轴向运动粘弹性梁的横向振动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向运动梁是一种重要的工程元件,在动力传送带、磁带、纸带、纺织纤维、带锯、空中缆车索道、高楼升降机缆绳、单索架空索道等多种工程系统中都有着广泛的应用,因而轴向运动连续体横向振动及其控制的研究有着重要的实际应用价值。同时,轴向运动连续体作为典型陀螺连续系统,由于陀螺项的存在,对其振动的分析也有着重要的理论意义。
     轴向运动梁控制方程中的非线性项是由梁的大变形引起,梁的弯曲变形引起轴向应力的变化,这种非线性项即所谓几何非线性。Wickert提出准静态假设,认为因梁弯曲变形而引起的应力变化,沿梁的轴向近似均匀分布,应力取梁应力的一个平均值,得到了轴向运动梁非线性振动的积分-偏微分方程。在本文中,我们分析梁上微单元的受力情况,利用牛顿第二定律得到梁非线性振动的偏微分方程,在这种非线性模型,梁的轴向应力在梁的整个轴是不再是一个静态值,而是与轴向坐标有关的一个变量。
     在本文的轴向运动梁振动的分析中,我们还要考虑梁材料的粘弹性。这种粘弹性阻尼的存在对运动梁振动的幅频响应、受迫振动以及受激励运动梁的稳定性有非常明显的作用。
     对于带有小扰动的轴向运动梁的非线性振动,摄动法是解决问题的有效途径。由于连续介质为无穷维的系统,对其离散必造成误差。传统的对离散化方程做摄动法有一定的局限性。本文中,将要利用直接多尺度法来分析轴向运动梁的振动问题,把多尺度法直接应用于梁的控制偏微分方程,然后根据可解性条件求解。
     利用多尺度法,我们对带有参数激励或外激励的轴向运动梁非线性振动的幅频响应做出了详细的分析。用这种方法研究了次谐波共振及组合共振时的分岔行为和稳定性以及受迫共振的跳跃现象和稳定性问题对跳跃的影响。对于线性系统的小扰动情况,我们还用平均法分析了共振所引发的失稳现象,讨论了多种参数,比如轴向速度,刚度,粘弹性阻尼等对失稳区域的影响。
     多尺度方法是解决微分方程有效的方法,人们往往用一阶近似来讨论问题。我们用二阶多尺度方法发现了梁粘弹性阻尼对梁自然频率的影响,而这是用一阶多尺度方法无法得到这种结果的。
     以前文献所假设的边界条件,多认为运动两端为铰支或固支,而实际上,这种假设过于理想化。本文中,我们将研究一种新的边界条件,即两端带有扭转弹簧的铰支支承条件,这种边界条件更符合工程实际中的真实情况。可以证明,铰支边界假设低估了梁的自然频率,而固定支承计算所得固有频率结果值偏大。
     Galerkin截断方法常常用于求解偏微分方程,它可以用来分析强非线性及高
The class of systems with axially moving materials involves power transmission chains, band saw blades, aerial cableways and paper sheets during processing. Transverse vibration of such systems is generally undesirable although characteristic of operation at high transport speeds. The study of the vibration response of the axially moving materials is of great significance. Through a convective acceleration component, the governing equations of motion for axially moving materials are skew-symmetric in the state space formulation. The research of the transverse vibration in that case may pay contribution to the context of continuous gyroscopic systems.The nonlinear effect cannot be neglected if the transverse displacement of the axially moving beam is rather large. When transverse motion is treated for axially moving beams, there are two types of nonlinear models, a partial-differential equation or an integro-partial-differential equation. The partial-differential equation is derived from considering the transverse displacement only, and the integro-partial-differential equation is traditionally derived from decoupling the governing equation of coupled longitudinal and transverse motion under the quasi-static stretch assumption that supposes the influence of longitudinal inertia can be neglected.The modeling of dissipative mechanisms is an important research topic of axially moving material vibrations. Viscoelasticity is an effective approach to model the damping mechanism. In present investigation, the Kelvin viscoelastic model will be adopted in the studying of the free vibration, parametric resonance, and the forced vibration of the axially moving beam.Vibrations of continuous systems are always modeled in the form of a partial differential equation with small nonlinear or perturbed terms. The perturbation methods may be applied directly to the partial differential equation system. This approach is called direct-perturbation method. The direct-perturbation method produces more accurate results than the discretization method because the eigenfunctions represent the real system better in the case of the direct-perturbation method.In fact, many real systems could be represented by the axially moving materials with pulsating speed. That is, the axial transport speed is a constant mean velocity with small periodic fluctuations. In some other case, if the foundations supporting the axially moving materials are not motionless, the forced transverse vibration must be considered. The method of multiple scales can be used in those governing equations. The amplitude
引文
[1] Aiken J(1878), An account of some experiments on rigidity produced by centrifugal force, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5(29) 81-105
    [2] Mote CDJr, Dynamic stability of axially moving materials. The Shock and Vibration Digest, 1972, 4(4): 2-11
    [3] Ulsoy AG, Mote CDJr. Band saw vibration and stability. The Shock and Vibration Digest, 1978, 10(1): 3-15
