除尘系统引风机粘灰振动分析及清灰系统优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心风机在工业生产中占有很重要的地位,常常给通风、除尘、输运等系统提供动力。在实际运行中,由于风机的工质中含有大量粉尘,风机叶轮粘灰严重,造成风机因振动而频繁停机进行清灰动平衡。
     本文分两个部分,前一部分针对某钢厂所使用的风机,建立了全尺寸的三维模型。用数值计算的方法得到风机内部流动的具体分布,并结合现场的检查,确定风机叶轮粘灰及磨损的原因。其中,粘灰的两个必要条件是:①粉尘到达叶轮粘灰位置;②粉尘到达叶轮的部位存在有利于粘灰的流场。
     风机进口处粘灰主要原因是粉尘粒子近垂直的撞击非工作面;出口处粘灰是由于非工作面处有涡旋的存在。
     文章的后一部分是理论分析,主要建立了风机转子的数学模型。从转子动力学的角度分析了风机粘灰振动的原因及现场快速判断方法。对于风机这类刚性转子,粘灰块脱落而引起的振动具有一阶性,这也是利用在线监测装置判断风机是否是粘灰振动的理论依据。
     由于工厂现在大多装有风机在线监测装置,如动平衡仪,使维护人员能从众多风机故障中迅速判断由于灰块脱落发生振动。
     最后,将所设计的喷头引入到风机系统中,根据数值模拟的结果和实际情况,对喷吹系统进行了改进,利用水代替空气,增大了喷吹介质的动能。同时对喷嘴结构和安装角度进行优化,提出了最佳安装方式是喷嘴与后盘垂直距离20mm,与后盘夹角20°。
     此外,介绍了长短叶片控制风机出口处粘灰的方法。
Centrifugal fan is very critical in the industry dust-cleaning system. It is usually used as power in the ventilating、dust-cleaning、delivery system. There is much dust in the gas of the fan. The dust aggregates in the impeller. That caused vibration of the fan. Under this situation, the maintenance department should stop the whole production system to cleaning the dust and do dynamic balance.
     This paper is divided into two parts. First, a full-scale three-dimensional model of the fan which is used by a steal&iron company is built. Flow field in the fan is numerical calculated by CFX. Compare to the spot observation, the reason which causes fan’s dust-sedimentation is determined. The two necessary conditions are:①The dust gets to the dust-sedimentary position;②The flow field of the dust-sedimentary position is good for the dust-sedimentation.
     The dust-sedimentation at the inlet of the fan is mainly caused by the impact between dust and non-working face. Eddy cause dust-sedimentation at the outlet of the fan.
     Then, the mathematical model of the fan rotor is made. The reason of the fan’s vibration which is caused by dust-sedimentation and quick judge way are analyzed in the view of rotor dynamics.
     For the fan which is belonged to the rigid rotator, the vibration that is caused by the dust sedimentation is first-order. That is used as the theory to judge if the vibration is caused by dust sedimentation.
     Usually, the company installs on-line monitoring device, such as balance apparatus. It is possible for the maintenance department judge the dust-sedimentation vibration failure quickly out of the many other failures.
     Finally, the designed nozzle is installed in the rotating fan. Based on the stimulation result and the practice, the spray-system we are now using is improved. Air is replaced by water to increase blow-medium’s kinetic energy. The structure and the position of the nozzle are optimized. The best install way is 20mm from nozzle to the back disk. The included-angle is 20°.
     Furthermore, long-short blade is introduced to reduce dust-sedimentation at the outlet of the fan.
