裂缝性白云岩油藏酸压滤失机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透非均质白云岩油气藏是目前我国很重要的一类碳酸盐岩油气藏,酸化压裂工艺技术逐渐成为这类油气藏勘探、开发和增储稳产的关键技术之一。低渗透非均质白云岩储层具有储层渗透率低、天然微裂缝比较发育、储层纵向上非均质性较强、缝洞系统是油气储集和渗流的主要介质等特点。在高排量的酸压施工过程中,过量酸液溶蚀较大的孔隙或天然裂缝而形成形态复杂的酸蚀蚓孔,因此常常出现酸液过度滤失,严重制约了酸蚀主裂缝的延伸,引起酸蚀作用距离不够、酸压改造作用范围有限,直接导致了油气藏增产效果不佳甚至施工失败。主要原因是对酸液的滤失机理了解不明了,酸液滤失量计算不准确。
     因此,研讨酸液滤失机理、建立合适的酸压计算模型、设计控制滤失方法为增产技术人员历来所关注,对于提高酸化压裂效果具有重要的意义。
     本论文在采用长岩心酸岩反应与滤失综合实验基础上,建立了不同地质条件下的酸液滤失物理模型,对酸液滤失进行了室内实验,以研究酸压过程中酸蚀蚓孔发育机理和酸液滤失机理;并将酸蚀蚓孔简化为单圆管模型,利用酸液流动反应物质平衡方程来反应传质和扩散作用,建立了考虑酸蚀吲孔的酸液滤失计算模型,并在此基础上建立了考虑酸液在纵向上的流动和反应以及纵向上压力变化的酸压数学模型;同时针对这种裂缝发育的非均质白云岩储层,通过大量的有机合成试验以及酸液体系综合评价试验研制了一套粘弹性表面活性剂降滤失酸液体系。
     论文研究表明:
     1、酸压施工中酸液滤失量应由酸液人工裂缝壁面基质滤失、蚓孔壁面滤失和蚓孔的体积扩展三部分组成。酸蚀蚓孔滤失占酸液总滤失的比例较大,对酸压效果具有不可忽视的影响。
     2、酸蚀蚓孔滤失量与排量、酸液粘度、酸液浓度、注酸时间以及储层物性有密切关系。通过优化相关施工参数和采取相应工艺措施可以有效降低酸蚀蚓孔滤失,提高酸蚀有效作用距离。
     3、结合三维裂缝延伸模型以及考虑酸液纵向传质的基础上的酸液流动反应模型,利用Visual Basic 6.0编程语言编制了考虑酸蚀蚓孔滤失的酸压设计程序,以便能更好地指导酸压施工设计,并在现场实际应用中对本文模型不断修正和完善。
     4、常规的聚合物酸液在裂缝性白云岩酸压中的效果不好,可在酸液中加入粘弹性表面活性剂,在储层中形成粘弹性表面活性剂凝胶的高粘性来降低滤失。因此,研制新型的粘弹性表面活性剂酸液体系对于提高这类油气藏的酸压效果具有重要的意义。
Low permeability and herterogenous dolomite reservoir is one of the vital cartonate-rock reservoirs. Acid fracturing technology is becoming a key technology of petroleum exploration,development and increase reserves and stabilize production for this reservoir.low permeability and herterogenous dolomite reservoir is chariterisized with low permeability in matrix, the natural fracture and developed cavity, storng heterogeneity . so, the fracture and cavity system is the main medium of the oil/gas storage and penetration. Wormhole is formed inevitabiy during the process of high pumping rate acid fracturing treatment, which results in serious acid leak-off and short acid penetration distance. Thus this directly leade to a bad effect on the carbonate stimulation, and even brings the treatment into failure. Generally, the main reasons for the failure are the unclearness of acid leak-off mechanisms and the inaccurate calculation of the acid leak-off in the naturally fractured carbonates.
    So, the acid leak-off mechanism and the design of the controlling the leak-off method have been the concerned for the stimulation technician, and it plays a significant role in improving the acid fracturing effects.
