,1977, 25:869-876.
    [27]Waterman P C. Scattering by periodic surfaces. J. Acoust. Soc. Amer.,1975,57: 791-802.
    [28]Armand Wirgin.Theoretical and Experimental investigation of a new type of blazed grating. J. Opt. Soc. Am,1969,59(10):1348-1357.
    [29]冯祖伟.Wiener-Hopf法求解平面周期开槽结构的表面阻抗.应用科学学报,1986,4(2):150-156.
    [30]杨荣生,郭开周,宋文淼.电磁波在光栅表面上反射和衍射的理论研究.电子科学学刊,1991,13(2):119-124.
    [31]刘凯,洪伟.任意二维导体波纹周期表面电磁散射特性的研究.电子学报,1994,22(6):45-50.
    [32]Chandezon J, Dupuis M T, Cornet G, et, al. Multicoated gratings:a differential formalism applicable in the entire optical region. J.Opt. Soc. Am.,1982, 72:839-846.
    [33]Li Lifeng, Chanezon Jean, Granet Gerard, et, al. Rigorous and efficient grating-analysis method made easy for optical engineers. Applied optics.1999, 38(2):304-313.
    [34]Desanto J, Erdmann G, Hereman W, et, al. Theoretical and computational aspects of scattering from rough surfaces:one-dimensional perfectly reflecting surfaces. Wave in random media.1998,8:385-414.
    [35]Charnotskii M I. Wave scattering by periodic at low grazing angles:Two grazing mode, Progress in electromagnetics research,2000,26:43-67.
    [36]Ohtsu M, Okuno Y, Matsushima A, et, al. A combination of up-and down-going floquet modal functions used to describe the field inside grooves of a deep grating, Progress in electromagnetic research,2006,64:293-316.
    [37]Alexandre V. Tishchenko. Numerical demonstration of the validity of the Rayleigh hypothesis. Optics express,2009,17(19):
    [38]Oscar P. Bruno, Michael C. Haslam. Efficient high-order evaluation of scattering by periodic surfaces:deep gratings, high frequencies, and glancing incidences. J. Opt. Soc. Am. A,2009,26(3):
    [39]Bao Gang, Chen Zhiming, Wu Haijun. Adaptive finite-element method for diffraction gratings. J. Opt. Soc. Am. A,2005,22(6):
    [40]Ivan Gushchin, Alexandra V. Tishchenko. Fourier modal method for relief gratings with oblique boundary conditions. J. Opt. Soc. Am. A,2010,27(7):1575-1583.
    [41]Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am,1988, 83:78-92.
    [42]Beckman P, Spizzichino A. The scattering of electromagnetic waves from rough surfaces. Oxford:Pergamon,1963.
    [43]Johnson J T, Shin R T, A numerical study of the composite surface model for ocean backscattering. IEEE Trans. Geosci. Remote Sensing,1998,36(1):72-83.
    [44]聂在平,方大纲.目标与环境电磁散射特性建模(第1版).北京:国防工业出版社,2009.
    [45]Nieto-Veperinas M. Depolarization of electromagnetic waves scattered from slightly rough random surfaces:a study by means of the extinction theorem. J. Opt. Soc. Am. A.,1982,72(5):539-547.
    [46]Bahar E, Lee B S. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in random media,1996,6(1):1-23.
    [47]Winebrenner D, Ishimaru A. Application of the phase perturbation technique to randomly rough surfaces. J. Opt. Soc. Am. A.,1985,2(12):2285-2294.
    [48]Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method(FMM) for electromagnetic scattering problem. IEEE transactions on Antennas and Propagation, 1992,40(6):634-641.
    [49]Song J M, Lu C C, Chew W C, et al. Fast Illinois Solver code (FISC)[J]. IEEE antennas and propagation Magazine,1998,40(3):27-34.
    [50]Li Z, Jin Y Q. Bistatic scattering from a fractal dynamic rough sea surface with a ship presence at low grazing-angle incidence using the GFBM/SAA. Micro. Opt. Techn. Let,2001,31:146-151.
    [51]Liu P, Jin Y Q. The finite-element method with domain decomposition for electromagnetic bistatic scatter-ing from the comprehensive model of a ship on and a target above a large scale rough sea surface. IEEE. T. Geosci. Remote,2004,42: 950-956.
    [52]Liu Z J, Adams R J, Carin L. Well-conditioned MLFMA formulation for closed PEC targets in the vicinity of a half space. IEEE. T. Antenn. Propag,2003,51:2822-2829.
    [53]Li Ling, He Jiangqi, Liu Zhijun, et al. MLFMA Analysis of scattering from multiple targets in the presence of a half-space. IEEE transactions on antennas and propagation,2003,51(4):810-819.
