报废飞机叶片高温锻压模具激光熔覆修复粉末的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对激光熔覆修复航空发动机叶片报废高温锻压模具中使用热喷涂粉末开裂敏感性较大的缺点以及在高温(800℃以上)服役环境中,熔覆层容易开裂、脱落的问题,本文基于模具材料4Cr5W2SiV,从材料合金化原理出发,综合考虑了激光熔覆过程中熔化与凝固的特点以及基材与粉末的物理化学特性,研发出了专用于激光熔覆修复报废模具的铁基合金粉末。并对激光熔覆修复用合金粉末的最佳配比以及激光熔覆工艺参数对组织结构与性能的影响进行了研究。
     借助OM,SEM和XRD等分析手段,对激光熔覆修复层的组织结构与性能进行了研究,结果表明,当自制铁基熔覆粉末的重量百分比(wt.%)为:0.5C、25Cr、1.0Ni、1.5Si、1.5B、Fe为余量时,获得了无裂纹的熔覆层,熔覆层与基材实现了良好的化学冶金结合。熔覆粉末中造渣元素B的含量应严格控制:当B含量为1.5wt.%时,激光熔覆修复报废模具质量最佳;当B含量低于或高于1.5wt.%时熔覆层表面不平整、有裂纹或孔洞产生。窄带熔覆条件下,固定其它工艺参数,随着扫描速度的增大,熔覆层的平均显微硬度变化较大,P=2.5K W,V=5mm/s,d=3mm,f=300mm时,可以得到组织、硬度较好的熔覆层。但是,由于窄带激光熔覆搭接区太多,导致软化带较多,进而影响使用性能。宽带激光多层熔覆技术是获得较厚熔覆层的良好途径。这种方法对修复大尺寸的失效件非常有利。
     宽带激光熔覆修复的最佳工艺参数为:f=315mm,P=3kW,V=3mm/s,d=3mm×15mm。在最佳工艺条件下,熔覆层内组织过渡良好,结合区白亮带组织为平面晶,在熔覆层底部为胞状晶,熔覆层中部至表面的组织是从树枝晶+柱状晶到等轴晶;熔覆层稀释率小于10%,可以保证所配粉末的原有性能;熔覆层内除了基体相α—Fe外,还有一定量的非晶合相Fe_5C_2、Fe_2B、FeSi与金属间化合物Ni-Cr-Fe、Fe-Cr、Fe-Ni等,保证了熔覆层有良好的硬度,耐磨性能。熔覆层的硬度分布为最表层比较低,由表及里约0.3mm处,硬度明显升高;在0.3mm~0.9mm区域,硬度变化趋于平缓,在热影响区显微硬度最高达到了810HV0.2,在接近基材处,硬度明显下降。熔覆层的耐磨性能是基材的1.5倍。
As to backwards for big cracking susceptibility caused by thermal spraying powders used in the failing aeroengine pieces high-temperature forging mould repaired with laser cladding technology and problems for easy abscission of coating caused in high-temperature service environment(>800℃),a kind of Fe-based alloy powder used in the failing forging mould repaired with laser cladding technology is researched and developed,through strain of thought of combination of alloying principle of materials with melting and solidifying characteristics during laser cladding and physical and chemical characteristics between substrate and powder,based on the mould steel(4Cr5W2SiV).The optimum formulas of the powder and effect of the technological parameters on the microstructure and properties have been investigated.
     The microstructure and properties of coating prepared by laser cladding are studied by means of OM,SEM and XRD.The results indicate that no cracks coating and excellent chemical metallurgical bonding between cladding coating and substrate are obtained under condition of optimum formulas(wt.%:0.3C,25Cr,1.0Ni,1.7Si,1.5B,rest Fe).The contents of slag agent B element must been controlled strictly:The optimum properties could been obtained under condition of 1.5wt.%B,Otherwise there may be many defects such as rough surface,cracks,holes and so on.Under condition of narrow laser cladding technology,other technological parameters are fixed,the hardness of the cladding coating changes within a certain of range with increase of the scaning speed.The cladding coating with good microstructure and properties ia obtained under condition of P=2.5KW,V=5mm/s,d=3mm, f=300mm,However,Since narrow laser cladding has more overlapping zones,leading to more soft band,furthermore,performance life is affected.Multi-cladding techenology of wide-band laser is a good approach to obtaining deeper cladding layers.This method is very suitable for repairing failure parts with serious wear.
