利用木质素合成含氮杂环化合物及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从天然生物质资源中分离提纯单体作为先导化合物,进行化学改性修饰,合成新型具有生物活性的化合物,是利用生物质资源制备高附加值深加工产品的重要途径。木质素是除纤维素以外的第二大可再生植物资源,在木材水解和制浆造纸工业中作为废液被回收,但因其化学成分组成复杂工业化利用率低,所以其中大量回收的木质素通常作为燃料使用,有的甚至未经处理直接排放,造成严重的资源浪费和环境污染。因此,研究工业回收木质素的反应分离技术,得到高纯度化合物,进行高价值项目的开发应用,对于综合治理造纸工业废水污染、充分利用天然资源具有重要的现实意义。
     反应分离技术是现代化工分离提纯的重要手段之一,尤其是在天然产物的分离工艺中具有重要意义。本文以木质素为原料,经碱性硝基苯氧化、分离提纯得到了三种芳香醛类化合物——香草醛、丁香醛和对羟基苯甲醛,其分离纯度分别为98.4%、99.1%和97.6%,总产率最高可达18%;并利用新型低毒的氧化剂A和B从木质素中反应分离得到了愈创木酚、紫丁香醇、香草乙酮和乙酰丁香酮等其它几种重要的化工原料。另外,对从木质素氧化降解产物中分离提纯的醛类化合物进行了如下合成修饰,并且对新化合物进行了生物活性筛选和构效研究:
     1)利用芳香醛,异腈和2-氨基吡啶通过三组分反应快速高效的合成了19种新型咪唑并[1,2-a]吡啶类化合物,所有化合物表现出了较好的产率(83~94%),并利用IR、1H NMR、13C NMR和HPLC-ESI-MS对所有合成的化合物进行了结构表征。采用滤纸片法测试了该类化合物的抑菌活性,抗菌活性筛选结果表明该类化合物4b(iii)、4f(iii)和4s(iii)对大肠埃希菌,绿脓杆菌,金黄色葡萄球菌以及链球菌没有明显抑制效果,但抗血吸虫活性正在测试中。
     2)以三种芳香醛,苯肼和β-酮酯为原料高效合成了一系列的双吡唑醇类化合物,所有合成化合物的产率都比较理想(≥82%);并通过清除二苯基代苦味酰基(DPPH)和2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)自由基分析对所有的化合物进行了抗氧化研究。结果表明:相对于标准品Trolox,所有化合物都表现出较好抗氧化性能,特别是化合物4a(iv)和4d(iv)的抗氧化性能较好,具有进一步开发的价值。
     3)通过微波辅助Hantzsch反应一锅高效的合成了一系列的4-芳基六氢喹啉酮衍生物,产率高达89%以上;并通过清除二苯基代苦味酰基(DPPH)和2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)自由基分析对所合成的化合物5a-c(v)、5g-i(v)的抗氧化性能进行了评价,并对其构效关系进行了研究。结果表明:相对于标准品Trolox,化合物5a(v)和5g(v)的抗氧化性能最好;5b(v)和5h (v)次之,5c(v)和5i(v)最差。从构效关系看,甲氧基的引入使其抗氧化性能明显增加,其抗氧化顺序为4-羟基-3,5-二甲氧基苯基取代的六氢喹啉酮的抗氧性能,大于4-羟基-3-甲氧基苯基取代的六氢喹啉酮,远远大于4-羟基-3,5-二甲氧基苯基取代的六氢喹啉酮。
     4)通过Hantzsch一锅三组分反应高效合成了一系列的4-芳基-l,4-二氢吡啶和9-芳基-十氢吖啶衍生物。除化合物6c(vi)没有得到产物外,其它化合物的产率都比较理想(≥79%);并通过清除二苯基代苦味酰基(DPPH)和2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)自由基分析对4-羟基-3,5-二甲氧基取代的1,4-二氢吡啶4a(vi)和多氢吖啶6a(vi),以及4-羟基-3-甲氧基取代的1,4-二氢吡啶4b(vi)、4e(vi)和多氢吖啶6b(vi)的抗氧化性能进行了评价。结果表明:相对于标准品Trolox,化合物4a(vi)和6a(vi)具有良好的抗氧化性能;鉴于化合物4a(vi)、6a(vi)和6b(vi)较好的抗氧化性能,我们又对它们的降血压活性进行了研究,与对照组以及自身给药前比较,化合物4a(vi)和6a(vi)具有一定的降血压效果,具有进一步应用开发的价值。
     5)以芳香醛化合物、β-酮酯、丙二腈和肼为原料便利高效的合成了一系列的4-芳基-二氢吡喃并[2,3-c]吡唑衍生物。除化合物7e(vii)和7g(vii)外,所有化合物都有很好的产率(≥70%)。并通过清除二苯基代苦味酰基(DPPH)和2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)自由基分析对所合成的化合物6a(vii)、6d-f(vii)、6j(vii)、7d(vii)和7g(vii)的抗氧化性能进行了评价。结果表明:相对于标准品Trolox,6a(vii)、6d(vii)、6j(vii)、7d(vii)和7g(vii)都展示了优秀的抗氧化性能,特别是在ABST+分析中,所有所测化合物的IC50都远远比标准品Trolox低,几乎只有标准品的千分之一,表现出非常优秀的ABST+自由基清除活性。这表明它们具有潜在的药物用途,同时也为木质素的高附加值利用提供了一条有效的途径。
     6)利用微波辅助的多组分反应快速高效的合成了27种3-氰基吡啶类化合物,产率高达63~85%,并通过并通过清除二苯基代苦味酰基(DPPH)自由基分析对化合物5b(viii)、5h(viii)、5i(viii)、7d(viii)、7e(viii)、7f(viii)以及7k(viii)的抗氧化性能进行了测定,结果表明该类化合物的抗氧化性能相对较差;但正将其应用于抗血吸虫的研究中。
     通过对构效关系研究发现:4-羟基-3,5-二甲氧基苯基取代的杂环化合物比4-羟基-3-甲氧基苯基和4-羟基苯基取代的杂环化合物具有更好的抗氧化及降压活性,亦即表明利用丁香醛合成抗氧化剂和降压药比香草醛和对羟基苯甲醛效果要理想。
Separating monomeric compounds from biomass resources and then using them to synthesize new compounds and research their biological activities are a significant way in deep processing of high value-added products from biomass resources. Lignin is the second most abundantly renewable natural plant resources except cellulose richly found in wood hydrolysis and papermaking waste, used as fuel and even discharged without any treatment process, causing severe environmental pollution because it?s complicated structure and low industrial application rate. Researching on the value-added utilization of lignin by reaction–separation and modification of lignin degradation products is of very significant importance to make full use of natural resource and also to waste water treatment.
