应用蛋白质芯片技术分析鼠疫耶尔森菌致病相关蛋白抗体表达谱的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠疫是一种严重危害人类健康的烈性自然疫源性传染病。历史上曾发生过三次鼠疫大流行,导致至少1.6亿人死亡。鼠疫的致病病原体为鼠疫耶尔森菌(Y.pestis),属于肠杆菌科(Enterobacteraceae)耶尔森菌属(Yersinia),该属现包括11个菌种,除鼠疫耶尔森菌、假结核耶尔森菌(Y.pseudotuberculosis)、小肠结肠炎耶尔森菌(Y.enterocolitica)对人致病外,其余8个菌种只对动物致病。
     鼠疫主要经鼠蚤叮咬而传播,传染性强,病死率高,呈世界性分布,危害极大。近年来,全世界每年都有几千例病例报告,因此,2000年世界卫生组织将鼠疫列为重新抬头的传染病。1994年印度古吉拉特邦苏拉特市爆发鼠疫流行表明,即使是在现代公共卫生条件下,鼠疫仍有可能侵入大城市,造成严重的爆发流行。此外,鼠疫耶尔森菌还是传统的重要生物战剂,是国际恐怖分子可能用于制造生物恐怖的首选微生物之一。长期以来人们一直致力于鼠疫疫苗的研发,以对付这种自古以来就令人生畏的疾病。
     当今世界曾经应用于人体免疫的鼠疫疫苗大体上可分为死菌苗、活菌苗两大类。最初的鼠疫死菌苗出自鼠疫正在肆虐的印度(1897),而在越南战争(1961-1971)中得到较为广泛应用的鼠疫死菌苗为美军的USP疫苗。但近期的动物学研究表明,死菌苗对肺鼠疫的保护效果较差。鼠疫减毒活菌苗出现于1908年,在20世纪下半叶减毒的EV76活菌苗在许多国家广为使用。但由于EV76不是无毒株,在使用安全性方面存在许多隐患,因此许多国家已不再使用。到目前为止,尚无足够研究数据可以评价任何一种鼠疫疫苗的有效性和安全性,而且上述疫苗还伴有严重的副作用。所以发展一种安全、有效的鼠疫疫苗是当务之急。近年来,鼠疫疫苗的研发工作主要集中在新型减毒活疫苗株的选育和重组基因工程亚单位疫苗的研制上。
     理论上讲,任何暴露于免疫系统的细菌抗原都有可能成为候选疫苗组分,但如果应用传统的研究手段一次只能对有限的几种抗原进行分析,而且如果体内和体外实验证实这几种抗原中没有候选疫苗组分的话就需要重新开始新一轮筛选,通常这又需要几年的时间。
     在基因组时代,候选疫苗组分的筛选和鉴定一般分为以下4个步骤:(1)
    
    从基因组中选定一系列基因;(2)对选定基因进行大规模的克隆和表达;
     (3)对获得的重组蛋白进行纯化;(4)体内和体外分析,评价其免疫效果。
    目的基因的筛选是疫苗研发过程中的关键步骤之一,通常可能编码毒力因
    子、分泌性抗原、膜相关性抗原的基因可通过以下策略选定:(l)用生物
    信息学软件对全基因组序列进行比对后选定;(2)通过蛋白质组技术(如
    二维电泳技术、质谱技术)选定;(3)通过体内表达技术(in vivo exPression
    teehnolo罗,wET),条码标示诱变技术(signattire一tagged mutagenesis,
    STM),DNA芯片技术选定。
     蛋白质芯片分析技术是一种大规模、平行、快速的蛋白质分析技术平
    台,它可以同时对几千种蛋白质进行平行的分析。抗原芯片的研制,使同
    时研究机体对细菌全部蛋白质的体液免疫反应成为可能。这为候选疫苗的
    鉴定以及疾病的早期血清学诊断奠定了基础。因此利用蛋白质芯片技术,
    通过间接FLISA法就可以对感染血清中是否存在能与纯化抗原发生反应的
    组分进行鉴定。
     本研究首先运用生物信息学技术,并结合鼠疫耶尔森菌基因组学和比
    较基因组学的初步研究结果,选择了57个可能编码外膜蛋白、粘附蛋白、
    侵袭性蛋白和对宿主细胞毒性的基因作为拟克隆和表达的目的基因。通过
    PCR技术、基因克隆和表达技术将上述目的基因克隆入表达载体
    PET32此L21中,获得了47个可以在大肠杆菌中正确表达目的蛋白的重组
    克隆子,其表达的目的蛋白占菌体总蛋白的30%一50%。目的蛋白经Ni~NTA
    纯化试剂盒纯化后纯度均大于85%。这些纯化的蛋白质作为探针被固定在
    玻片上制成鼠疫耶尔森菌致病相关蛋白芯片。
     此芯片再与定期收集的经鼠疫耶尔森菌免疫的动物血清(新西兰兔、
    羊)或自然感染鼠疫动物(狗)血清进行FLISA反应,反应结果经扫读后
    进行数据分析。由此可实现对待测血清样品中鼠疫耶尔森菌致病相关蛋白
    相应抗体的平行检测,用以比较上述动物体内各种鼠疫耶尔森菌致病相关
    蛋白相应抗体出现的速度、滴度以及持续时间的差异。同时还可以比较上
    述各种致病相关蛋白在不同种属的实验动物中免疫性的差异。
     研究结果显示,动物体内针对FI,o哪A(YPo1435),LPp(Ypo2394)
    抗原的抗体反应较强,没有检测到针对Pla,Y叩T(YPCDI.20),TyeA
    (YPeD 1 .35),vi‘(钾eol.48),YPoZ19o,钾03319等抗原的抗体反应。
     一5-
    
    除了FI,omp^(YP01435),LPp(YPo2394)以外,YopE(YPCDI.o6),
    YopK(YpCD 1 .19),YopD(YPCDI.28),YoPN(YPCDI.39),YopR