引文
[1] Eck B.Ventilatoren[M].Springer Verlag ,1962
    [2]Eck B.Dieneure Entwicklung der Radial Ventilatoren [J].Technische Rundschau No.20 Bern ,1962(7):56-60
    [3] 马正先.高效率的含尘气体离心通风机[J].Air Conditiong,1972 (7):20-25
    [4] 吕太,王顺,施利,等.离心风机负荷变化对叶片粘灰的影响研究[J].流体机械,2004,24(4):18-21
    [5] 刘红,幸福堂.离心通风机粘灰机理的探讨[J].风机技术,2000,27(4):55-56
    [6] 周建华.离心通风机叶片上粉尘的脱离[J].风机技术,2001,20(3):6-8
    [7] 幸福堂,谢明亮,吕伟,等.炼钢厂引风机叶轮粘灰控制[J].武汉科技大学学报,2003,18(4):361-362
    [8] 唐旭东,黄东涛,朱之墀.边界层控制技术在离心叶轮中的应用[J] .液体机械,1998,19(9):15-18
    [9] 黄东涛,边旭东,唐旭东,等.长短叶片开缝技术在离心风机设计中的应用[J].清华大学学报,1999,25(4):6-9
    [10]幸福堂,谢明亮.一种防粘灰的离心风机叶轮结构[J]. 武汉科技大学学报,2005,18(1):56-58
    [11]沈天耀,林建忠编著.叶轮机械的气固两相流基础[M].北京:机械工业出版社,1994
    [12]王福军.计算流体动力学分析[M].北京: 清华大学出版社,2004
    [13]Versteeg, H K, Nalalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M].London, Longman Group Ltd, 1995
    [14]谢明亮.离心风机叶轮内两相流数值模拟与粘灰机理分析[D] .武汉:武汉科技大学,2004
    [15]丛高伟.离心通风机内部流场的数值模拟分析与比较[D].大连:大连理工大学,2006
    [16]何慧伟.离心通风机整流场数值计算[D].西安:西安交通大学,2001
    [17]眭曦 .离心式通风机内部气固两相流场的数值模拟[D].浙江:浙江大学,2006
    [18]侯树强.离心式通风机内部流场的数值模拟[D].浙江:浙江大学,2006
    [19]赵立峰.离心通风机的流场模拟及优化设计[D].大连:大连交通大学,2005
    [20]梅丹.离心风机叶轮内气固两相流动及叶片磨损研究[D].武汉:武汉科技大学,2006
    [21]康顺,陈党慧.用 CFD 研究高压比离心叶轮内的二次流动[J].航空动力学报,2005,24(6):1055-1062
    [22]杨敏官,刘栋,贾卫东.离心泵叶轮中固液两相流动的数值模拟[J].水泵技术,2005,32(4):31-35
    [23]王灿星,林建忠,宋向群.多叶离心通风机内部流场的计算[J].风机技术,1997,22(4):6-9
    [24] Hayes, W.D.and Probe stein, R.F.Hypersonic Flow Theory [J] .Academic Press. New York, 1959
    [25]张莉,王启杰,陈汉平.离心式叶轮机械内部非定常流动的数值计算[J].风机技术,2004,16(4):10-14
    [26]段江南,蔡兆麟.离心通风机内部流场模拟中的几何建模[J].风机技术,2001,17(6):38-42
    [27]A.Chernobrovkin, B.Lakshminarayana .Development and Validation of Navier-Stoks Procedure for Turbo machinery Unsteady Flow [J] . ALAA Journal, 1999, 37(5):557-563
    [28]徐长棱,毛义军.离心通风机整机三维流场的数值模拟[J].风机技术,2005,22(5):1-4
    [29]Seo S-J,Kim K-Y,Kang S-H. .Calculations of three-dimensional viscous flow in a multiblade centrifugal fan by modeling blade forces [J] .Procdings of the Institution of Mechanical Engineer-Part A-Power&Energy, 2003, 217(3):287-297
    [30]Chima Rodrick V.Inviscid and viscous flows in cascades with an explicit multiple-grid algorithm [J] . ALAA Journal, 1985, 23(10):1556-1563
    [31]崔晓钰,翁建华,陈善年.离心通风机内气固两相流动计算[J].风机技术,2001,25(4):44-47
    [32]Wan-Ho Jeon, Duck-Joo Lee .A numerical study on the flow and sound fields of centrifugal impeller located near a wedge [J].Journal of Sound and Vibration, 2003(266):785-804
    [33]Wan-EO Jeon, Duck-Joo Lee . An analysis of the flow and aerodynamic acoustic sources of a centrifugal impeller [J] . Journal of Sound and Vibration, 1999, 222(3):505-511