     Reaction-separation technology is one of important method in modern separation and purification, which is particularly tremendous significance in separation of natural produacts. In this paper, syringaldehyde, vanillin and p-hydroxybenzaldehyde were prepared from lignin via alkaline nitrobenzene oxidation with total yield 18% (purity 98.4%, 99.1% and 97.6%, respectively); Guaiacol, lilac alcohol, acetovanillone, acetosyringone were also obtained from lignin through new and low-toxicity oxidants A and B. In addition, Several series of new compounds were prepared using aromatic aldehydes obtained from lignin and screened for their biological activities to research their Structure-activity relationship:
     1) A convenient protocol is described for the preparation of 3-amino-imidazo[1,2-a] pyridine derivatives via three-component reactions between 2-aminopyridine derivatives, aldehydes and isocyanides with excellent yields (83~94%). All the compounds were characterized by IR, 1H NMR, 13C NMR, and HPLC-ESI-MS. In addition, their antibacterial activities were tesed by filter paper method. The result showed that these compounds 4b(iii), 4f(iii) and 4s(iii) had no inhibiting effects on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus, but they are being screened for anti-schistosomiasis activities.
     2) A series of novel bispyrazoles joined by arylmethylene at C-4 position were synthesized in good to excellent yield (≥82%) using aromatic aldehydes obtained from lignin and screened for their antioxidant activities by N,N-diphenyl-N′-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylenzothiazoline-sulphonic acid) (ABTS+) radical scavenging assays. All of these compounds exhibited good DPPH and ABST+ radical scavenging activities as compared to the standard, Trolox. Especially, the compound 4a(iv) and 4d(iv) had better antioxidant activities, which suggested their potential as promising agents for curing tumors or other free radical-related diseases.
     3) A series of 4-aryl-hexahydroquinolines were prepared by microwave assisted Hantzsch reaction using aromatic aldehydes obtained from lignin, 1,3-cyclohexanediones,β-ketoesters and ammonium carbonate with good yields (≥89%). The antioxidant properties of 5a-c(v), 5g-i(v) were evaluated by two methods: scavenging effect on DPPH radical and scavenging effect on ABTS+ radical. Compounds 5a and 5g showed the best antioxidant activities against DPPH and ABST+, 5b(v) and 5h(v) were second, 5c(v) and 5i(v) were relatively bad. In addition, the results showed that the compounds containing methoxy moiety linked at the aryl substituents of the 4-aryl-hexahydroquinolines increased their biological activities; the activity order of them is as follows: 4-(4-hydroxy-3,5-dimethoxyphenyl) hexahydroquinolines > 4-(4-hydroxy-3-methoxyphenyl) hexahydroquinolines >> 4-(4-hydroxyphenyl) hexahydroquinolines.
     4) One-pot condensation of 1,4-dihydropyridines and 9-arylpolyhydroacridines with aromatic aldehydes obtained from lignin in the presence of ammonium carbonate was carried out in water with good yields (≥79%) except compound 6c(vi). Antioxidant properties of compounds 4a(vi), 4b(vi), 4e(vi), 6a(vi) and 6b(vi) were evaluated by scavenging DPPH and ABTS+ radical effects. Compounds 4a(vi) and 6a(vi) showed the best antioxidant activities against DPPH and ABST+. In addition, Compounds 4a(vi) and 6a(vi) also exibited good hypotensive properties, which suggested them deserving to further development and application.
     5) A series of novel 1H,4H-dihydro-pyrano[2,3-c]pyrazoles were synthesized via muti-component reaction with aromatic aldehydes obtained from lignin, and screened for their antioxidant activities by DPPH and ABTS+ radical scavenging assays. Except compound 7e(vii) and 7g(vii), all the other compound yielded well (≥70%). In addition, to our surprise, those compouds 6a(vii), 6d(vii), 6j(vii), 7d(vii) and 7g(vii) showed excellent antioxidant properties. Their values of IC50 were lower than that of Trolox in the DPPH and ABST+ radical cation scavenging assays. Especially, their values of IC50 were 1 000 times lower than that of Trolox in reaction with ABST+ radical. The strong antioxidant abilities of these compounds indicated their potential usefulness in the drug development, thus providing an effective approach for value-added application of lignin.
     6) 27 kinds of 3-cyanopyridine derivatives were prepared via convenient, rapid and environmentally benign four-component reactions between 2-substituted acetophenones, aromatic aldehydes, malononitrile and ammonium acetate under microwave irradiation with good yield (63~85%); the compounds 5b(viii), 5h(viii), 5i(viii), 7d(viii), 7e(viii), 7f(viii) and 7k(viii) were screened for their antioxidant activities by DPPH radical scavenging assays. The results showed that they had poor antioxidant properties, but they are being screened for anti-schistosomiasis activities.
     Through structure-activity relationship analysis, it was found that 4-hydroxy-3,5-dimethoxyphenyl heterocyclic compounds had better antioxidant and hypotensive activities than 4-hydroxy-3-methoxyphenyl and 4-hydroxyphenyl heterocyclic compounds, i.e, syringaldehyde is the better material for synthsis of antioxidant and hypotensive agents than vanillin and p-hydroxybenzaldehyde.
引文
[1]蒋挺大.木质素.第二版.北京:化学工业出版社,2008: 208~210.
    [2] H. Jr. Sandermann, D. Scheel, T. V. D. Trenck. Metabolism of Environmental Chemicals by Plants–Copolymerization into Lignin. J. Appl. Polym. Sci., 1983, 37: 407~402.
    [3]衣守志,石淑兰,李翠珍.制浆废液中木质素的分离与利用新进展.国际造纸,2000, 20(6): 56~58.
    [4]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展.精细化工,2005, 22(4): 249~252.
    [5]谢建军,罗迎社.木质素的结构及其改性研究进展.功能材料,2007, 38(A09): 3296~3299.
    [6]高国安,李忠正.甜竹木质素结构特征的研究.林产化学与工业,2010, 30(2): 37~42.
    [7] R. J. A. Gosselink, M. H. B. Snijder, A. Kranenbarg et al. Characterisation and Application of Nova Fiber Lignin. Ind. Crops Products, 2004, 20(2): 191~203.
    [8]陈秀清,杨润贤.香兰素合成方法研究探讨.广州化工,2010, 38(6): 40~41.
    [9]周霞.香兰素的合成方法.广州化工,2008, 36(4): 20~29.
    [10]平兆燕,李广学.制备香兰素的研究.应用化工,2005, 34(7): 400~403.
    [11]郑波涛.香兰素的合成工艺进展.生化与医药―化工之友,2007, 9: 51~52.
    [12]李铁南,魏立纲,马英冲等.双液相体系提取木质素转化香兰素.大连工业大学学报,2010, 29(4): 268~271.
    [13]黄霞芸,沈青.木质素与合成高分子共混的研究进展.纤维素科学与技术,2007, 15(3): 61~73.
    [14] R. Sun, J. M. Lawther, W. B. Banks. The Effect of Alkaline Nitrobenzene Oxidation Conditions on the Yield and Components of Phenolic Monomers in Wheat Straw Lignin and Compared to Cupric(II) Oxidation. Ind. Crops Products, 1995, 4: 241~254.
    [15] I. A. Kozlov, B. N. Kuznetsov, A. F. Gogotov et al. Method of Synthesis of Aromatic Aldehydes. Russ. Pat., RU2179968C1. 2002-02-27.
    [16]冯建豪.甘蔗渣木素的化学结构.中国造纸,1986, 5(2): 10~18.
    [17] O. Y. Mansour, A. Nagaty, Z. A. Nagieb. Structure of Alkali Lignins Fractionated From Ricinus Communis and Bagasse. 2. Alkaline Nitrobenzene Oxidation. J. Macromo. Sci. Chem., 1984, A21(3): 365~375.
