丝裂霉素C预防硬膜外瘢痕粘连的分子生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验旨在通过体外培养人成纤维细胞,通过施加不同浓度的丝裂霉素C(MMC)作用细胞一定的时间后,观察丝裂霉素C对成纤维细胞抑制其正常增殖能力,诱导其凋亡的作用及探讨其中的分子生物学机制。
     方法:1.体外用MEM培养液+10%胎牛血清培养人皮肤成纤维细胞并传致5-8代,分别用含有0、0.001、0.01、0.05、0.1、0.2、0.3 mg/ml MMC的MEM培养液处理种于96孔板中的成纤维细胞12h后,再于每孔加入CCK-8试剂100ul,放入细胞培养箱内1小时后用酶标仪检测不同浓度MMC处理组在450/630nm处的吸光度值,计算MMC对成纤维细胞的生长抑制效果;2.将正处于对数增长期的成纤维细胞均匀地种于消毒后置于6孔板中的圆形盖玻片上,以0、0.001、0.01、0.05、0.1、0.2 mg/ml MMC处理细胞爬片12小时后用预冷的PBS洗净培养液以Hoechest33342细胞核染色,在荧光显微镜下观察凋亡细胞核形态并用image pro-plus软件计数各组凋亡细胞百分率;3.按不加药培养细胞12h做对照组、0.2 mg/ml MMC培养细胞12h、PI3K/Akt抑制剂LY294002 100nmol/L与MEK/ERK抑制剂PD98059 100nmol/L分别处理细胞1h后换新鲜培养基培养12h分为4组,用预冷PBS洗净培养液,每瓶细胞加入100ul细胞裂解液,裂解20分钟后4oC 12000rpm离心提取胞浆蛋白,Western bolt免疫印迹法检测caspase-3,p-ERK1/2,p-Akt及Bad表达量,流式细胞法检测细胞凋亡率。
     结果:不同浓度的MMC对人成纤维细胞的增殖抑制作用与药物浓度呈正相关性,在0.2mg/ml时MMC对细胞活性抑制率为50.21%;0.3mg/ml时达80.71%;Hoechest33342细胞核染色随MMC浓度升高出现凋亡细胞核特征的染色质凝聚,边集,呈亮蓝色核的比率逐渐增高,image pro-plus软件计数凋亡细胞显示0.05、0.1、0.2 mg/ml MMC处理组凋亡率显著高于其他低浓度组,差异有统计学意义(p<0.05)。Western blot检测细胞相关凋亡信号途径的蛋白表达结果显示:0.2mg/ml MMC组,PD98059组,LY294002组caspase-3表达均显著高于对照组,p-ERK1/2,p-Akt表达均较对照组降低,0.2mg/ml MMC组Bad表达水平显著高于其他三组。流失细胞法测细胞凋亡率结果显示0.2mg/ml MMC组凋亡率明显高于对照组和抑制剂预处理组。
     结论:1.一定浓度的MMC可通过诱导成纤维细胞发生凋亡而抑制其正常增殖;
     2.其效应途径可以解释为部分是通过降低ERK1/2, Akt的磷酸化水平使胞浆内Bad表达水平升高而导致凋亡执行蛋白caspase-3的表达水平增加,诱导成纤维细胞由正常增生状态转而发生凋亡减少胶原纤维生成,从而抑制瘢痕形成。
     3.MMC抑制硬膜外瘢痕粘连的分子生物学机制其中之一是作为抗肿瘤药的丝裂霉素在术后使大量迁移至伤口炎症中心,并受到各种炎症介质和细胞生长因子刺激的成纤维细胞活性受到抑制,发生凋亡,减少了有效生成大量瘢痕组织的成纤维细胞数量,使后期为数不多的成纤维细胞不能产生过多的胶原纤维而造成瘢痕与硬膜的粘连,从而可以解决术后粘连带来的下腰椎手术失败综合症。
Objective: To elucidate the mechanism of mitomycin C prevention of peridural adhesion after laminectomy on inducing apoptosis of fibroblast
     Methods The cultured fibroblasts were exposed for 12h with 0mg/ml,0.001 mg/ml,0.01mg/ml,0.05 mg/ml,0.1 mg/ml,0.2 mg/ml,0.3 mg/ml mitomycin C, respectively. The cell proliferation was detected by CCK-8 assay and Apoptotic cell death was analyzed by Hoechst 33342 stain. The expression of caspase-3 and the activation of ERK1/2, Akt ,Bad were analyzed by Western blot
     Results Treatment of fibroblast with MMC induced a significant decreased of proliferation. fibroblasts exposed for 0.001 mg/ml to 0.2 mg/ml MMC, Staining with Hoechst 33342 MMC displayed nuclei with abnormal morphologies:“bean”-shaped nuclei with highly condensed chromatin or nuclei with irregular clumps of dense chromatin. 0.2mg/ml MMC,PD98059(ERK kinase inhibitor),LY294002(AKT kinase inhibitor) induced a significant increased of caspase-3 than control, accompanied by an increase in cell apoptosis.0.2mg/ml MMC PD98059,LY294002 caused decrease of p-ERK1/2 and p-Akt,at the same time, 0.2mg/ml MMC increased Bad than PD98059,LY294002 and control.