    [54]Kubicke G, Bourlier C, Saillard J. Scattering by an object above a randomly rough surface from a fast numerical method:Exended PILE method combined with FB-SA. Wave Random Complex,2008,18:495-519.
    [55]Guo Lixin, Liang Yu, Wu Zhensen. A study of electromagnetic scattering from conducting targets above and below the dielectric rough surface. Optics express, 2011,19(7):5785-5801.
    [56]Liang Yu, Guo Lixin, Wu Zhensen. The Fast EPILE Combined With FBM for Electromagnetic Scattering From Dielectric Targets Above and Below the Dielectric Rough Surface. IEEE T. Geoscience and Remote Sensing,2011,49(10):3892-3905.
    [57]He S Y, Deng F S, Chen H T, et al. Range profile analysis of the 2-D Target above a rough surface based on the electromagnetic Numerical simulation. IEEE trans. Antennas propag,2009,57(10):3258-3263.
    [58]Deng F S, He S Y, Chen H T, et al. Numerical simulation of vector wave scattering from the target and rough surface composite model with 3-D multilevel UV method. IEEE trans. Antennas propag,2010,58(5):1625-1634.
    [59]Joel T. Johnson. A study of the four-path model for scattering from an object above a half space, Microwave and optical technology letters,2001,30(2):130-134.
    [60]Kuang Lei, Jin Ya-Qiu. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm. IEEE Tran. Antennas Propag, 2007,55(8):2302-2312.
    [61]Chiu T, Sarabandi K. Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface [J]. IEEE Trans. Antennas Propag,1999,47(5): 902-913.
    [62]Lawrence D E, Sarabandi K. Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface [J]. IEEE Trans. Antennas Propag,2002, 50(10):1368-1376.
    [63]Dehmollaian M, Sarabandi K. Electromagnetic scattering from foliage camouflaged complex targets [J]. IEEE Trans. Geoscience and Remote sensing,2006,44(10): 2698-2709.
    [64]朱国强,孙劲,郑立志等.平板目标与随机粗糙面对电磁波的复合散射.武汉大学学报,2000,46(1):99-103.
    [65]向长青,朱国强,杨河林.平板与正弦型组合粗糙面的电磁波复合散射.电波科学学报,1998,13(3):256-260.
    [66]朱国强,杨河林.导体条带与周期粗糙面对电磁波的复合散射.武汉大学学报,1999,33(3):103-107.
    [67]He Si Yuan, Zhu Guo Qiang. A hybrid MM-PO method combing UV technique for scattering from two-dimensional target above a rough surface. Microwave and Optical Technology Letters,2007,49(12):2957-2960.
    [68]Zhang Y, Yang Y E, Braunisch H, et al. Electromagnetic wave interaction o conducting object with rough surface by hybrid spm/mom technique. Progress in electromagnetics research,1999,22:315-335.
    [69]Ye H X, Jin Y Q. A Hybrid analytic-numerical algorithm of scattering from an object above a rough surface. IEEE. Trans. Geosci. Remote,2007,45:1174-1180.
    [70]Ye Hong Xia, Jin Ya-Qiu. A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface. Radio science 43, 2008.
    [71]Wang R, Guo L X, Ma J, et al. Hybrid method for investigation of electromagnetic scattering from conducting target above the randomly rough surface. Chinese. Phys. B,2009,18:1503-1602.
    [72]王芯,粗糙面及其与目标复合电磁散射中的相关问题研究:[博士学位论文].西安:西安电子科技大学图书馆,2008.
    [73]Qin San Tuan, Gong Shu Xi, Wang Rui, et al. A TDIE/TDPO hybrid method for the analysis of TM transient scattering from two-dimensional combinative conducting cylinders. Progress in electromagnetics research,2010,102:181-195.
    [74]秦三团,郭立新,代少玉等.二维随机粗糙面上导体目标复合瞬态散射的混合算法.物理学报,60(7),2011.
    [75]秦三团,代少玉,龚书喜.二维导体目标TE瞬态散射分析的TDIE/TDPO快速算法.西安电子科技大学学报,38(4),2011.
    [76]Tezel N S. Electromagnetic scattering from perfectly conducting periodic surfaces by transforming into equivalent boundary condition. Microwave and Optical Technology Letters,2008,50(8):1997-2000.
    [77]Tsang L, Kong J A, Ding K H. Scattering of electromagnetic waves:Theories and Applications, New York:Wiley,2000.
    [78]Arebs T, Chandler-Wilde S N, DeSanto J A. On integral equation and least squares method for scattering by diffraction grating. Computer Physics Communication, 2006, 1(6):1010-1042.
    [79]Wauer J, Rother T. Considerations to Rayleigh's hypothesis. Optics Communications, 2009,282:339-350.
    [80]Veysoglu M E. Polarimetric passive remote sensing of periodic surfaces and anisotropyic media, Master's thesis, MIT:Cambridge,1989.