    [18] H. B. Marshall, D. L. Vincent. Production of Syringealdehyde and/or Vaniilin from Hardwood Waste Pulping Liquors. Can. Pat., CA1040216. 1978-10-10.
    [19]张朝泰,张宏书,杨精干等.蔗渣碱木素碱性氧化反应生成紫丁香醛和香兰素的研究.化学通讯,1987, 3: 66~71.
    [20] A. A. Geronikaki, K. A. Abduazimov. An Investigation of the Hydrochloric Acid Lignin of Cotton Stems. Chem. Nat. Compd., 1975, 11(5): 677~678.
    [21] N. V. Kuznetsova, L. S. Smirnova, Kh. A. Abduazimov. A Study of Cotton Lignin. Chem. Nat. Compd., 1972, 8(1): 96~98.
    [22] N. Morohoshi, W. G. Glasser. The Structure of lignins in Pulps. Part 4: Comparative Evaluation of Five Lignin Depolymefization Techniques. Wood Sci. Technol., 1979, 13: 165~178.
    [23] C.–L. Chen. Nitrobenzene and Cupric Oxide Oxidations. In: S. Y. Lin, C. W. Dence. Methods in Lignin Chemistry. Berlin: Springer-Verlag Eds, 1992: 301~321.
    [24] J. M. Pepper, B. W. Casselman, J. C. Karapally. Lignin Oxidation. Preferential use of Cupric Oxide. Can. J. Chem., 1967, 45: 3009~3012.
    [25]张宏书,钟洽,杨精干等.蔗渣碱木质素制紫丁香醛和香兰素的研究Ⅰ.蔗渣碱木质素低分子氧化产物的制备.纤维素科学与技术,1994, 2(1): 55~61.
    [26]邓长江,钟洽,杨精干等.蔗渣碱木质素制紫丁香醛和香兰素的研究Ⅱ.紫丁香醛和香兰素的分离提纯.纤维素科学与技术,1994, 2(1): 62~67.
    [27] J. Gierer. Basic Principles of Bleaching. Holzforschung, 1990, 44(5): 387~394.
    [28]杨精干,张宏书,张朝泰.气相色谱法分析蔗渣木素的空气氧化产物.纤维素科学与技术,1993, 1(3): 69~72.
    [29]李广学,王震,刘学苏等.木质素制备香兰素的工艺研究.安徽理工大学学报,2005, 25(1): 62~70.
    [30]周强,陈中豪.以碱木素利用绿色化学法合成香兰素的方法.中国发明专利说明书,ZL00117415.0. 2001-02-28.
    [31] J. Gierer. Chemistry of Delignification. Wood Sci. Technol., 1986, 20(1): 1~33.
    [32]叶荣华.多组分反应合成含氮杂环化合物.湖北大学硕士学位论文,2009, 1~12.
    [33] G. C.Yang, Z. X. Chen, C. L. Hu. Synthesis of Heterocycles on Polymeric Supports. Chin. J. Org. Chem., 2002, 22 (12): 936~942.
    [34] J. L. Brédas, G. B. Street. Polarons, Bipolarons and Solitrons in Conducting Polymers. Acc. Chem. Res.,1985, 18 (10): 309~315.
    [35] A. Berlin. Heterocycle-based Electroconductive Polymers, Electrical and Optical Polymer Systems, 1998, 45, 47~50.
    [36]赵国柱.绿色合成——杂环化合物在水溶液中的合成.科技成果管理与研究,2009, 11: 80~81.
    [37]虞京军.含氮杂环化合物的合成研究.湖北大学硕士学位论文,2008, 1-3
    [38]孙昌.异腈参与的多组分反应研究.兰州大学硕士学位论文,2008, 1~3.
    [39] G. Wess, M. Urmann, B. Sickenberger. Medicinal Chemistry: Challenges and Opportunities. Angew. Chem., Int. Ed. Engl., 2001, 40: 3341~3350.
    [40] L. Weber. The Application of Multi-component Reactions in Drug Discovery. Curr. Med. Chem., 2002, 9: 2085~2093.
    [41]祝介平,H.别内梅.多组分反应.张书圣,温永红,杨晓燕等译著.化学工业出版社,2008, 1~60.
    [42]李明,郭维斯,文利荣等.三组分“一锅煮”合成4,5-二氢吡唑并[1,5-a]嘧啶.有机化学,2008, 28: 472~475
    [43] H. Bienayme, C. Hulme, G. Oddon et al. Maximizing Synthetic Efficiency: Multicomponent Transformations Lead the Way. Chem. Eur. J., 2000, 6: 3321~3329.
    [44]王仁林.Br?nsted酸催化“一锅法”四组分合成1,2,3,7,8,8a-六氢-5,7,8a-三芳基咪唑[1,2-a]吡啶衍生物.兰州大学硕士学位论文,2005, 1~10.
    [45] C. Hulme, V. Gore. Multi-component Reactions: Emerging Chemistry in Drug Discovery from Xylocain to Crixivan. Curr. Med. Chem., 2003, 10(5): 1~80.
    [46] L. Weber. Multi-component Reactions and Evolutionary Chemistry. Drug Discovery Today, 2002, 7: 143~147
    [47] A. J. Wangelin, H. Neumann, D. Gordes et al. Multi-component Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide—aldehyde Mixtures. Chem. Eur. J., 2003, 9: 4286~4294
    [48] A. Strecker. Ueber die Künstliche Bildung der Milchs?ure und einen neuen, dem Glycocoll Homologen K?rper. Liebigs Ann. Chem., 1850, 75: 27~45.
    [49]左正泉.吡啶、吡唑类衍生物的合成方法研究及结构表征.青岛科技大学硕士论文,2008, 1~29.
    [50]冯前进,刘润兰.方剂:新型多组分反应(MCR)研究及其药物发现的新途径.山西中医学院学报,2010, 11(5): 53~53.
    [51] X. Y. Guan, L. P. Yang, W. H. Hu. Cooperative Catalysis in Multicomponent Reactions: Highly Enantioselective Synthesis ofγ-Hydroxyketones with a Quaternary Carbon Stereocenter. Angew. Chem. Int. Ed., 2010, 49: 2190~2192.
    [52]陈育兰,严胜骄,林军.多组分反应在杂环合成中的应用.广东化工,2010, 37(3): 4~6.
    [53]张成刚,陈文明,李建军.Cu(I)催化的多组分反应的研究进展.有机化学,2009, 29(2): 174~187.
    [54] A. Domling, I. Ugi. The Seven-component Reaction. Angew. Chem. Int. Ed., 1993, 32: 563~564.
    [55]邢兴龙.微波辅助多组分及成环反应化合物合成中的应用.浙江大学博士学位论文,2006, 10~14.
    [56]金钦汉,戴树珊,黄卡玛.微波化学及其发展.微波化学,科学出版社,1999, 1~50.
    [57]沙耀武,王宇,葛俊等.微波促进的杂环化合物的合成研究.有机化学,2001. 21(2): 102~105.
    [58] M. Nuchter, B. Ondruschka, W. Bonrath et al. Microwave Assisted Synthesis——a Critical Technology Overview. Green Chem., 2004, 6: 128~141.