     The optimum technological parameters of broadband laser cladding is as followed: f=315mm,P=3kW,V=3mm/s,d=3×15mm~2.Under the condition of optimum technological parameters,the transition of microstructure is smooth in cladding coating.The whitebright band is plane crystals in the bonding zone.Cellular crystals is obtained in the bottom of cladding coating.The microstructure from the center to the surface of cladding coating transformes from dendritic crystals and cylinder crystals to equiaxed crystals.The delution ratio is less than 10%and the character of the powder is preserved in the cladding coating. The matrix phase in cladding coating isα-Fe,a certain amount of amorphous alloys such as Fe_2B,Fe_3C,FeSi and intermetallics such as Ni-Cr-Fe,Fe-Cr,Fe-Ni are distributed on the matrix phase.Therefore,good hardness and wear resistance of the cladding coating can be guaranteed.The hardness of surface is relatively low,the hardness about 0.3mm distance from surface increases obviously,the hardness keeps smooth increase from 0.3mm to 0.9mm. The hardness has the maximum in the H.A.Z,up to 810HV0.2,then it drops quickly from H.A.Z to substrate.The wear resistance of cladding coating is 1.5 times greater than that of substrate.
引文
[1]吴承建.金属材料学[M].北京:冶金工业出版社,2003.
    [2]赵海云.熔覆合金设计及微观组织与性能研究[D].中国科学院力学研究所,2001.
    [3]刘其斌,李宝增.航空发动机制件报废锻压模具激光熔覆修复研究[J].金属热处理,2007.
    [4]王茂才,吴维驶.先进燃气轮机叶片激光修复技术[J].燃气轮机技术,2001,14(4):53-56.
    [5]关桥.发动机叶片与部件修复工程中的焊接技术[J].航空工艺技术,1993,2,(4):93-95.
    [6]刘其斌.激光加工技术及其应用[M].冶金工业出版社,2007.
    [7]张永康.激光加工技术[M].北京:化学工业出版社,2004.
    [8]胡传炘.表面处理手册[M].北京:北京工业大学出版社,2004.
    [9]虞钢,虞和济.集成化激光智能加工工程[M].北京:冶金工业出版社,2002.
    [10]DavidW.Gandy,Gregory J.Frederiek,Artie J.Peterson,J.T.Stover;R.Viswanathan.Development of a laser-based/high strength weld filler process to extend repair limits on In-738 gas turbine blades[J].Fourth International EPRI Conference.2000,June:7-9.
    [11]L.Sexton,S.Lavin,G.Byrne,A.Kennedy.Laser cladding of aerospace materials.Journal of Materials Processing Technology[J],2002(122):63-68.
    [12]L.Shepeleav,B.Medres,W.D.Kaplan et al.Laser cladding of turbine blades.Surface and Coating Technology[J],2000(125):45-48.
    [13]Gnanamuthu D S,U.S.[P],3952180,April,20,1976.
    [14]刘军,王捷.航空发动机涡轮叶片叶尖修补焊修复技术探讨[J].航空发动机,1994,2:46-49.
    [15]黄庆南,万明学,申秀丽等.涡轮叶片锯齿冠激光熔覆的应用研究[J].燃气涡轮试验与研究,2002,2:50-53.
    [16]胡乾午,刘顺洪,李志远等.涡轮发动机叶片的激光表面强化[J].应用激光,1998,18(2):75-77.
    [17]Minlin Zhong,Hongqing Sun,Wenjin Liu,etal.Boundary Liquation and Interface Cracking Characterization in Laser Deposition of Inconel738 on Directionally Solidified Ni-based Super Alloy[J].Script Materialia,2005,53:159-164.
    [18]叶和清,王忠柯,许德胜等.零件表面裂纹激光修复的组织结构研究[J].华中理工大学学报,2000,28(12):73-75.
    [19]徐志刚,张宗林,王茂才等.某型发动机叶片激光熔覆处理的热裂纹敏感性研究[J].腐蚀科学与防护技术,1996,8(1):54-58.
    [20]雒江涛,郭洪,梁二军等.镍基合金的宽带激光熔覆[J].中国激光,200l,28(10):958-959.
    [21]洪永昌,夏正文.不同基材和涂层激光重熔表面改性的研究现状与进展[J].电焊机,2005,35(11):6-12.
    [22]杨胜群,孟庆武,耿林等.钛合金表面激光重熔镍包石墨涂层的研究[J].应用激光,2006,26(4):227-229.
    [23]汤光平,周文凤,黄文荣.激光重熔处理对渗硼层脆性的影响[J].理化检验2物理分,2003,39(12):603-60.