    Based on the long core parallel plate acid-rock reaction model and the acid dynamic leak-off experiment, we have developed a set of acid leak-off physical model for different geologic condition and have developed a set of acid leak-off experiment,which is to analysis the initiation and propagation mechanisms of wormhole and the acid leak-off mechanisms during the process of the acid fracturing.acid leak-off mathematical model was built up bymodeling the wormhole as a cylinder and numerically solving the mass balance equation that describes acid transport by convertion and duffusion.baded on that and considered the acid fracturing model is developed.for fractured heingt and the variational pressure,the acid fracturing model is developed .for fractrured herterogenousdolomite reservoir,on the other hand,we have developed a suit of Viscoelastic surfactant fluid loss acid system by a number of organic synthesis experiment and a series of comprehensive ecaluation experiment for this acid system.
    It's illustrated in this paper sa following:
    1、 The acid leak-off in the acid fracturing treatment falls into three parts:1)the leak-off in matrix,2)the leak-off on the wormhole wall and 3)the increase of wormhole volume.this paper presents an acid fracturing mathematic model,including wormhole leak-off.
    2、 The acid wormhole leak-off volume is concerned with the pumping rate,the acid viscosity,the acid concentration,acid injection time and the formation physical property.The acid wormhole leak-off can be decreased effectively and the available acid penetration diatance is improved by optimixing the interest treatment parameter and adopting thecorresponding procedure treatment.
    3、 Based on the three-dimensional model of fracture extension and the model of acid flowing and resction with rock, a acid fracturing design procedure,considering the acid wormhole leak-off,has been programmea with the Visual Basic 6.0 software to guiding the acid fracturing treatment in the carbonate reaervoir,and the model in this paper is modified and improved during the application on the field.
    4、 the effect of acid fracrueing is not good by using the conventional polymet acid system,so we can adding the ciscoelastic surfactant into the acidixing fluids to low fluid loss
引文
2.李勇明.缝洞型碳酸盐岩油藏酸压基础模型研究及应用 西南石油学院博士论文,2003
    3.古发刚等.压裂酸化工艺与通用设计计算方法.石油学报,1996,17(2):128-136
    4.任书泉、赵立强等.传质活化能和酸液指进对酸压设计的影响.SPE 22435
    5. Mc Danial R.R.,Deysarkar A.K.,Callanan M.J. et al. An Improved Method for Measuring Fluid Loss at Stimulated Fracture Conditions. SPE 10259
    6. Rick Gdanski. A Fundamentally New Model of Acid Wormholing in Carbonates. SPE 54719,1999
    7.杨旭,潘琼.白云岩储层酸液滤失机理研究。钻采工艺,2000.23(2):17-20
    8.潘琼.酸液滤失模拟实验方法研究.钻采工艺,2000,23(1):36-38
    9. Hoefner, M.L., and Fogler, H. S. "Reaction Rate vs Transport Limited Dissolution During Carbonate Acidizing: Application of Network Model," SPE15573, presented at the 61 st Fall Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, Louisiana, 1986
    10. Hoefner, M.L., and Fogler, "Pore Evolution and Channel Formation During Flow and Reaction in Porous Media" AIChE J.(January 1988) 34, No, 1, 45-54
    11. Fredd, C.N. and Fogler, H. S. "Influence of Transport and Reaction on Wormhole Formation in Porous Media,"
    12. G. Daccord, E. Touboul, and R. Lenormmd. "Carbonate Acidizing." A Quantitative Study of the Wormholing Phenomenon". SPE 16887,1989
    13. Y.Wang,A,D,Hill,'and RS. Schechter: "The Optimum Injection Rate for Matrix Acidizing of Carbonate Formations": SPE 26578,1993
    14. Bazin, B.: "From Matrix Acidizing to Acid Fracturing: a Laboratory Evaluation of Acid/Rock Interactions", SPE 49491 presented at the Abu Dhabi International Petroleum Exhibition and Conference, 11-14 October 1998.
    15. B. Bazin, G. Abdulahad. Experimental Investigation of Some Properties of Emulsified Acid Systems for Stimulation of Carbonate Formations. SPE 53237,1999
    16. B. BAZIN, C. ROQUE and M. BOUTECA. A Laboratory Evaluation of Acid Propagation in Relation to Acid Fracturing: Results and Interpretation. SPE 30085,1995
    17. Marten A. Buijse. "Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations". SPE38166,1997
    18. Nougaro, Labbe. "Etude des Lois de L'Acdification dans le Cas d'un Calaire Vacuolaire" Rev. Fran. Pet.(1995)
    19. Schechter, Gidley. "The Change in Pore Size Distribution from Surface Reactions in Porous Media," AIChE J. (May 1969) 15, NO.3,339-350
    20.李颖川.采油工程.西南石油学院出版社.2001,1(324).