    [4] Ulsoy AG, Mote CDJr, Syzmani R. Proncipal developments in band saw vibration and stability research. Holz als Roh-und Werkstoff, 1978, 36: 273-280
    [5] D'Angelo CIII, Slvarado NT, Wang KW, Mote CDJr. Current research on circular saw and band saw vibration and stability. The Shock and Vibration Digest, 1985, 17(5): 11-23
    [6] Wickert JA, Mote CDJr. Current research on the vibration and stability of axially-moving materials. The Shock and Vibration Digest, 1988. 20(5): 3-13
    [7] Wang KW, Liu SP. On the noise and vibration of chain drive systems. The Shock and Vibration Digest, 1991, 23(4): 8-13
    [8] Abrate AS. Vibration of belts and belt drives. Mechanism and Machine Theory, 1992, 27(6): 645-659
    [9] 陈立群,Zu JW.轴向运动弦线的纵向振动及其控制.力学进展,2001,31(4):535-546
    [10] 陈立群,Zu JW.平带驱动系统振动分析研究进展.力学与实践,2001,23(4):8-12转18
    [11] Chen LQ. Analysis and control of transverse vibrations of axially moving strings. ASME Applied Mechanics Reviews, to be published
    [12] Rega G. Nonlinear dynamics of suspended cables, part 1: modeling and analysis. ASME Applied Mechanics Reviews, to be published
    [13] Rega G. Nonlinear dynamics of suspended cables, part 2: deterministic phenomena. ASME Applied Mechanics Reviews, to be published
    [14] Ibrahim R A. Nonlinear dynamics of suspended cables, part 3: random excitation and interaction with fluid flow. ASME Applied Mechanics Reviews, to be published
    [15] Chubach IT. Lateral vibration of axially moving wire or belt form materials. Bulletin of the Japanese Society of Mechanical Engineers, 1958, 1(1): 24-29
    [16] Thurman AL and Mote CDJr. Free, periodic, nonlinear oscillation of an axially moving strip, ASME Journal of Applied Mechanics, 1969, 36(1): 83-91
    [17] Koivurova H and Salonen EM, Comments on nonlinear formulations for travelling string and beam problems, Journal of Sound and Vibration, 1999, 225(5) 845-856
    [18] Zaiser JN, 1964 Ph. D. Dissertation, University of Delaware. Nonlinear vibrations of a moving threadline.
    [19] Ames WF, Lee SY and Zaiser JN, Nonlinear vibration of a travelling threadline, International Journal of Nonlinear Mechanics, 1968, 3 449-469
    [20] Mote CDJr, On the nonlinear oscillation of an axially moving string, ASME Journal of Applied Mechanics, 1996, 33 463-464
    [21] Simpson A. Transverse modes and frequencies of beams translating between fixed end supports. Journal of Mechanical Engineering Science, 1973, 15(3): 159-164
    [22] Chonan S. Steady state response of an axially moving strip subjected to a stationary lateral load. J. Sound Vib., 1986, 107(1): 155-165
    [23] Wu WZ, Mote CDJr. Parametric excitation of an axially moving band by periodic edge loading. Journal of Sound and Vibration, 1986, 110(1): 27-39
    [24] Han SM, Benaroya H and Wei T, Dynamics of transversely vibrating beams using four engineer theories, Journal of Sound and Vibration, 1999, 225(5) 935-938
    [25] Mote CDJr. A study of band saw vibrations. Journal of the Franklin Institute, 1965, 279(6): 430-444
    [26] Mote CDJr, Naguleswaran S. Theoretical and experimental band saw vibrations. ASME Journal of Engrg. Indus., 1966, 88(2): 151-156
    [27] Wickert JA and Mote CDJr. Classical vibration analysis of axially moving continua. ASME Journal of Applied Mechanics, 1990, 57(3) 738-744
    [28] Meirovitch L, A new method of solution of the eigenvalue problem for gyroscopic systems, AIAA Journal, 1974, 12 1337-1342
    [29] Meirovitch L, A modal analysis for the response of linear gyroscopic systems, ASME Journal of Applied Mechanics, 1975, 42(2) 446-450
    [30] 李晓军,陈立群.关于两端固定轴向运动梁的横向振动.振动与冲击,待发表
    [31] Ulsoy AG. Coupling between spans in the vibration of axially moving materials. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(2): 207-212
    [32] Stylianou M, Tabarrok M. Finite element analysis of an axially moving beam, part 1 time integration. Journal of Sound and Vibration, 1994, 178: 433-453
    [33] Ozkaya E, Oz HR. Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method. Journal of Sound and Vibration, 2002, 254(4): 782-789