    [59] R. Gedye, F. Smith, K. Westaway et a1. The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron lett., 1986, 27: 279~282.
    [60] R. J. Giguere, T. L. Bray, S. M. Duncan et al. Application of Commerical Microwave Ovens to Organic Sythesis. Tetrahedron Lett., 1986, 27: 4945~4951.
    [61] J. W. Vanderhoff. Method for Carrying out Chemical Reactions Using Microwave Energy. U.S. Pat., US3432413. 1969-05-11.
    [62] S. Horikoshi, N. Ohmori, M. Kajitani et al. Microwave-enhanced Bromination of a Terminal Alkyne in Short Time at Ambient Temperature: Synthesis of Phenylacetylene Bromide. J. Photoch. Photobio. A., Chem., 2007, 189(2-3): 374~379.
    [63] H. T. Yu, H. X. Liu, D. B. Luo et al. Microwave Synthesis of High Dielectric Constant CaCu3Ti4O12. J. Mater. Process. Tech., 2008, 208(1-3): 145~148.
    [64] K. Ding, Z. Miao, Z. Liu et al. Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process. J. Am. Chem. Soc., 2007, 129(20): 6362~6363.
    [65] R. Murugavel, N. Gogoi. Microwave Assisted Solid-state Synthesis of Functional Organotin Carboxylates from Sterically Encumbered 3,5-Di-tert-butylsalicylic Acid. J. Organomet. Chem., 2008, 693(19): 3111~3116.
    [66] S. Hesse, E. Perspicace, G. Kirsch. Microwave-assisted Synthesis of 2-Aminothiophene-3-carboxylic Acid Derivatives, 3H-Thieno[2,3-d]pyrimidin-4-one and 4-Chlorothieno[2,3-d]pyrimidine. TetrahedronLett., 2007, 48(30): 5261~5264
    [67] F. Chemat, E. Esveld. Microwave Super-heated Boiling of Organic Liquids: Origin, Effect and Application. Chem. Eng. Technol., 2001, 24: 735~744.
    [68] S. D. Pollington, C. Z. Bond, R. B. Moyes. The Influenee of Microwaves on the Rate of Reaction of Propan-1-ol with Ethanoic Acid. J. Org. Chem., 1991, 56: 1313~1314.
    [69] C. Shibata, T. Kashima, K. Ohuchi. Nonthermal Influence of Microwave Power on Chemical Reactions. Jpn. J. Appl. Phys., 1996, 35(19): 316~319.
    [70] S. T. Chen, P. H. Tseng, H. M. Yu. The Studies of Microwave Effects on the Chemical Reactions. J. Chin. Chem. Soc., 1997, 44: 169~182.
    [71] D. R. Baghurst, D. M. P. Mingos. Application of Microwave Heating Techniques for the Synthesis of Solid State Inorganic Compounds. J. Chem. Soc. Chem. Commum., 1988: 829~830.
    [72]贾建洪,陈彬.微波在杂环类化合物合成中的研究进展.浙江工业大学学报,2009, 37(1): 36-43.
    [73] J. Lawrence, K. Esposito, G. Formanek et al. Vanillin. In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, 24. New York: John Wiley & Sons. 1997: 812~82.
    [74] A. E. Chichibabin. Tautomerism ofα-Aminopyridine. IV. A Method of Preparation of Pyrimidazole and Its Homologs. Berichte der Deutschen Chemischen Gesellschaft: Abhandlungen, 1925, 58B: 1704~1706.
    [75]周建良,刘建超,陈启元.咪唑并吡啶类化合物的合成研究进展.有机化学,2009, 29(11): 1708~1718.
    [76] A. Shaabani, E. Soleimani, A. Maleki. Ionic Liquid Promoted One-pot Synthesis of 3-Aminoimidazo[1,2-a]pyridines. Tetrahedron Lett., 2006, 47: 3031~3034, and references cited therein.
    [77]李斌,李剑峰,傅磊等.外周苯二氮革受体示踪剂的合成和评价.高等学校化学学报,2008, 29(1): 86~89.
    [78] Y. Rival, G. Grassy, A. Taudou et al. Antifungal Activity in vitro of some Imidazo [1,2-a] pyridine Derivatives. Eur. J. Med. Chem., 1991, 26: 13~18.
    [79] C. Hamdouchi, J. de Blas, M. del Prado et al. 2-Amino-3-substituted-6-[(E)-1-phenyl-2- (N-methylcarbamoyl)vinyl]imidazo[1,2-a]pyridines as a Novel Class of Inhibitors of Human Rhinovirus: Stereospecific Synthesis and Antiviral Activity. J. Med. Chem., 1999, 42(1): 50~59.
    [80] K. C. Rupert, J. R. Henry, J. H. Dodd et al. Imidazopyrimidines, Potent Inhibitors of p38 MAP Kinase.Bioorg. Med. Chem. Lett., 2003, 13(3): 347~350.
    [81] R. B. Lacerda, C. K. F. Lima, L. L. Silva et al. Discovery of Novel Analgesic and Anti-inflammatory 3-Arylamine-imidazo[1,2-a]pyridine Symbiotic Prototypes. Bioorg. Med. Chem., 2009, 17: 74~84.
    [82] M. Adib, M. Mahdavi, M. A. Noghani et al. Catalyst-free Three-component Reaction between 2-Aminopyridines (or 2-aminothiazoles), Aldehydes, and Isocyanides in Water. Tetrahedron Lett., 2007, 48: 7263~7265, and references cited therein.
    [83] A. L. Rousseau, P. Matlaba, C. J. Parkinson. Multicomponent Synthesis of Imidazo[1,2-a]pyridines Using Catalytic Zinc Chloride. Tetrahedron Lett., 2007, 48: 4079~4082.
    [84] A. R. Katritzky, Y.-J. Xu, H. Tu, Regiospecific Synthesis of 3-Substituted Imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and Imidazo[1,2-c] pyrimidine. J. Org. Chem., 2003, 68(12): 4935~4937.
    [85] A. V. Lygin, A. de Meijere. Reactions of Ortho-Lithiophenyl (-Hetaryl) Isocyanides with Carbonyl Compounds: Rearrangements of 2-Metalated 4H-3, 1-Benzoxazines. Org. Lett., 2009, 11: 389~392.
    [86] V. Z. Parchinsky, O. Shuvalova, U. Olga et al. Multi-component Reactions between 2-Aminopyrimidine, Aldehydes and Isonitriles: the Use of a Nonpolar Solvent Suppresses Formation of Multiple products. Tetrahedron Lett., 2007, 46: 947~951. [87 A. Shaabani, F. Rezazadeh, E. Soleimani. Ammonium Chloride Catalyzed One-pot Synthesis of Imidazo[1,2-a]pyridines. Monatsh Chem., 2008, 139(8): 931~933.
    [88] H. H. Fahmy, A. EI–Masry, S. H. A. Abdelwhed. Synthesis and Preliminary Antimicrobial Screening of New Benzimidazol Heterocycles. Arch. Pharm. Res., 2001, 24(1): 27~34.
    [89]韩春蕊.枞酸型树脂酸分离及其衍生物合成与生物活性研究.中国林业科学研究院博士论文,2008, 40~53.