    21. K.M. Hung. et al. A Mechanistic Model of Wormhole Growth in Carbonate Matrix Acidizing and Acid Fracturing.JPT, Jan. 1989:59-66
    22.潘琼,段国彬.酸液滤失实验模型的建立.钻采工艺.27(3),2004
    23.段国彬.利用酸液动态滤失实验研究确定酸压施工用酸量.天然气工业.20(5),2000.9
    24.李勇明,郭建春,赵金洲,刘学利.裂缝性油藏酸液滤失模型研究.西南石油学院学报.26(2),2004.4
    25. R.C.Navarrete, M.J. Miller et al. Laboratory, Theoretical, and Field Studies of Emulsified Acid Treatments in High-Temperature Carbonate Formations. SPE Prod.&Faci. May, 2000,15(2):96-106
    26. C.Ruffet, J.J.Fery et al. Acid Fracturing Treatment: a Surface Topography Analysis of Acid Etched Fractures to Determine Residual Conductivity. SPE 38175,1997
    27. Li Yan, Sullivan,R.B. et al. An Overview of Current Acid Fracturing Technology With Recent Implications for Emulsified Acids. SPE 26581
    28. Sertari, A. Modeling of Acid Fracturing Treatment. SPEPF, Feb., 1993:30-38
    29.李平.前置液酸压缝中酸浓度分布的全隐式数值计算方法.天然气工业,1988,4
    30. D. E. Nierode, Member AIME, and K. F. Kruk.An Evaluation of Acid Fluid Loss Additives, Retarded Acids, and "Acid ized Fracture Conductivity. SPE 4549,1973
    31. D. ROBERTS,J. A. GLUN. A New Method for Predicting Acid Penetration Distance. SPE 5155,1974
    32. M-H.Lee and L.D.Roberts. The Effect of Heat of Reaction on Temperature Distribution and Acid Penetration in A Fracture. SPE7893,1979
    33. S.E. Fredrickson. Stimulating Carbonate Formations Using a Closed Fracture Acidizing Technique. SPE14654,1986
    34. A, Settari. Modelling of Acid Fracturing Treatment. SPE 21870,1991
    35. T. Huang, D. Zhu, and A. D. Hill. Prediction of Wormhole Population Density in Carbonate Matrix Acidizing. SPE 54723,1999
    36. Brigitte Bazin, Claude Roque,* G.A. Chauveteau, and M.J. Boute' ca. Acid Filtration Under Dynamic Conditions To Evaluate Gelled Acid Efficiency in Acid Fracturing. SPE58356,1999
    37. T. Huang, L. Ostensen, and A. D. Hill. Carbonate Matrix Acidizing with Acetic Acid. SPE, SPE 58715,2000
    38. C.N. Fredd. Dynamic Model of Wormhole Formation Demonstrates Conditions for Effective Skin Reduction During Carbonate Matrix Acidizing. SPE 59537,2000
    39. C. Dong, D. Zhu and A. D. Hill. Modeling of the Acidizing Process in Naturally-Fractured Carbonates. SPE 63183,2000
    40.F.A.L.Dullien.多孔介质流体渗移与孔隙结构.杨富民,黎用启译,北京:石油工业出版社.1990.8(143)
    41.李治平.油气层渗流力学.西南石油学院.1999.12(174-177)
    42. M.A. Buijse. Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations. SPE65068,2000
    43. F. Golfier, B. Bazin. Acidizing Carbonate Reservoirs: Numerical Modelling of Wormhole Propagation and Comparison to Experiments. SPE 68922,2001
    44. Chengli Dong, D. Zhu and A. D. Hill. Acid Penetration in Natural Fracture Networks. SPE 68927,2001
    45.高尔夫—拉特,《裂缝油藏工程基础》,陈钟祥,秦同洛等译,石油工业出版社,1989.5(33-70)
    46. AbdulWahab H.Al-Ghamdi: "Impact of Acid Additives on the Rheological Properties of Viscoelastic Surfactants and Their Influence on Field Application",SPE89418,2004.