    [34] Oz HR, Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity. Journal of Sound and Vibration, 1999, 227: 239-257
    [35] Oz HR. On the vibrations of an axially traveling beam on fixed supports with variable velocity. Journal of Sound and Vibration, 2001, 239: 556-564
    [36] Renshaw AA and Mote CDJr, Local stability of gyroscopic systems near vanishing eigenvalues, ASME Journal of Applied Mechanics, 1996, 63(1): 116-120
    [37] Seyranian AP, Kliem W. Bifurcations of Eigenvalues of gyroscopic systems with parameters near stability boundaries. ASME Journal of Applied Mechanics, 2001, 68(1): 199-205
    [38] Al-jawi AAN, Pierre C, Ulsoy G. Vibration localization in dual-span axially moving beams, part 2 perturbation analysis. Journal of Sound and Vibration, 1995, 179(2): 267-287
    [39] Parker PG, On the eigenvalues and critical speed stability of gyroscopic continua, ASME Journal of Applied Mechanics, 1998, 65: 134-140
    [40] Al-jawi AAN, Pierre C, Ulsoy G. Vibration localization in dual-span axially moving beams, part Ⅰ formulation and results. Journal of Sound and Vibration, 1995, 179(2): 243-266
    [41] Al-jawi AAN, Pierre C, Ulsoy G. Vibration localization in band-wheel systems: theory and experiments. Journal of Sound and Vibration, 1995, 179(2): 289-312
    [42] Wang KW and Liu SP(1991), On the noise and vibration of chain drive systems, The Shock and Vibration Digest, 23(4) 8-13
    [43] Theodore RJ, Arakeri JH, Ghosal A. The modeling of axially translating flexible beams. Journal of Sound and Vibration, 1996, 191(3): 363-376
    [44] Riedel CH and Tan CA(1998), Dynamic characteristics and mode localization of elastically constrained axially moving strings and beams, Journal of Sound and Vibration, 215(3) 455-473
    [45] Oz HR, Pakdemirli M and Ozkaya E, Transition behaviour from string to beam for an axially accelerating material, Journal of Sound and Vibration, 1998, 215(3) 571-576
    [46] Hwang SJ, Perkins NC. Supercritical stability of an axially moving beam part 1 model and equilibrium analysis. Journal of Sound and Vibration, 1992, 154: 381-396
    [47] Hwang SJ, Perkins NC. Supercritical stability of an axially moving beam part 2 vibration and stability analyses. Journal of Sound and Vibration, 1992, 154: 381-396
    [48] Hwang SJ, Perkins NC. High speed stability of coupled band/wheel systems: theory and experiment. Journal of Sound and Vibration, 1994, 196(4): 459-483
    [49] Liu FC, Nonlinear vibration of beams, Aero-Astrodynamics Res. And Dev. Res. Review, 1964, 1: 74-79
    [50] Wickert, JA. Non-linear Vibration of a traveling tensioned Beam. International Journal of Non-Linear Mechanics, 1992, 27(3): 503-517
    [51] Moon J and Wickert JA, Non-linear vibration of power transmission belts, Journal of Sound and Vibration, 1997, 200(4): 419-431
    [52] Wickert JA, Mote CDJr. Response and discretization methods for axially moving materials. Applied Mechanics Reviews, 1991, 44(11): S279-S284
    [53] Chakraborty G, Mallik AK. Parametrically excited nonlinear traveling beams with and without external forcing. Nonlinear Dynamics, 1998, 17: 301-324
    [54] Chakraborty G, Mallik AK. Non-linear vibration of a travelling beam having an intermediate guide. Nonlinear Dynamics, 1999, 20: 247-265
    [55] Chakraborty G, Mallik AK, Hatwal H. Non-linear vibration of a travelling beam. International Journal of Non-Linear Mechanics, 1999, 34: 655-670
    [56] Chakraborty G, Mallik AK. Wave propagation in and vibration of a traveling beam with and without non-linear effects. Part Ⅰ: Free vibration. Jounal of Sound and Vibration, 2000, 236(2): 277-290
    [57] Chakraborty G, Mallik AK. Wave propagation in and vibration of a traveling beam with and without non-linear effects. Part Ⅱ: Forced vibration. Jounal of Sound and Vibration, 2000, 236(2): 291-305
    [58] Pellicano F, Zirilli F. Boundary layers and non-linear vibrations in an axially moving beam. International Journal of Non-Linear Mechanics, 1997, 33(4): 691-711