    [34]Wan-Ho Jeon . A numerical study on the effects of design parameters on the performance and noise of a centrifugal fan [J] . Journal of Sound and Vibration, 2003(265):221-230
    [35]湛含辉,张晓琪,戴财胜,等.固液两相二次流现象及其研究[J]. 选煤技术,2002,18(3):13-15
    [36]严敬,杨小林.国外水泵研究现状概述[J].排灌机械,1997,12(5):1-3
    [37]吴玉林,曹树良,戴江,等.离心泵叶轮中紊流的计算[J].水泵技术,1997,17(1):9-15
    [38]杨小林,严敬,邓万全,等.离心叶轮轴向旋涡流的 PIV 测量[J].石油机械,2005,24(7):1-4
    [39]张兴泉.离心式叶片泵内三维流场的数值模拟[J].通用机械,2006,23(2):64-65
    [40]张武高,陈晓玲,曹广军. 流量对离心泵蜗壳内压力及速度分布的影响[J]. 石油机械,2000,26(2):10-13
    [41]卢金铃,席光,祁大同.气液两相流泵的研究进展[J].流体机械,2001,27(12):12-17
    [42]陈乃祥.离心泵[M].北京:机械工业出版社.,2003 :45-46
    [43]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999
    [44]钟一谔等.转子动力学[M] .北京:清华大学出版社,1987
    [45]Mark S.Darlow .Balancing of High-Speed Machinery[J].Springer-Verlag,1988,282:11-16
    [46]Goodman TP.A. Least-Squares Method for Computing Balance Correction [J].ASMS Journal of Engineering for Industry, 1964, 291:23-26
    [47]Federn K. Multi-plane Balancing of Elastic Rotors, Fundamental Theories and Practical Application [J]. U.S.A. Carl Scheck Maschinenfabrik, 1956, 181 :143-207
    [48]Bishop R E D, Gladwell G M L . The Vibration and Balancing of an Unbalanced Flexible Rotor [J] .Mechanical Engineering Science, 1959 ,213 :66-70
    [49]沈阳鼓风机研究所.离心式通风机[M].辽宁:东北工学院流体机械教研室编著,1988
    [50]沈天耀.离心叶轮的内流理论基础[M].浙江:浙江大学出版社,1986
    [51]C W Lee ,Y D Joh and Y D KIM . Automatic model balancing of Flexible Rotors During Operaion [J]. Proc.Instn.Mech, Engrs., 1990, 412 :19-28
    [52]Goodman TP.A. .Least-Squares Method for Computing Balance Correction. [J].ASMS Journal of Engineering for Industry,1964, 162 :11-14
    [53]周仁睦.转子动平衡—原理、方法和标准[M].北京:化学工业出版社,1992
    [54]刘忠伟.高压水射流技术综述[J]. 湖南冶金职业技术学院学报,2005,26(9):330-333
    [55]庞伟.高压水射流清洗技术的探讨[J].农机化研究,2003,19(4):143-144
    [56]秦国治,田志明.高压水射流清洗技术及其应用[J].管道技术与设备,2001,11(1):38-40
    [57]李向利,张海峰,卢志有,等.高压水射流清洗烧结抽风机叶轮的实践[J].冶金标准化与质量,2002,21(4):40-41
    [58]陈春,聂松林,吴正江,等. 高压水射流的 CFD 仿真及分析[J].机床与液压,2006,25(2):103-105
    [59]赫铁军.高压水射流技术与安全[J].应用能源技术,1997,16(1):5-6
    [60]刘尚贤.高压水射流技术在火电厂中的应用[J].四川电力技术,1997,21(5):41-44
    [61]孙建勋,陈毅强,赵陨 .高压水射流清洗技术[J].管道技术与设备,2001,23(4):40-42
    [62]张兰芳,费建国.高压水射流清洗污垢的机理及参数[J].化学清洗,1997,23(5):6-10
    [63]陈玉凡.高压水射流打击效率理论分析[J].清洗世界,2006,12(10):32-35
    [64]罗振兵,夏智勋,方丁酉,等.合成射流影响因素[J].国防科技大学学报,2002,10(3):32-35
    [65]齐梅兰,府仁寿,陈稚聪.射流冲刷平衡深度研究[J].水动力学研究与进展,2005,9(3):11-15
    [66]刘成全,温良英,罗定祥.冲击射流作用下壁面压力分布特性的试验研究[J]. 工业炉,1997,8(1):8-12
    [67]马飞 ,宋志辉 .水射流动力特性及破土机理[J]. 北京科技大学学报,2006,7(5):415-416
    [68]幸福堂,张景丽,陈旺生.引风机叶轮清灰介质的探讨[J].风机技术,2004,18(3):56-57
    [69]黄坤平,彭建鄂,罗辉.清除一次烟气风机叶轮粘灰的方法[J].风机技术,2002,19(1):20-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700