    47. Bemhard Lungwitz: "Diversion and Cleanup Studies of Viscoelastic Surfactant-Based Self-Diverting Acid",SPE86504,2004
    48. David Alleman: "The Development and Successful Field Use of Viscoelastic Surfactant-based Diverting Agents for Acid Stimulation",SPE80222,2003
    49. F.F.Chang: "New Material and Technique for Matrix Stimulation in High-Water-Cut Oil Wells",SPE64006,2000
    50. M.A.Buijse. Mechanisms of Wormholing in Carbonate Acidizing. SPE37283,1997
    51. C.N. Fredd. M.J. Miller,:" Validation of Carbonate Matrix Stimulation Models". SPE 58713.2000
    52.周志芳,王锦国.裂隙介质水动力学.北京:中国水力水电出版社.2004.1(27-30)
    53.王鸿勋.张士诚编著.水力压裂设计数值计算方法.北京:石油工业出版社,1998
    54.Robert S. Schechter.油井增产技术.刘德铸等译.北京:石油工业出版社,2003.7
    55. C.H. Yew and A.D. Hill et al. A Study of Fluid Leakoff in Hydraulic Fracture Propagation. SPE 64786,2000
    56. G. Daccord, E. Touboul, and R. Lenormmd. "Carbonate Acidizing: A Quantitative Study of the Wormholing Phenomenon". SPE 16887,1989.20 12
    57. Marten A. Buijse. "Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations". SPE38166,1997
    58. Huang T. Hill A.D: "Reaction and Fluid Loss: The Key to Wormhole Initiation and Propagation in Carbonate Acidizing". SPE 37312,1997 --
    59.赖天华.工程流体力学.南充:西南石油学院.1996.6
    60.吴奇主编.压裂酸化技术论文集.北京:石油工业出版社,1999
    61. H.S.Frank,M.W.Evans,J.chem..phys. 13,507,1945
    62. A.Ben-Naim: "Hydrophobic Iinteractions"Plenum,New York, 1980
    63. C.Tanford: "The Hydrophobic Effect:Formation of Micelles and Biological Membranes",2nd Ed.,Wiley,New York, 1980
    64. J.H.Hildebrand,Pro,Natl.Acad.Sci.,USA,76.184,1979
    65. Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd Edition, John Wiley & Sons, 1999.
    66. Gin, D. L.; Gu, W.; Pindzola, B. A.;.Zhou, W. Jo Ace. Chem. Res. 2001, 34,973.
    67.张为灿,李干佐,李英,表面活性剂蠕虫状胶束缔合体系研究进展,日用化学工业,1999.
    68. Lequeux, F.Candau,:"Structure and flow in surfactant solutions",ACS Symposium Series 578,American Chemical Societv.Washineton.DC. 1994
    69. Kadoma, I.A. and J.W.Van Egmond: "Shear-enhanced orientation and concentration fluctuations in wormlike micelles"Effct of salt, Langtnuir, 1997,13
    70. R. gamez,Y.serero: "Shear-induced micellar in dilute suffactant solutions",Europhysics letters,54(5)
    71. M.M.Samuel,J.E.Brown,H.L.Vinod,Polymer-free fluid for fracturing applications,SPE Drill.& Completion 14(4), 1999,11
    72. Kristin M. Marczak and Peter E. Cark, Characterization of surfactant gelled fracturing fluids.SPE: 63240,2000
    73. Hu,YT.,P.Boltenhagen,and D.J.Pine, Shear thickening in low-concentration solutions of wormlike mirallac In;rnal nfrhonlnav 1998 42(5)