    [59] Pakdemirli M, Ozkaya E. Approximate boundary layer solution of a moving beam problem. Mathematical and Computational Applications, 1998, 2(2): 93-100
    [60] Oz HR, Pakdemirli M, Boyaci. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. International Journal of Non-Linear Mechanics, 2001, 36: 107-115
    [61] Ravindra B, Zhu WD. Low dimensional chaotic response of axially accelerating continuum in the supercritical regime. Archive of Applied Mechanics, 1998, 68: 195-205
    [62] Parker PG, On the eigenvalues and critical speed stability of gyroscopic continua, ASME Journal of Applied Mechanics, 1998, 65 134-140
    [63] Parker RG, Lin Y. Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations ASME Journal of Applied Mechanics, 2001, 68(1): 49-57
    [64] Pellicano F, Fregolent A, Bertuzzi A, Vestroni F. Primary and parametric non-linear resonances of a power transmission belt. Journal of Sound and Vibration, 2001, 244(4): 669-684
    [65] Marynowski K, Kapitaniak T. Kelvin-Voigt versus Buegers internal damping in modeling of axially moving viscoelastic web. International Journal of Non-Linear Mechanics, 2002, 37: 1147-1161
    [66] Marynowski K. Non-linear dynamic analysis of an axially moving viscoelastic beam. Journal of Theoretical and Applied Mechanics; 2002, 40(2): 465-482
    [67] Wang KW, Mote CDJr. Vibration coupling analysis of band/wheel mechanical systems. Journal of Sound and Vibration, 1986, 109: 237-258
    [68] Wang KW, Mote CDJr. Band/wheel system vibration under impulsive boundary excitation. Journal of Sound and Vibration, 1987, 115: 203-216
    [69] Kim SK, Lee JM. Analysis of the non-Linear vibration characteristics of a belt-driven system. Journal of Sound and Vibration, 1999, 223(5): 723-740
    [70] Yang XD, Chen LQ. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Applied Mathematics and Mechanics, accepted
    [71] Chen LQ, Yang XD and Cheng CJ, Dynamic stability of an axially accelerating viscoelastic beam. European Journal of Mechanics A/Solids, 2004, 23: 659-666
    [72] Zajaczkowski J, Lipinski J. Instability of the motion of a beam of periodically varying length. Journal of Sound and Vibration. 1979, 63: 9-18
    [73] Zajaczkowski J, Yamada G, Further results on the motion of a beam of periodically varying length. Journal of Sound and Vibration. 1980, 68: 173-180
    [74] Ariartnam ST, Asokanthan SF. Torsional oscillations in moving bands. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110(3): 350-355
    [75] Oz HR, Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity. Journal of Sound and Vibration, 1999, 227: 239-257
    [76] Oz HR. On the vibrations of an axially traveling beam on fixed supports with variable velocity. Journal of Sound and Vibration, 2001, 239: 556-564
    [77] Nayfeh AH, Mook DT. Nonlinear Oscillations, Wiley, New York, 1979
    [78] Ibrahim RA, Afaneh AA and Lee BH. Structural modal multifurcation with internal resonance Part 1: deterministic approach, ASME Journal of Vibration and Acoustics. 1993, 115: 182-192
    [79] Lee CL, Perkins NC. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dynamics, 1992, 3: 465-490
    [80] Riedel CH, Tan CA. Coupled, forced response of an axially moving strip with internal resonance. International Journal of Non-Linear Mechanics, 2002,37: 101-116
    [81] Tan CA and Chung CH), Transfer function formulation of constrained distributed parameter systems, part 1-.theory, ASME Journal of Applied Mechanics, 1993,60(4) 1004-1011
    [82] Yang B and Tan CA, Transfer functions of one-dimensional distributed parameter systems, ASME Journal of Applied Mechanics, 1992,59(4) 1009-1014
    [83] Yue MG. Moving contact and coupling in belt strand vibration. In Structural Dynamics of Large Scale and Complex Systems, DE-Vol. 59, ASME, 1993: 139-144
    [84] Yue XG. Belt vibration considering moving contact and parametric excitation. ASME Journal of Mechanical Design, 1995,117: 1024-1030
    [85] Takikonda BO, Baruh H. Dynamics and control of a translating flexible beam with a prismatic joint. ASME Journal of Dynamic Systems, Measurement, and Control, 1992, 114: 422-427