    [24]刘其斌,朱维东,董闯等.宽带激光熔覆工艺参数对梯度生物陶瓷复合涂层组织与烧结性的影响[J].生物医学工程学杂志.2005,22(6):1193-1196.
    [25]陈传忠,王佃刚,雷廷权等.激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J].中国激光,2004,31(8):1022-1024
    [26]朱润生.自熔合金粉末的研究[J].粉末冶金工业,2000,10(2):7-14.
    [27]胡木林,谢长生,王爱华.激光熔覆材料相容性的研究进展[J].金属热处理,2001,26(1):1-7.
    [28]祝柏林,胡木林,陈俐.激光熔覆层开裂问题的研究现状[J].金属热处理,2007,(7):1-4.
    [29]张迪,单际国,任家烈.高能束熔覆技术的研究现状及发展趋势[J].激光技术,200125(1):39-42.
    [30]张三川,姚建铨,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术,2002,26(3)204-207.
    [31]NAGARATHNAMK,KOMVOPOULOSK.Microstrctural and micro-hardness characteristics of laser-sysnthesized Fe-Cr-W-C coatings[J].Metallurgical and MaterialsTrans,1995,A26(8):2131-2139.
    [32]谭文,刘文今,贾俊红.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000(1):13-15.
    [33]陈俐,谢长生,胡木林.激光熔覆用铁基合金工艺性研究[J].焊接技术,2001,25(5):343-346.
    [34]宋武林.激光熔覆层开裂行为及抑制方法的研究[D].武汉:华中理工大学,1996.9-90.
    [35]贾俊红,钟敏霖,刘文今.Ti对Fe-C合金表面激光熔覆复合材料层组织和性能的影响[J].应用激光,2000,20(4):145-148.
    [36]武晓雷,洪友士.激光熔覆铁基大厚度非晶合金表层的研究[J].材料热处理学报,2001,22(1):51-54.
    [37]ZHANG QM,HE J J,LIU W Jet al.Microstructures and properties of (2.4%Zr+1.2%Ti+15%WC)/FeCSiB layers produced by laser cladding[A].Lasers inMaterialsProcessing andManufacturing[C].Shanghai:The International Society for Optical Engineering,2002.253-258.
    [38]周卓华.铸造镍基高温合金激光熔凝、熔覆的开裂行为研究[D].武汉:华中理工学,1996.17-35.
    [39]HERNANDEZ J,VANNES A.Laser surface cladding and residual stress[A].Proceedings of the 3rd International Conference on Lasers in Manufactuing[C].Paris:Springer-Vedag,1986.181-190.
    [40]王新林,漆海滨,石世宏.激光熔覆石化阀门密封面熔覆层裂纹控制的研究[J].激光技术,2002,26(5):359-363.
    [41]张三川.送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成形机理研究[D].郑州:郑州大学.2002.
    [42]SONG WL,ZHU B D,XIE Ch Shet al.Craeking susceptibility of alaser-clad layer as related to the malting properties of the cladding al-loy[J].Surface and CoatingsTechnology,1999,115(2):270-272.
    [43]李春彦,张松,康煜平.综述激光熔覆材料的若干问题[J].激光杂志,2002,22(3):5-9.
    [44]余菊美,晁明举,梁二军等.TiO2的含量对铁基合金激光熔覆层组织和性能的影响[J].激光杂志,2006,27(6):70-71.
    [45]余菊美,卢洵,梁二军等.铁基合金激光熔覆层组织分布及开裂敏感性研究[J].应用激光,2006,26(3):175-177.
    [46]张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005,22(3):98-102.
    [47]杨扬.CO2激光束几种聚焦方案的比较[J].激光杂志1999,20(2).
    [48]周炳琨,高以智,陈家骅等.激光原理[M].北京:国防工业出版社,1980.
    [49]李俊昌.激光热处理优化控制研究[M].北京:冶金工业出版社,1995.
    [50]卢长亮,胡芳友,崔爱永.变形铝合金激光熔覆工艺研究[J],中国表面工程2007,20(6):44-47.
    [51]陈光霞,卢尧君,曾晓雁.Nd:YAG激光器金属零件激光快速成型工艺研究[J]. 热加工工艺,2006,35(23):9-11.
    [52]刘秀波,王华明.工艺参数对TiAl合金激光熔覆复合涂层的影响[J].激光技术,2006,30(1):67-69.
    [53]张霜银,林鑫,陈静.工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J].稀有金属材料与工程,2007,36(10):1839-1842.