    74. Israelachivili,J. Intermolecular & Surface Forces, 2nd Edition, Harcourt Brace & Company publishers, 1992.4.
    75. Bunnan, J. W and Hall, B.E.:" Foam Diverting Technique Improved Sandstone AcidJobs,"Proc. World Pat. Cong, 1987
    76. Kennedy, D.K.,Kitziger, F.W.,Hall, B.E. "Case Study on the Effectiveness of NitrogenFoams and Water Zone Diverting Agents in Multistage Matrix Acid Treatments,"SPE20621,1990
    77. Zerhboub, Mohammed,Touboul, Eric,Thomas, Ron:, Matrix Acidizing: A NovelApproach to Foam Diversion",SPE 22854,1994
    78. K. E. Thompson and R.D. Gdanski:" Laboratory Study Provides Guidelines for Diverting Acid With Foam," SPEPF Nov. 1993
    79. Walker, L.M.,Moldenaers,and J.F.Berret, Macroscopic response of wormlike micelles to elongational flow, Langmuir, 1996,12
    80.肖进新,罗妙宣,吴树森,孪连表面活性剂,自然杂志19卷6期(中文译本)
    81. Gruen D W R.A model for the chains in amphiphilic aggregates.2. Thermodynamic and experimental comparisons for aggregates of different shape and size,J.Phys.Chem. 1986,93
    82. J.-F. Berret,R.Gamez-Corrales,Shear-induced micellar growth in dilute surfactant solutions, Europhys. Lett.,pp. 605-611(2001)
    83.王清廉 沈凤嘉.有机化学实验 第二版 高等教育出版社 1994,4,69
    84.美 D.L.帕维亚著.现代有机化学实验技术导论 科学出版社.1985,1,374,381
    85. Willberg: "Determination of the Effect of Formation Water on Fracture-fluid Cleanup" JPT 50 (1998)40-42
    86. Melod, H.O.,Jr.,:"Matrix Acidizng,"JPT,36: 2055-2069, 1984
    87.北原文雄.表面活性剂分析和试验法 轻工业出版社 1988,4,143
    88. Dill,W.R. et al. Iron Control in Fracturing and acidizing Operations. Presented at CMIC Meeting, Calgary, Canada, June,1986
    89. Crowe,C.W. et al. Guidelines for Selecting Iron Stabilizers for in Acidizing Treatment. Presented at 27th Annual Southwestern Petroleum Short Course Meeting, Lubbock, TX, 17,1980
    90. P.D.Gougler. et al. Field Investigation Identifies and Magnitude of Iron Problems. SPE13812
    91. G.C. Maitland, Oil and gas production, Current Opinion in Colloid & Interface Science, 2000,5, 301-311
    92.韩显卿,提高采收率原理,石油工业出版社,1993,74-80
    93. W.J. Kim, Additive Effects on the Microstructure Evolution in Hexadecyi-trimethylammonium Bromide Solution and Its Rheological Properties, Journal of colloid and interface science, 1997,194, 108-119
    94.水基压裂液性能评价方法,SY/T 5107-1995
    95.胥耘,楼湘.碳酸盐岩储层深度酸压理论研究现状与发展.油气井测试,2002,11(1):4-8
    96. M.A.Buijse and M.S.van Domelen. Novel Application of Emulsified Acid to Matrix Stimulation of Heterogeneous Formations. SPE Prod.&Faci.Aug.2000,15(3):208-213
    97. R.C.Navarrete, M.J. Miller et al. Laboratory, Theoretical, and Field Studies of Emulsified Acid Treatments in High-Temperature Carbonate Formations. SPE Prod.&Faci. May, 2000,15(2):96-106
    98.庞崇友,张淑英,秦启荣.21世纪初中国大中型天然气田的勘探方向.天然气工业.24(17)
    99.易荣龙等.21世纪中国暨国际油气勘探展望.北京:中国石化出版社,2003:119~124
    100.李颖川.采油工程.西南石油学院出版社.2001,1(324).
    101.埃克诺米德斯 J,诺尔特 G.油藏增产措施[M].张宝平,蒋阗,刘立云,张汝生,等译.北京:石油工业出版社,2002.360-363.
    102. A.D. Hill, Ding Zhu, * and Y. Wang, U. of Texas: The Effect of Wormholing on the Fluid Loss Coefficient in Acid Fracturing. SPE 27403,1994
    103. Behdokht Mostofizadeh, Mining U. Leoben, and M,J. Economies. Optimum Injection Rate From Radial Acidizing Experiments. SPE 28547,1994.
    104.韩慧芬.酸液滤失的影响因素分析.钻采工艺.25(3),2002
    105.王素兵.滤失控制酸酸压施工工艺初探.钻采工艺.24(5),2001
    106.周志芳,王锦国.裂隙介质水动力学.北京:中国水力水电出版社.2004.1(27-30)
    107.万仁溥,罗英俊.采油技术手册(第九分册).北京:石油工业出版社.1998.1
    108.李庆扬,王能超,易大义.数值分析.武昌:华中科技大学出版社.1986.1
    109.任书泉、赵立强等.传质活化能和酸液指进对酸压设计的影响.SPE 22435
    110. Mc Danial R.R.,Deysarkar A.K.,Callanan M.J. et al. An Improved Method for Measuring Fluid Loss at Stimulated Fracture Conditions. SPE 10259
    111. A. Settari. A New General Model of Fluid Loss in Hydraulic Fracturing. SPE 11625,1983
    112.古发刚、任书泉.多种因素下的滤失速度计算模型.西南石油学院学报,1991,13(2):65-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700