     (YPCDI.57),Ymt(YPMTI.74),YP01303,YP01411,YP02945也
    能刺激机体产生一定水平的抗体。
     研究结果还表明重组蛋白Fl,o娜A(YPo 1435),L即(钟02394)
    有可能用于鼠疫感染的血清学诊断。Y叩E(YPCD 1 .06),Y叩K
    (YPCD 1 .19),YopD(YPCD 1 .28),YoPN(YpCDI.39),YopR
     (YPCDI.57),Ymt(Y
Plague is an ancient disease which has caused over 160 million human deaths in the past and has not been eradicated from the modern world. The etiological agent of plague is Yersinia pestis. Y. pestis is one of ll species of the genus Yersinia. Three members of the genus are pathogenic to humans: Y.pestis, Y. pseudotuberculosis and Y. enterocolitica.
    Plague is usually contracted by human as a result of the bite of an infected flea. Each year there are several thousand reported cases of the disease world-wide and plague has been classified as a re-emerging disease by the World Health Organization. Endemic areas for the disease exist in China, Africa, Asia and South America. The Surat outbreak of plague in India in 1994 reminded the world of the threat of this horrible disease. Plague is an international public health risk and a notifiable disease. More over, Y. pestis has been of concern as one of the microorganisms which might be used illegitimately as a bioterrorisim agent against civilian or military communities.
    Because of the increasing plague casers and the likelihood of illegitimate use of Y. pestis, there is a requirement for an effective vaccine which can protect human against both bubonic and pneumonic plague.
    There are two kinds of vaccines have been used in human, live attenuated vaccine and killed whole cells vaccine (KWC) .The earliest report of a killed whole cell vaccine against plague was in 1897, and USP (a KWC vaccine) had been used in Vietnam during the period 1961-1971. But recent studies in animals have shown that this vaccine offers poor protection against pneumonic disease. Another vaccine, live attenuated vaccine ( EV76 strain) , has been in use since 1908, and was used hi many countries in the late 20 century. However, as EV76 is not fully avirulent, the safety of this vaccine in human is questionable. Today EV76 is considered unsuitable for humans in most countries. The efficacy and the safety of existing vaccines are not proven, and the use of these vaccines is known to be associated with adverse side effects.