     Conclusion 0.2 mg/ml MMC can induce fibroblast apoptosis by activation of caspase-3 in which requires inactivation of p-ERK1/2, p-Akt and increase the Bad. MMC can inhibit fibroblast proliferation and induce its apoptosis, which may be one of mechanism of that MMC prevent peridural adhesion after laminectomy
引文
[1]张抒,候春林.壳多糖膜预防椎板切除术后硬膜周围粘连的实验研究.中华实验外科杂志,1999,16:464-465.
    [2]陈蓟,肖德明,杨宏图,等.丹参凝胶对椎板切除术后硬膜外粘连的影响.中华实验外科杂志,2006,23:609-610.
    [3]孙志,扬剐娜.Bcl-2及其重要功能结构域在调节成纤维细胞NIH3T3凋亡中的研究.中华实验外科杂志,2009,26:1614-1616.
    [4]李娟,单长民,王建,等.丝裂霉素C诱导喉癌细胞凋亡及其对Bcl-2基因表达的影响.中国现代药物应用,2007,1:7-9.
    [5]陈毓东,王映芬,莫百军.丝裂霉素C抗人翼状胬肉成纤维细胞增殖的实验研究.眼科研究,2001,19:39-41.
    [6]王立新,张学康,曹晓建,等.不同浓度丝裂霉素C预防椎板切除后硬膜粘量的实验研究.中国矫形外科杂志,2007,15:691-693.
    [7]曹晓建,张宁,金正帅,等.丝裂霉素C和5-氟尿嘧啶预防椎板切除后硬膜外瘢痕黏连的效果比较.中华实验外科杂志,2006,23:31-733.
    [8] Susan C Pitt, Herbert Chen. Phosphatidylinositol 3-Kinase-Akt Signaling in Pulmonary Carcinoid Cells.jamcollsurg,2009,1:82-87.
    [9] Toshimitsu Suhara, Hyo-Soo Kim, Lorrie A,et al. Suppression of Akt Signaling Induces Fas Ligand Expression: Involvement of Caspase and Jun Kinase Activation in Akt-Mediated Fas Ligand Regulation. MOLECULAR AND CELLULAR BIOLOGY ,2002,22: 680–691.
    [10] Mitsui H, Takuwa N, Maruyama T et al.The MEK1-ERKmap kinase pathway and the PI 3-kinase-Akt pathway independently mediate anti-apoptotic signals in HepG2 liver cancer cells.Int J Cancer,2001,1;92:55-62.
    [11]Yigong Shi.Mechanical aspects of apoptosome assembly. Current Opinion in Cell Biology, 2006, 18:677–684.
    [12] Pedro M. Domingos,Hermann Steller.Pathways regulating apoptosis during patterning and development. Curr Opin Genet Dev,2007,17: 294–299.
    [13]陆圣华,曹晓建,王立新,等. 7.0T Micro MRI观察丝裂霉素C预防硬膜外粘连的效果研究.南京医科大学学报(自然科学版),2008,28:1263-1266.
    [14]于冬梅,郝立君,李颖,等.丝裂霉素C对瘢痕疙瘩成纤维细胞增殖及凋亡的影响.中国临床药理学与治疗学,2007,12:900-904.