    [86] Chen LQ, Yang XD. Steady-state response of axially moving viscoelastic beam with pulsating speed: comparison of two nonlinear models. International Journal of Solids and Structures. 2005, 42(l):37-50
    [87] Zhang L, Zu JW. Nonlinear vibration of parametrically excited moving belts, Part I: dynamic response. ASME Journal of Applied Mechanics. 1999, 66:396-409
    [88] Yang XD, Chen LQ. Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos, Solitons and Fractals. 2005, 23:249-258
    [89] Malatkar P, Nayfeh AH. Calculation of the jump frequencies in the response of s.d.o.f. non-linear systems. Journal of Sound and Vibration. 2002, 254(5): 1005-1011
    [90] Zhang L, Zu JW. Nonlinear vibration of viscoelastic moving belts, Part II: forced vibration analysis. Journal of Sound and Vibration. 1998, 216(l):93-105
    [91] Pellicano F, Vestroni F. Complex dynamic of high-speed axially moving systems. Journal of Sound and Vibration, 2002, 258(1): 31-44
    [92] Stylianou M, Tabarrok M. Finite element analysis of an axially moving beam, part 1 stability analysis. Journal of Sound and Vibration, 1994,178: 455-481
    [93] Fung RF, Lu PY and Tseng CC. Non-linearly dynamic modeling of an axially moving beam with atip mass. Journal of Sound and Vibration. 1998, 218(4): 559-571
    [94] Kang MG. The influence of rotary inertia of concentrated masses on the natural vibrations of fluid-conveying pipes. Journal of Sound and Vibration. 2000, 238(2): 179-187
    [95] Kang MG. The influence of rotary inertia of concentrated masses on the natural vibrations of a cla\mped-supported pipe conveying fluid. Nuclear Engineering and Design. 2000,196(3):281-291
    [96] Oz HR. Natural frequencies of axially travelling tensioned beams in contact with a stationary mass. Journal of Sound and Vibration, 2003,259(2): 445-456
    [97] Tan CA, Mote CDJr. Analysis of a hydrodynamic bearing under transverse vibration of an axially moving band. ASME Journal of Tribology, 1990,112(3): 514-523
    [98] Tan CA, Yang B, Mote CDJr. Dynamic response of an axially moving beam coupled to hydrodynamic bearings. ASME Journal of Vibration and Acoustics, 1993,115:9-15
    [99] Sugirnoto N, Kugo K, Watanabe Y. Derivation of nonlinear wave equation for flexural motions of an elastic beam traveling in an air-filled tube. Journal of Fluids and Structures, 2002,16(5): 597-612
    [100] Adams GG, Manor H. Steady motion of an elastic beam across a rigid step. ASME J. Appl. Mech., 1981,48(3): 606-612
    [101] Manor H, Adams GG. An elastic strip moving with constant speed across a dropout. Int. J. Solids Struc, 1983,25(2): 137-147
    [102] Adams GG. An elastic strip moving across a rigid step. Int. J. Solids Struc, 1982, 18(9): 763-774
    [103] Wickert JA and Mote CDJr(1989), On the engrgetics of axially moving continua, The Journal of the Acoustical Society of America, 85(3) 1365-1368
    [104] Mote CDJr, Wu WZ. Vibration coupling in continuous belt and band systems. Journal of Sound and Vibration. 1985,102(1): 1-9
    [105] Renshaw AA, Rahn CD, Wickert JA and Mote CDJr(1998), Energy and conserved functionals for axially moving materials, ASME Journal of Vibration and Acoustics, 120(2) 634-636
    [106] Zhu WD and Ni J(2000), Energetics and stability of translating media with an arbitrarily varying length, ASME Journal of Vibration and Acoustics, 122:295-304
    [107] Zhu WD. Control volume and system formulations for translating media and stationary media with moving boundaries. Journal of Sound and Vibration, 2002,254(1): 159-201
    [108] Kwon YI, Ih JG. Vibrational power flow in the moving belt passing through a tensioner. Journal of Sound and Vibration, 2000, 229(2): 329-353
    [109] Hattori N, Fuji Y, Sogihara H. Feedback control of a band saw with an actuator. Journal of Japan Wood Research Society, 28(12): 783-787
    [110] Takikonda BO, Baruh H. Dynamics and control of a translating flexible beam with a prismatic joint. ASME Journal of Dynamic Systems, Measurement, and Control, 1992, 114:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700