    -7-
    
    
    Therefore there is an urgent need for an more efficacious plague vaccine.
    In recent years, efforts have focused on the development of a fully recombinant subunit vaccine for plague and the identification of a rationally attenuated mutant strain of Y. pestis.
    Theoretically speaking, any bacterial antigen exposed to the immune system represents a potential vaccine candidate. Anyway, only a few antigens can be analyzed simultaneously using conventional approach, and if negative results were obtained from in vitro and in vivo models, the process must repeated from the beginning, which often costs several years to get an ideal result.
    in the post-genomics era, three new strategies have been used to identify vaccine candidates. The three strategies share the same four basic steps: (1) selection of a set of genes from the whole genome; (2) high throughput cloning and expression of the selected genes; (3 ) purification of the recombinant proteins; and (4) in vitro and in vivo assays for identification of candidates.
    The virulence-associated genes selection is considered to be an important step in vaccine discovery. The three strategies differ in the way to select virulence-associated genes. According to the first strategy, genes are selected in silico utilizing algorithms that can predict genes encoding secreted and surface-associated antigens and virulence factors. These proteins are considered the most relevant for the induction of a protective immune response. Using the second approach, surface-exposed antigens are selected experimentally through the characterization of protein fractions using proteomics techniques such as two-dimensional gel electrophoresis (2D-GE) and mass spectrometry. The third approach is aimed at the identification of invasion and virulence-associated antigens and makes use of several new technologies including in vivo expression technology (IVET), signature-tagged mutagenesis ( STM) and DNA microarray technology.
    Protein microarray analysis offers a se
引文
1. Zietz BP and Dunkelberg H The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health 2004; 207(2): 165-178
    2.张春华 俞东征 鼠疫病原学 中国地方病防治杂志编辑部1999 内部资料
    3 李书宝 戴绘 世界鼠疫疫情态势及研究进展 中国地方病防治杂志 2000;15(1):21-26
    4 俞东征 震惊世界的苏特拉鼠疫流行及其教训 疾病监测杂志 1995 10:104-107
    5 Campbell G and Hughes J Plague in india: a new warning from an old nemesis. ann Intern Med. 1995; 122:151-153
    6 WHO human plague in 1998 and 1999 weekly epidemiological record 2000 75: 338-343
    7 王晓春 高崇华 关于我国鼠疫疫情趋势的思考 中国地方病防治杂志 200318(4):253-254
    8 张贵军 房静 刘振才 1991—2000年我国人间鼠疫疫情分析 中国地方病防治杂志 2003 18(1):34-37
    9 Bossi P and Bricaire F [The plague possible bioterrorist act] Presse Med. 2003 32(17): 804-807
    10 Josko D Yersinia pestis: still a plague in the 21st century Clin Lab Sci 2004 17(1): 25-29
    11 Dennis DT and Chu MC A major new test for plague. Lancet 2003; 361(9353): 191-192
    12 Achtman M, Zurth K, Morelli G et al. Yersiniapestis the cause of plague is a recently emerged clone of Yersinia pseudotuberculosis. Proe. Natl. Acad. Sci. USA 1999; 96(24): 14043-14048
    13 Parkhill J, Wren BW, Thomson NR et al. Genome sequence of Yersinia pestis the causative agent of plague. Nature 2001; 413(6855): 523-527