    [15] Tae-im Kim, Seung-il Choi, Hyung Keun Lee, et al. Mitomycin C induces apoptosis in cultured corneal fibroblasts derived from type II granular corneal dystrophy corneas. Molecular Vision,2008,14:1222-1228.
    [16] F Pirnia, E Schneider, DC Betticher, MM Borner.Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death and Differentiation,2002,9:905- 914.
    [17]李金,王卫群.丝裂霉素C诱导PRK后角膜基质细胞凋亡的实验研究.眼科研究,2008,26:575-578.
    [18] NiengYan,Yigong Shi. Mechanisms of ApoptosisThrough Structural Biology. The Annual Review ofCell and Developmental Biology, 2005, 21:35–56
    [19] Gong Je Seong, Channy Park, Chan Yoon Kim, Young Jae Hong,Hong-Seob So,Sang-Duck Kim, and Raekil Park.Mitomycin-C Induces the Apoptosis of Human Tenon’sCapsule Fibroblast by Activation of c-Jun N-Terminal Investigative Ophthalmology & Visual Science,2005,46:3545-3552
    [20] Jiang H, Fan D, Zhou G, Li X, Deng H, Zhen L. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J Exp Clin Cancer Res, 2010 , 22:29-34
    [21] Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P. Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol , 2010 ,12(5):434-437
    [22] Maurice JM, Gan Y, Ma FX, Chang YC, Hibner M, Huang Y. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: involvement of ERK and Akt signaling pathways.Acta Pharmacol Sin, 2010,31:493-500
    [23] Sun ZJ, Chen G, Hu X, Zhang W, Liu Y, Zhu LX, Zhou Q, Zhao YF. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis, 2010,13: 552-561
    [24] Steelman LS, Abrams SL, Shelton JG, Chappell WH, B?secke J, Stivala F, Donia M, Nicoletti F, Libra M, Martelli AM, McCubrey JA. Dominant roles of the Raf/MEK/ERK pathway in cell cycle progression, prevention of apoptosis and sensitivity to chemotherapeutic drugs,Cell Cycle. 2010,10:913-915
    [25] Grotegut S, Kappler R, Tarimoradi S, Lehembre F, Christofori G, Von Schweinitz D. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation.Int J Oncol, 2010,36:1261-1267.
    [1]矫毓娟,刘江红,许贤豪.细胞凋亡的检测方法(综述)[J].中国神经免疫学和神经病学杂志,2004,11:53-55
    [2]周桔,罗荣保,汤长发等.Bcl-2蛋白家族和p53基因在细胞凋亡中的调控效应[J].中国组织工程研究与临床康复,2007,11:1950-1952
    [3]卢晓晔,钟雪云.Caspases与细胞凋亡(综述)[J].暨南大学学报(自然科学与医学版),2000,21:121-124
    [4]高欣,康立源,高秀梅.脑缺血后神经细胞凋亡通路及中药干预[J].中国中医药信息杂志,2007,14:96-98
    [5]王珏.中药抑制细胞凋亡的研究进展[J].云南中医中药杂志,2007,28:46-48
    [7]汤湧,张大永,吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J].药学学报,2008,43:669-677
    [8]严慧,邓丹琪.紫外线照射表皮细胞后凋亡机制的研究进展[J].环境与职业医学,2008,25:322-325
    [9]高飞.线粒体促凋亡蛋白Smac/DIABLO及其与肿瘤的关系[J].肿瘤,2007,27:7-10
    [10]刘宇,季宇彬.肿瘤细胞的凋亡及其分子机制研究[J].哈尔滨商业大学学报(自然科学版),2008,24:211-214
    [11]张曙光,刘芝华,张林.凋亡抑制基因XIAP在肿瘤治疗中的研究进展[J].世界华人消化杂志,2006,14:2626-2631
    [12]孙麟,陈乔尔.Fas/FasL凋亡系统与肿瘤免疫逃逸研究进展[J].医学综述,2008,14:1132-1136
    [13]王保平,朱晨宇.smac/DIABLO蛋白促进肿瘤细胞凋亡机制的研究进展[J].山东医药,2007,47:131-133
    [14]谭兴琴.凋亡因子bcl-2/bax与心肌缺血再灌注损伤[J].重庆医学,2007,36:431-432
    [15]毛德文,陈月桥,王丽等.Caspase-8及Caspase-3与细胞凋亡[J].辽宁中医药大学学报,2008,10:148-150
    [16]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bcl-2家族蛋白研究进展[J].医学综述,2008,14:489
    [17]夏金荣.细胞凋亡及其信号转导、凋亡抵抗与恶性肿瘤[J].临床荟萃,2005,20:157-156
    [18]叶子茵.细胞对TRAIL诱导凋亡敏感性的调控机制[J].临床与实验病理学杂志,2006,22(5)
    [19]刘丽华,韩毅力,白羽.死亡受体介导的凋亡和肝脏疾病[J].医学综述,2005,11:608-610
    [20]都昌胡,徐军.凋亡蛋白抑制剂家族研究进展[J].世界华人消化杂志,2005,13:1581-1589
    [21] Sumi D, Shinkai Y, Kumagai Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol. 2010 May 1;244(3):385-92.