    [90] B. P. Bandgar, S. S. Gawande, R. G. Bodade et al. Synthesis and Biological Evaluation of a Novel Series of Pyrazole Chalcones as Anti-inflammatory, Antioxidant and Antimicrobial Agents. Bioorg. Med. Chem., 2009, 17: 8168~8173.
    [91] F. Manna, F. Chimenti, R. Fioravati et al. Synthesis of Some Pyrazole Derivatives and Preliminary Investigation of Their Affinity Binding to P-glycoprotein. Bioorg. Med. Chem. Lett., 2005, 15: 4632~4635.
    [92] B. S. Holla, M. Mahalinga, M. S. Karthikeyan et al. Synthesis of some Novel Pyrazolo[3,4-d] pyrimidine Derivatives as Potential Antimicrobial Agents. Bioorg. Med. Chem., 2006, 14: 2040~2047.
    [93] R. V. Ragavan, V. Vijayakumar, N. S. Kumari. Synthesis of some Novel Bioactive 4-Oxy/thio Substituted-1H-pyrazol-5(4H)-ones via Efficient Cross-Claisen Condensation. Eur. J. Med. Chem., 2009, 44: 3852~3857.
    [94] R. Sridhar, P. T. Perumal. Synthesis of Novel 1-H-Pyrazole-4-carboxylic Acid Esters by Conventional and Microwave Assisted Vilsmeier Cyclization of Hydrazones. Synth. Commun., 2003, 33: 1483~1488.
    [95] R. N. Brogden. Pyrazolone Derivatives. Drugs, 1986, 32: 60~70.
    [96] C. Coersmeier, H. R. Wittenberg, U. Aehringhaus et al. Effect of Anti-inflammatory and Analgesic Pyrazoles on Arachidonic Acid Metabolism in Isolated Heart and Gastric Mucosa Preparations. Agents Actions Suppl., 1986, 19: 137~154.
    [97] A. Gursoy, S. Demirayak, G. Capan et al. Synthesis and Preliminary Evaluation of New 5-Pyrazolinone Derivatives as Analgesic Agents. Eur. J. Med. Chem., 2000, 35: 359~364.
    [98] J. A. Ma, R. Q. Huang, L. Feng et al. Synthesis and Biological Activity of New Pyrethroid Acid Oxime-esters Containing Pyrazole Ring. Chem. Res. Chinese U., 2003, 19(3): 297~301.
    [99] B. Cottineau, P. Toto, C. Marot et al. Synthesis and Hypoglycemic Evaluation of Substituted Pyrazole-4-carboxylic Acids. Bioorg. Med. Chem. Lett., 2002, 12: 2105~2108.
    [100] K.Y. Lee, J. M. Kim, J. N. Kim. Regioselective Synthesis of 1,3,4,5-Tetra Substituted Pyrazoles from Baylis-Hillman Adducts. Tetrahedron Lett., 2003, 44(35): 6737~6740.
    [101] Z. J. Jia, Y. Wu, W. Huang et al. 1-(2-Naphthyl)-1H-pyrazole-5-carboxyl Amides as Potent Factor Xa Inhibitors. Part 3: Design, Synthesis and SAR of Orally Bioavailable Benzamidine-P4 Inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(5): 1229~1234.
    [102]张亦冰.新颖杀菌剂吡唑醚菌酯·啶酰菌胺水分散粒剂.世界农药,2009, 31(5): 52~53.
    [103]李梅,王振宁,宋宝安.吡唑类衍生物杀菌活性研究进展.农药,2008, 47(6): 391~397.
    [104]谭成侠,潘丽艳,傅寅翼.具有除草活性的吡唑类化合物.世界农药,2009, 31: 32~38.
    [105]谭成侠,傅寅翼,潘丽艳.具有杀虫杀螨活性的吡唑类化合物的研究进展.现代农药,2010, (1): 10~14.
    [106]吴林涛.吡唑酰胺类化合物的杀虫活性研究进展.广州化工,2010, 38(7): 55-58.
    [107] T. A. Taton, R. C. Mucic, C. A. Mirkin et al. The DNA-Mediated Formation of Supramolecular Mono- and Multilayered Nanoparticle Structures. J. Am. Chem. Soc., 2000, 122 (26): 6305~6306.
    [108] S. Borovic, G. Tirzitis, D. Tirzite et al. Bioactive 1,4-Dihydroisonicotinic Acid Derivatives PreventOxidative Damage of Liver Cells. Eur. J. Pharmacol., 2006, 537: 12~19.
    [109] A. E. Abdalla, D. Tirzite, G. Tirzitis et al. Antioxidant Activity of 1,4-Dihydropyridine Derivatives inβ-Carotene-methyl Linoleate, Sunflower Oil and Emulsions. Food Chem., 1999, 66: 189~195.
    [110] N. Miller, C. Rice-Evans, M. J. Davies et al. A Novel Method for Measuring Antioxidant Capacity And Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci., 1993, 84: 407~412.
    [111] C. S. Yao, C. X. Yu, S. J. Tu et al. The Synthesis of 4,4′-Arylmethylene-bis (3-(trifluoromethyl)- phenyl-1H-pyrazol-5-ol) in Aqueous Media without Catalyst. J. Fluor. Chem., 2007, 128: 105~109.
    [112] M. J. Hayter, D. J. Bray, J. K. Clegg et al. New Bis-pyrazole Derivatives Synthesized from Aryl- and Xylyl-linked Bis(β-diketone) Precursors. Synth. Commun., 2006, 36: 707~714.
    [113] E. Fasani, M. Fagnoni, D. Dondi et a1. Intramolecular Electron Transfer in the Photochemistry of some Nitrophenyldihydropyridines. J. Org. Chem., 2006, 71: 2037~2045.
    [114] S. Goldmann, J. Stoltefuss, L. Bom. Detemination of the Absolute Configuration of the Active Amlodipine Enantiomer as(-)-S: A Correction. J. Med. Chem., 1992, 35: 334l~3344.
    [115] D. M. Stout, A. I. Meyers. Recent Advances in the Chemistry of Dihydropyridines. Chem. Rev., 1982, 82(2): 223~243.
    [116]张怀信,辛占友.新型多功能的饲料添加剂——二氢吡啶.养殖技术顾问,2010, (5): 53~53.
    [117]姚亮,单瑛琦.二氢吡啶在畜禽饲料中应用的研究进展.饲料广角,2008, (8): 27~29.
    [118]李光然,孙立娜,刘志平.饲料中添加二氢吡啶对蓝狐体增重、皮张长度和皮重的影响.黑龙江畜牧兽医,2009, (2): 113~114.
    [119]李成会,朱连英.二氢吡啶的研究进展.中国饲料,2000, 3: 17~18.
    [120]胡倡华.二氢吡啶的营养研究进展.上海畜牧兽医通讯,2000, 4: 4~6.
    [121] U. Eisner, J. Kuthan. Chemistry of Dihydropyridines. Chem. Rev., 1972, 72(1): 1~42.
    [122] Y. L. Chen, K. C. Fang, J. Y. Sheu et al. Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives. J. Med. Chem., 2001, 44: 2374~2377.