    [81]Fructos A L, Boix R R, Mesa F, et al. An efficient approach for the computation of 2-D Green's functions with 1-D and 2-D periodicities in homogeneous media. IEEE Trans. Antennas Propagat,2008,56:3733-3742.
    [82]Skobelev S P. A Modification of the Kummer's Method for Efficient Computation of the 2-D and 3-D Green's Functions for 1-D Periodic Structures. IEEE Trans. Antennas Propagat,2012,60:412-416.
    [83]Lindell I V, Alanen E. Exact image theory for the Sommerfeld half-space problem, Part I:Vertical magnetic dipole. IEEE Trans. Antennas Propagat,1984, 32(2):126-133.
    [84]Lindell I V, Alanen E. Exact image theory for the Sommerfeld half-space problem, Part II:Vertical magnetic dipole. IEEE Trans. Antennas Propagat,1984, 32(8):841-847.
    [85]Lindell I V, Alanen E. Exact image theory for the Sommerfeld half-space problem, Part Ⅲ:General Formulation. IEEE Trans. Antennas Propagat,1984, 32(10):1027-1032.
    [86]A. Mohsen. On the evaluation of Sommerfeld integrals. Proc. Insr. Elec. Eng.,1982, 129(3):177-182.
    [87]Fang D G, Yang J J, Delisle G Y. Discrete image theory for horizontal electric dipole in a multilayer medium. Proc. Inst. Elect. Eng. H,1988,135:297-303.
    [88]Yang J J, Chow Y L, Howard G E, et al. Complex images of an electric dipole in homogenyeous and layered dialectics between two ground planes. IEEE Trans. Microwave Theory Tech,1992,40(3):595-600.
    [89]冯春楠,微带结构中空域格林函数的分析:[硕士学位论文].哈尔滨:哈尔滨电子科技大学图书馆,2008.
    [90]徐利明,分层介质中三维目标电磁散射的积分方程方法及其关键技术:[博士学位论文].成都:电子科学大学图书馆,2005.
    [91]Miller E K, Burke G J. Using model based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics. Computer physics Communications,1991,68:43-75.
    [92]Sarkar T K, Maricevic Z A, Kahrizi M. An accurate dembedding procedure for characterizing discontinuities. International Journal of Microwave and Millimeter wave Computer aided Engineering,1992,2:168-178.
    [93]Kahrizi M, Sarkar T K, Maricevic Z A. Analysis of a wide radiating slot in the ground plane of a microstrip line. IEEE Trans. Microwave Theory Tech,1993, 41(1):29-37.
    [94]Shubair R M, Chow Y L. Efficient computation of the periodic Green's function in layered dielectric media. Microwave Theory and Techniques. IEEE Trans. Microwave Theory Tech,1993,41(3):498-502.
    [95]Aksun M I, Mittra R. Derivation of closed-form Green's functions for a general microstrip geometrics. IEEE Trans. Microwave Theory Tech,1992,40:2055-2062.
    [96]Mackay A J, McCowan A. An improved pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propagat, 1987,35:435-441.
    [97]Dudley D G. Parametric modeling of transient electromagnetic systems, Radio Sci 1979,14:387-396.
    [98]Hua Y, Sarkar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propagat,1989, 37:229-234.
    [99]Alaian H, Dena R F. A fast and accurate analysis of 2-D periodic devices using complex images Green functions. Journal of Lightwave Technology,2009, 27(13):2216-2223.
    [100]Guo L X, Wu Z. Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface, J. Electromagnet. Wave,2004,18:1219-1234.
    [101]Ye H X, Jin Y Q. Fast iterative approach to difference scattering from the target above a rough surface. IEEE. T. Geosci. Remote 2006,44:108-115.
    [102]Ye H X, Jin Y Q. Fast iterative approach to the difference scattering from a dielectric target above a rough surface. Sci. China. Ser. G,2005,48:723-738.
    [103]Li Z, Jin Y Q. Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics based two-grid method in conjunction with the forward-backward method and spectrum ac-celeration algorithm, IEEE. T. Antenn. Propag,2002,50:1323-1327.
    [104]Ye H X, Jin Y Q. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE. Trans. Anten. Propagat,2005,50:1361-1367.
    [105]Ticconi F, Pulvirenti L, Pierdicca N. Electromagnetic Waves, InTech,2011. Chapter 10, Electromagnetic Waves Models for Scattering from Rough Surfaces,203-226.
    [106]Yu Liang, Guo Lixin, Wu Zhensen. The EPILE combined with the generalized-FBM for analyzing the scattering from targets above and on a rough surface. IEEE antennas and wireless propagation letters,2010,9:809-813.
    [107]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社,2008
    [108]Brown G S. The validity of shadowing corrections in rough surface scattering. Radio Science,1984,19(6):1461-1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700