    [22]Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010 Feb 12;37(3):299-310.
    [23] Lopez-Guerra M, Colomer D. NF-kappaB as a therapeutic target in chronic lymphocytic leukemia. Expert Opin Ther Targets. 2010 Mar;14(3):275-88
    [24] Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77(6):400-10.
    [25]Cusimano EM, Knight AR, Slusser JG, Clancy RL, Pierce JD. Mitochondria: the hemi of the cell. Adv Emerg Nurs J. 2009 Jan-Mar;31(1):54-62
    [26] Djavaheri-Mergny M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene. 2010 Mar25;29(12):1717-9
    [27] Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010 Apr;1802(4):396-405.
    [28]Oyagbemi AA, Saba AB, Azeez OI. Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer. 2010Jan-Mar;47(1):53-8
    [29] Rumora L, Grubisi? TZ. A journey through mitogen-activated protein kinase and ochratoxin A interactions. Arh Hig Rada Toksikol. 2009 Dec;60(4):449-56
    [30] Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323-54
    [31] Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S.Mitochondrial calpain system: an overview. Arch Biochem Biophys. 2010 Mar1;495(1):1-7
    [32] Mahmood Z, Shukla Y. Death receptors: targets for cancer therapy. Exp Cell Res. 2010 Apr 1;316(6):887-99
    [33] Robb EL, Page MM, Stuart JA. Mitochondria, cellular stress resistance, somatic cell depletion and lifespan. Curr Aging Sci. 2009 Mar;2(1):12-27
    [34] Pessayre D, Mansouri A, Berson A, Fromenty B. Mitochondrial involvement in drug-induced liver injury. Handb Exp Pharmacol. 2010;(196):311-6
    [35] Lehotsky J, Burda J, DanielisováV, Gottlieb M, Kaplán P, SaniováB. Ischemic tolerance: the mechanisms of neuroprotective strategy. Anat Rec (Hoboken). 2009 Dec;292(12):2002-12
    [36] Dinh CT, Van De Water TR. Blocking pro-cell-death signal pathways to conserve hearing. Audiol Neurootol. 2009;14(6):383-92
    [37] Takeuchi K, Ito F. EGF receptor in relation to tumor development: molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J. 2010 Jan;277(2):316-26
    [38] Spender LC, Inman GJ. Targeting the BCL-2 family in malignancies of germinal centre origin. Expert Opin Ther Targets. 2009 Dec;13(12):1459-72
    [39] Hamilton J, Bernhard EJ. Cell signalling and radiation survival: the impact of protein phosphatases. Int J Radiat Biol. 2009 Nov;85(11):937-42
    [40] Bollrath J, Greten FR. IKK/NF-kappaB and STAT3 pathways: central signaling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 2009 Dec;10(12):1314-9
    [41] Bovellan M, Fritzsche M, Stevens C, Charras G. Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J.2010 Jan;277(1):58-65
    [42]: Portugal J, Bataller M, Mansilla S. Cell death pathways in response to antitumor therapy. Tumori. 2009 Jul-Aug;95(4):409-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700