    [123] G. Roma, M. D. Braccio, G. Grossi et al. 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5- (Alkylamino or Cycloalkylamino) [1,2,4]Triazolo[4,3-a][1,8] Naphthyridine-6-carboxamides, New Compounds with Anti-aggressive and Potent Anti-inflammatory Activities. Eur. J. Med. Chem., 2000, 35: 1021~1035.
    [124] M. P. Maguire, K. R. Sheets, K. McVety et al. A New Series of PDGF Receptor Tyrosine Kinase Inhibitors: 3-Substituted Quinoline Derivatives. J. Med. Chem., 1994, 37: 2129~2137.
    [125] F. Guillier, D. Grain, M. Bradley. Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem. Rev., 2000, 100: 2091~2158.
    [126]路群,顾觉奋.药物高通量筛选技术应用研究进展.今日药学,2010, 20(2): 2~5.
    [127] A. Shaginian, M. Patel, M. H. Li. Light-Directed Radial Combinatorial Chemistry: Orthogonal Safety-Catch Protecting Groups for the Synthesis of Small Molecule Microarrays. J. Am. Chem. Soc., 2004, 126(51): 16704~16705.
    [128]吴慧,于建荣.高通量药物筛选技术进展及新药开发策略.生物产业技术,2010, (1): 89~94.
    [129] K. J. Stanger, V. Krchnak. Polymer-Supported N-Derivatized, O-Linked Hydroxylamine for Concurrent Solid-Phase Synthesis of Diverse N-Alkyl and N-H Hydroxamates. J. Comb. Chem., 2006, 8(3): 435~439.
    [130] M. Fumoto, H. Hinou, T. Ohta et al. Combinatorial Synthesis of MUC1 Glycopeptides: Polymer Blotting Facilitates Chemical and Enzymatic Synthesis of Highly Complicated Mucin Glycopeptides. J. Am. Chem. Soc., 2005; 127(33): 11804~11818.
    [131] J. C. Menéndez, V. Sridharan, P T. Perumal. A New Three-component Domino Synthesis of 1,4-Dihydropyridines. Tetrahedron, 2007, 63: 4407~4413.
    [132] S. Margarita, O. Estael, V. Yamila et al. A Joint Experimental and Theoretical Structural Study of Novel Substituted 2,5-Dioxo-1,2,3,4,5,6,7,8-octahydroquinolines. Tetrahedron, 1999, 55: 875~884.
    [133] S. Ko, M. N. V. Sastry, C. Lin et al. Molecular Iodine-catalyzed One-pot Synthesis of 4-Substituted- 1,4-Dihydropyridine Derivatives via Hantzsch Reaction. Tetrahedron Lett., 2005, 46: 5771~5774.
    [134] S. K. Ko, C. F. Yao. Ceric Ammonium Nitrate (CAN) Catalyzes the One-pot Synthesis of Polyhydroquinoline via the Hantzsch Reaction. Tetrahedron, 2006, 62: 7293~7299.
    [135] J. C. Legeay, J. Y. Goujon, J. J. V. Eynde et al. Liquid-phase Synthesis of Polyhydroquinoline Using Task-specific Ionic Liquid Technology. J. Comb. Chem., 2006, 8: 829~833.
    [136] A. Kumar, R. A. Maurya. Synthesis of Polyhydroquinoline Derivatives through Unsymmetric Hantzsch Reaction Using Organocatalysts. Tetrahedron, 2007, 63: 1946~1952.
    [137] S. Kumar, P. Sharma, K. K. Kapoor et al. An Efficient, Catalyst- and Solvent-free, Four-component,and One-pot Synthesis of Polyhydroquinolines on Grinding. Tetrahedron, 2008, 64: 536~542.
    [138] F. Tamaddon, Z. Razmi, A. A. Jafari. Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and 1,4-Dihydropyridines Using Ammonium Carbonate in Water. Tetrahedron Lett., 2010, 51: 1187~1189.
    [139] R. A. Mekheimer, A. A. Hameed, K. U. Sadek. Solar Thermochemical Reactions: Four-component Synthesis of Polyhydroquinoline Derivatives Induced by Solar Thermal Energy. Green Chem., 2008, 10: 592~593.
    [140] A. Nasim, T. Brychcy. Genetic Effects of Acridine Compounds. Mutat. Res. Rev. Genet. Toxicol., 1979, 65: 261~288.
    [141] U. Thull, B. Testa. Screening of Unsubstituted Cyclic Compounds as Inhibitors of Monoamine Oxidases. Biochem. Pharmacol., 1994, 47: 2307~2310.
    [142]王祥洪,杨季冬,田华荣.吖啶染料共振瑞利散射法测定藻酸钠.化学研究与应用,2008, 20(9): 1110~1114.
    [143] H. Matsumoto, T. Arai, M. Akahashi et al. Conversion of Disilanes to Functional Monosilanes. XIII. The Palladium Catalyzed Reductive Coupling of Benzylidene Dichlorides and Benzylidyne Trichlorides Using Disilanes as Reducing Agents. Bull. Chem. Soc. Jpn., 1983, 56: 3009~3014.
    [144]吴孟辉,陈思瑾,曾文灿等.新型吖啶染料-蛋白质光散射体系.光谱实验室,2008, 25(4): 738~741.
    [145] N. Srividya, P. Ramamurthy, P. Shanmugasundaram et al. Synthesis, Characterization, and Electrochemistry of Aome Acridine-1.8-dione Dyes. J. Org. Chem., 1996, 61: 5083~5089.
    [146]徐叔云,卞如廉,陈修主编.药理试实验方法学,第二版.人民卫生出版社,1994, 235~236。
    [147]陈奇主编.中药药理研究方法学.人民卫生出版社,1993, 145-150.
    [148]孙海燕,方科伟,刘冬等.中华高血压杂志,2010, 18 (1): 91~94.
    [149] S. Yamada, T. Misono, M. Ichikawa et al. Regio- and Stereoselective Synthesis of 1,4-Dihydropyridines by way of an Intramolecularinteraction of a Thiocarbonyl or Carbonyl with a Pyridinium Nucleus. Tetrahedron, 2001, 57: 8939~8949.
    [150] P. Mangeney, R. Gosmini, S. Raussou et al. Preparation and Utilization of Chiral Dihydropyridines. Synthesis of Chiral Indoloquinolizines and Benzoquinolizines. J. Org. Chem., 1994, 59(7): 1877~1888.
    [151] S. Yamada, C. Morita. Face-Selective Addition to a Cation-πComplex of a Pyridiniuin Salt: Synthesis of Chiral 1,4-Dihydropyridines. J. Am. Chem. Soc., 2002, 124(28): 8184~8185.
    [152] M. P S. Ishar, K. Kumar, S. Kaur et al. Facile, Regioselective [4 + 2] Cycloaddition Involving 1-Aryl-4-phenyl-1-azadienes and Allenic Esters: An Efficient Route to Novel Substituted 1-Aryl-4-phenyl-l,4-dihydropyridines. Org. Lett., 2001, 3(14): 2133~2136.
    [153] S. L. Cui, J. Wang, X. F. Lin et al. Domino Reaction of 3-(2-Formylphenoxy)propenoates and Amines: A Novel Synthesis of1,4-Dihydropyridines from Salicaldehydes, Ethyl Propiolate, and Amines. J. Org. Chem., 2007, 72(20): 7779~7782.