    [54]任振安,郭作兴,吴山力.工艺参数对铜基激光熔覆层组织及耐磨性的影响[J].焊接学报,2002,23(1):69-72.
    [55]姚宁娟,侯立群,左铁钏.大面积激光熔覆的工艺研究[J].中国表面工程,2002,2(55):1-3.
    [56]刘怀喜,闫耀辰,马润香.激光熔覆Ni基合金的工艺和组织研究[J].2005,11(6):33-35.
    [57]马乃恒,梁工英,苏俊义.激光熔覆工艺参数对TiCp/Al表层复合材料的影响[J].中国有色金属学报,2001,12:1041-1044.
    [58]赵海鸥,李春华.激光熔覆工艺特性及裂纹敏感性研究[J].金属热处理2001(1):18-20.
    [59]陈俐,谢长生,胡木林.激光熔覆用铁基合金工艺性研究[J].焊接技术2001,30(3):2-4.
    [60]束德林.工程材料力学性能[M].机械工业出版社,2006.
    [61]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000.
    [62]刘鸿文.材料力学[M].北京:高等教育出版社,1997.
    [63]栾景飞,胡建东,周振丰等.激光熔覆参数对灰铸铁激光熔覆层裂纹的影响[J].
    [64]袁斌,龚知本,沈书泊等.新的多道搭接熔覆方法的初步研究[J].
    [65]王东升,于志青,晁明举等.V_2O_5和工艺参数对镍基合金激光熔覆层裂纹敏感性的影响激光杂志[J].2005,26(6):81-84.
    [66]谢建新.材料加工新技术与新工艺学[M].北京:冶金工业出版社,2004.
    [67]徐洲.材料加工原理[M].北京:科学出版社(第二版),2004.
    [68]王笑天.金属材料学[M].北京:机械工业出版社,1987.
    [69]史美堂.金属材料与热处理[M],上海:上海科学出版社,1988.
    [70]潘金生.材料科学基础[M].北京:清华大学出版社,2004.
    [71]钱九红,李喜坤,邱关明.激光熔覆稀土陶瓷涂层进展[J].稀土,2006,27(4):70-74
    [72]刘怀喜,张三川.溶覆层组织对耐磨性能的影响[J].激光杂志.2002,23(4):60-61.
    [73]贺自强,王新林,全白云.非晶态合金的强韧性及其研究进展[J].金属热处理, 2007,32(5):31-37.
    [74]钟敏建,何正明,沈伟星等.纳米晶Fe5C2/α-Fe双相复合材料结构与磁性的研究[J].材料科学与工程学报,2005,4.
    [75]赖祖涵,晁月盛,滕功清.Fe78813Si9纳米晶合金的晶体结构[J].基础科学,1998,3
    [76]武玉英,刘相法,姜炳刚等.Al-Si-Fe-CU-Mg-Ni合金中复合Fe-Si相的研究[J].铸造,2005,54(10):959-962.
    [77]符寒光,符志强.耐磨铸造Fe-B-C合金的研究[J].金属学报,2006,42(5):545-548.
    [78]孙桓.机械原理[M].西北工业大学出版社,1990.
    [79]张庆茂,廖健宏,刘文今.激光熔覆层摩擦学特性的研究[J].激光应用.2006,17(7):889-890.
    [80]张清.金属磨损和金属耐磨材料手册[M].
    [81]何奖爱,王玉玮.材料的磨损与耐磨材料[M].沈阳:东北大学出版社,2001:34-40.
    [82]郭跃华.摩擦磨损微观组织形貌仿真[D].昆明:昆明理工大学硕士学位论文,2004.
    [83]温诗铸,黄平.磨损学原理[M].北京:清华大学出版社,2002:301-333
    [84]尚丽娟,李超,周述仁等.铈对激光熔覆钴基自熔合金的改性[J].金属热处理学报,1995,16(2):53-56.
    [85]赵高敏,王昆林,刘家浚.La_2O_3对激光熔覆铁基合金层硬度及其分布的影响[J].金属学报,2004,40(10):1115-1120.
    [86]冶军.美国镍基高温合金[M].北京:科学出版社,1978.
    [87]Pan F,Zhou S,Ding P,et al.Metalstable Austenite Transfomation in low Alloy High Speed Steel.Scripta.Metal.Master.1992.27:1145.
    [88]张维平,刘硕,马玉涛.激光熔覆颗粒增强金属基复合材料涂层强化机制[J].材料热处理学报,2005,26(1):70-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700