    [154] G. Bartoli, K. Babiuch, M. Bosco. Magnesium Perchlorate as Efficient Lewis Acid: A Simple and Convenient Route to 1,4-Dihydropyridines. Synlett, 2007, 18: 2897~2901.
    [155]伍小云.1,4-二氢吡啶化合物库的合成进展.中国科技信息,2008, (24): 27~28.
    [156]郭真,王晓奎,章天等.新型二氢吡啶类化合物的合成及其抗乙型肝炎病毒活性研究.解放军药学学报,2009, (6): 471~475.
    [157] A. Hantzsch. Ueber die Synthese Pyridinartiger Verbindungen aus Acetessigather und Aldehydammoniak. Justus Liebigs Ann. Chem., 1882, 215: 1~82.
    [158]夏静静,张克华,鞠俊.水相条件下1,4-二氢吡啶衍生物的合成与芳构化.有机化学,2009, 29(11): 1849~1852.
    [159]陈国华,王丽,姚秀梅等.新型二氢吡啶类钙拮抗剂化合物的合成与生物活性.有机化学,2010, 30(7): 997~1004.
    [160] S. Hatokeyama, N. Ochi, H. Numata et al. A New Route to Substituted 3-Methoxycarbonyldihydropyrans; Enatioselective Synthesis of (-)-methyl Elenolate. J Chem. Soc. Chem. Commun., 1998, (17): 1202~1204.
    [161] X. P. Liu, Y. Wang, H. Y. Lan et al. Synthesis and Anti-inflammatory Activity of a Novel Series of 9,10-Dihydro-4H,8H-chromeno [8,7-e] [1,3] oxazin-4-one Derivatives. Chem. Res. Chinese U., 2010, 26(2): 268~271.
    [162]李秀平.2,4-吡喃二酮衍生物的合成方法研究进展.农化新世纪,2008, (4): 37~39.
    [163]李占潮,周漩,戴宗等.4-芳基-4H-苯并吡喃类衍生物细胞凋亡诱导活性的定量构效关系研究.分析化学,2009, 37(A03): 222~222.
    [164] E. C. Witte, P. Neubert, A. Roesch. 2H-1-benzopyran-2-one derivatives, processes for the preparation thereof and pharmaceutical compositions containing them. Ger. Pat., DE3427985A1. 1986-01-30.
    [165]聂爱华,顾为,王勇俊等.2H-1-苯并吡喃衍生物的合成及其体外抗癌活性的初步评价.中国药物化学杂志,2008, 18(2): 81~89.
    [166] J. L. Wang, D. Liu, Z. J. Zhang et al. Structure-based Discovery of an Organic Compound That Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells. Proc. Natl. Acad. Sci. USA., 2000, 97: 7124~7129.
    [167] S. C. Kuo, L. J. Huang, H. Nakamura. Studies on Heterocyclic Compounds. 6. Synthesis and Analgesic and Antiinflammatory Activities of 3, 4-Dimethylpyrano[2, 3-c]pyrazol-6-one Derivatives. J. Med. Chem., 1984, 27: 539~544.
    [168] T. Ueda, H. Mase, N. Oda et al. Synthesis of Pyrazolone Derivatives. XXXIX. Synthesis and Analgesic Activity of Pyrano[2,3-c]pyrazoles. Chem. Pharm. Bull., 1981, 29: 3522~3528.
    [169] J. W. Pavlik, V. Ervithayasuporn, J. C. MacDonald et al. The Photochemistry of some Pyranopyrazoles. ARKIVOC. 2009, (viii): 57~68.
    [170] S. M. Yu, S. C. Kuo, L. J. Huang et al.Vasorelaxation of Rat Thoracic Aorta Caused by Two Ca(2+)-channel Blockers, HA-22 and HA-23. J. Pharm. Pharmacol., 1992, 44: 667~671.
    [171] A. G. M. Fraga, C. R. Rodrigues, A. L. P. de Miranda et al. Synthesis and Pharmacological Evaluation of Novel Heterotricyclic Acylhydrazone Derivatives, Aesigned as PAF Antagonists. Eur. J. Pharmacol. Sci., 2000, 11(4): 285~290.
    [172] M. E. A. Zaki, H. A. Soliman, O. A. Hiekal et al. Pyrazolopyranopyrimidines as a Class of Anti-Inflammatory Agents. Naturforsch, 2006, 61c: 1~5.
    [173] F. M. Abdelrazek, P. Metz, N. H. Metwally et al. Synthesis and Molluscicidal Activity of New Cinnoline and Pyrano [2,3-c]pyrazole Derivatives. Arch. Pharm., 2006, 339: 456~460.
    [174] F. M. Abdelrazek, P. Metz, O. Kataeva et al. Synthesis and Molluscicidal Activity of New Chromene and Pyrano[2,3-c]pyrazole Derivatives. Arch. Pharm., 2007, 340: 543~548.
    [175] Y. A. Mohamed, M. A. Zahran, M. M. Ali et al. Reactions with Pyrano(2,3-c)pyrazole Derivatives: Synthesis of Polyfunctionally Substituted Pyrazolopyranopyrimidine and Pyrazolopyranotriazolo- pyrimidine Derivatives. J. Chem. Res., Synop., 1995, 8: 322~323.
    [176] F. Helga, H. Uwe. Production of Hydrazino-pyrazolo: Pyridine Herbicide Intermediate. Ger Pat., DE19613753A1. 1997-10-02.
    [177] N. Erhard, F. Wilfried, A. Friedrich et al. Pyrazolo not 3,4-b Pyridine Derivatives, Processes andIntermediates for Their Preparation, and Their Use as Agents with Herbicidal Activity. Eur. Pat., EP0245860A2, 1987-11-19.
    [178] M. H. Elnagdi, R. M. AbdelMotaleb, M. Mustafa et al. Studies on Heterocyclic Enamines: New Syntheses of 4H-Pyranes, Pyranopyrazoles and Pyranopyrimidines. J. Heterocyclic Chem., 1987, 24(6): 1677~1681.
    [179] C. -J. Li. Organic Reactions in Aqueous Media with a Focus on C-C Bond Formations. Chem. Rev., 1993, 93: 2023~2035.
    [180] A. Lubineau, S. Otto, J. B. Engberts. Effects of the Hydrophobicity of the Reactants on Diels-Alder Reactions in Water. J. Org. Chem. 1998,. 63: 8989~8994.
    [181] R. Ballin, G. Bosica. The Michael Reaction of Nitroalkanes with Conjugated Enones in Aqueous Media. Tetrahedron Lett., 1996, 37: 8027~8030.
    [182] R. Ballini, G. Bosica. An Important Improvement of the Henry Reaction. J. Org. Chem., 1997, 62: 425~427.
    [183] F. Bigi, S. Carloni, L. Ferrari et al. Clean Synthesis in Water. Part 2: Uncatalysed Condensation Reaction of Meldrum's Acid and Aldehydes. Tetrahedron Lett., 2001, 42(31): 5203~5205.
    [184] R. Gr. Redkin, L. A. Shemchuk, V. P. Chernykh. Synthesis and Molecular Structure of Spirocyclic 2-Oxindole Derivatives of 2-Amino-4H-pyran Condensed with the Pyrazolic Nucleus. Tetrahedron, 2007, 63(46): 11444-11450.
    [185] F. Lehmann, M. Holm, S. Laufer. Three-component Combinatorial Synthesis of Novel Dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem., 2008, 10: 364~367.
    [186] G. Vasuki, K. Kumaravel. Rapid Four-component Reactions in Water: Synthesis of Pyranopyrazoles. Tetrahedron Lett., 2008, 49: 5636~5638.
    [187] Y. M. Litvinov, A. A. Shestopalov, L. A. Rodinovskaya et al. New Convenient Four-Component Synthesis of 6-Amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and One-Pot Synthesis of 6′-Aminospiro[(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-Carbonitriles. J. Comb. Chem., 2009, 11: 914~919.
    [188] W. Holzer, A.Ebner, K. Schalle et al. Novel Fluoro-substituted Benzo- and Benzothieno Fused Pyrano[2,3-c]pyrazol-4(1H)-ones. J. Fluorine Chem., 2010, 131(10): 1013~1024.
    [189] C. Temple, Jr. G. A. Rener, W. R. Raud et al. Antimitotic Agents: Structure-activity Studies withsome Pyridine Derivatives. J. Med. Chem., 1992, 35: 3686~3690.
    [190] Y. Zhang, O. A. Pavlova, S. I. Chefer et al. 5-Substituted Derivatives of 6-Halogeno-3- ((2-(S)-azetidinyl)methoxy)pyridine and 6-Halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with Low Picomolar Affinity for Alpha4beta2 Nicotinic Acetylcholine Receptor and Wide Range of Lipophilicity: Potential Probes for Imaging with Positron Emission Tomography. J. Med. Chem., 2004, 47: 2453~2465.
    [191] C. -S. Chang, Y. -T. Lin, S. -R. Shih et al. Design, Synthesis, and Antipicornavirus Activity of 1-[5-(4-Arylphenoxy)alkyl]-3-pyridin-4-ylimidazolidin-2-one Derivatives. J. Med. Chem., 2005, 48: 3522~3535.
    [192] J. F. Zhou, G. X. Gong, F. X. Zhu et al. Microwave Promoted One-pot Synthesis of 3-(2?-Amino-3?-cyano-4?-arylpyrid-6?-yl) Coumarins. Chin. Chem. Lett., 2009, 20: 37~39.
    [193] A. Altundas, S. Ayvaz, E. Logoglu. Synthesis and Evaluation of a Series of Aminocyanopyridines as Antimicrobial Agents. Med. Chem. Res., 2009, 20(1): 1~8.
    [194] A. R. Gholap, K. S. Toti, F. Shirazi et al. Synthesis and Evaluation of Antifungal Properties of a Series of the Novel 2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and Its Analogues. Bioorg. Med. Chem., 2007, 15: 6705~6715.
    [195] K. Gobis, H. Foks, A. K?dzia et al. Synthesis and Antibacterial Activity of Novel Pyridine and Pyrazine Derivatives Obtained from Amidoximes. J. Heterocyclic Chem., 2009, 46: 1271~1279.
    [196] J. J. Baldwin, E. L. Engelhardt, R. Hirschmann et al. Heterocyclic Analogues of the Antihypertensive Beta-adrenergic Blocking Agent (S)-2-[3-(ter-butylamino)-2-hydroxypropoxy]-3- cyanopyridine. J. Med. Chem., 1980, 23: 65~70.
    [197] A. A. Krauze, R. O. Vitolinya, G. V. Zarin'sh et al. Synthesis and Cardiovascular Activity of Substituted 3-Cyano-3,4-dihydropyridine-2-thiones and 3-Cyanopyridine-2-thiones. Pharm. Chem. J., 1985, 19: 313~318.
    [198] F. Manna, F. Chimenti, A. Bolasco et al. Anti-inflammatory, Analgesic and Antipyretic 4,6-Disubstituted 3-Cyanopyridine-2-ones and 3-Cyano-2-aminopyridines. Eur. J. Med. Chem., 1992, 27: 627~632.
    [199] F. Manna, F. Chimenti, A. Bolasco et al. Anti-inflammatory, Analgesic and Antipyretic 4,6-Disubstituted 3-Cyano-2-aminopyridines. Eur. J. Med. Chem., 1999, 34: 245~254.
    [200] T. Murata, M. Shimada, S. Sakakibara et al. Synthesis and Structure–activity Relationships of Novel IKK-βInhibitors. Part 3: Orally Active Anti-inflammatory Agents. Bioorg. Med. Chem. Lett., 2004, 14: 4019~4022.
    [201] R. Mahesh, R. V. Perumal, P. V. Pandi. Microwave Assisted Synthesis of 2-(4-Substituted piperazin-1-yl)-1,8-naphthyridine-3-carbonitrile as a New Class of Serotonin 5-HT3 Receptor Antagonists. Bioorg. Med. Chem. Lett., 2004, 14: 5179~5181.
    [202]慕长炜,覃兆海.吡啶类农药的研究进展(续).现代农药,2003, 2(3): 4~10.
    [203] G. F. Yang, L. Xu, A. Lu. Synthesis and Bioactivity of Novel Triazolo[1,5-a]pyrimidine Derivatives [3]. Heteroatom Chem., 2001, 12(6): 491~496.
    [204]韩永奇,韩晨曦.吡啶及吡啶农药前景看好.农化市场十日讯,2010, (10): 16~16.
    [205]丁彩峰,刘芳.氰基吡啶的合成与应用.2007年全国乙醛、醋酸及其衍生物技术、市场研讨会交流论文,2007, (4): 76~81.
    [206]彭晓宏,沈家瑞.聚(丙烯酸钠—4—乙烯基吡啶)的生物降解性和功能性研究.高等学校化学学报,1999, 20(9): 1466~1469.
    [207] F. Shi, S. J. Tu, F. Fang et al. One-pot Synthesis of 2-Amino-3-cyanopyridine Derivatives under Microwave Irradiation without Solvent. ARKIVOC, 2005, (i): 137~142.
    [208] T. Kobayashi, S. Sasaki, N. Tomita et al. Synthesis and Structure-activity Relationships of 2-Acylamino-4,6-diphenylpyridine Derivatives as Novel Antagonists of GPR54. Bioorg. Med. Chem., 2010, 18: 3841~3859.
    [209]刘振香,陈鋆.2-氯-3-氰基吡啶的合成与应用.广东化工,2007, 34(5): 56~58.
    [210] N. M. Evdokimov, I. V. Magedov, A. S. Kireev et al. One-step, Three-component Synthesis of Pyridines and 1, 4-Dihydropyridines with Manifold Medicinal Utility. Org. Lett., 2006, 8: 899~902.
    [211] K. Guo, M. J. Thompson, T. R. K. Reddy et al. Mechanistic Studies Leading to a New Procedure for Rapid, Microwave Assisted Generation of Pyridine-3,5-dicarbonitrile Libraries. Tetrahedron, 2007, 63: 5300~5311.
    [212] S. Kambe, K. Saito, H. A. Midorikawa. Simple Method for the Preparation of 2-Amino-4-aryl-3- cyanopyridines by the Condensation of Malononitrile with Aromatic Aldehydes and Alkyl Ketones in the Presence of Ammonium Acetate. Synthesis, 1980, 366~368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700