    14 Deng W, BudandV, Plunkett 3rd G etal. Genome sequence of Yersinia pestis KIM. J Bacteriol. 2002; 184(16): 4601-4611
    15 宋亚军 鼠疫耶尔森菌布氏田鼠疫源地菌株91001全基因组序列测定及初步分析博士学位论文 军事医学科学院 2003
    16 宋亚军 童宗中 王津 等 鼠疫耶尔森菌菌株91001全基因组序列测定及初步分析 解放军医学杂志2004;29(3):192-199
    17 杨瑞馥 黄培堂 鼠疫耶尔森菌比较和进化基因组学研究 解放军医学杂志2004;29(3):189-191
    18 童宗中 周冬生 宋亚军 等 鼠疫耶尔森菌pgm位点及其侧翼序列遗传变异的比较分析 解放军医学杂志2004;29(4):300-306
    19 宋亚军 童宗中 王津 等 鼠疫耶尔森菌菌株91001的蛋白质组学初步研究
    
    解放军医学杂志2004 29(4):315-319
    20 周冬生 韩延平 宋亚军 等 鼠疫耶尔森菌基因组进化与生态位适应研究 解放军医学杂志 2004 29(3):204-210
    21 韩延平 周冬生 宋亚军 等 鼠疫耶尔森菌DNA标识序列的鉴定及其应用研究解放军医学杂志2004 29(4):307-309
    22 Atshabar BB Mechanism of formation of a population level of virulence of Yersinia pestis. Adv. Exp. Med. Biol. 2003 529: 329-32
    23 Du Y, Rosqvist R and Forsberg A Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun. 2002 70(3): 1453-1460
    24 Nilles ML Dissecting the Structure of LcrV from Yersinia pestis a Truly Unique Virulence Protein. Structure (Camb) 2004 12(3): 357-358
    25 Derewenda U, Mateja A, Devedjiev Y et al. The structure of Yersinia pestis V-antigen an essential virulence factor and mediator of immunity against plague. Structure (Camb) 2004 12(2): 301-306
    26 Fields KA, Nilles ML, Cowan C et al. Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect Immun. 1999 67(10): 5395-5408
    27 Butler T, Bell WR, Nguyen Ngoc L et al. Yersiniapestis infection in Vietnam Ⅰ Clinical and hematologic aspects. J. Infect Dis. 1974 129: Suppl:S78-84
    28 Brown S D and Montie TC Beta-adrenergic blocking activity of Yersinia pestis murine toxin. Infect Immun. 1977 18(1): 85-93
    29 Ng LC, ForslundO, KohS etal. The response of murine macrophages to infection with Yersinia pestis as revealed by DNA microanay analysis. Adv. Exp. Med. Biol. 2003 529: 155-160
    30 Filippov AA, Solodovnikov NS, Kookleva LM et al. Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol. Lett. 1990 55(1-2):45-48
    31 Welkos SL, Friedlander AM and Davis KJ Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb. Pathog. 1997 23(4): 211-223
    32 Friedlander AM, Welkos SL, Worsham PL et al. Relationship between virulence and immunity as revealed in recent studies of the FI capsule of Yersinia pestis. Clin. Infect Dis. 1995 21 Suppl 2: S178-181
    33 方喜业 王光明 鼠疫动物病学 青海省地方病防治研究所内部资料 1981
    34 王淑纯 宋延富 鼠疫研究进展 中国环境科学出版社 1988
    35 Makoveichuk E, Cherepanov P, Lundberg S et al. pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J. Lipid Res. 2003 44(2):320-330
    36 Price SB, Freeman MD and Yeh KS Transcriptional analysis of the Yersinia
    
    pestis pH 6 antigen gene. J. Bacteriol. 1995 177(20): 5997-6000
    37 Chanteau S, Rahalison L, Ratsitorahina M et al. Early diagnosis of bubonic plague using F1 antigen capture ELISA assay and rapid immunogold dipstick. Int. J. Med. Microbiol. 2000 290(3): 279-283
    38 Thullier P, Guglielmo V, Rajerison M et al. Short report: Serodiagnosis of plague in humans and rats using a rapid test. Am. J. Trop. Med. Hyg. 2003 69(4):450-451
    39 Splettstoesser WD, Grunow R, Rahalison L et al. Serodiagnosis of human plague by a combination of immunomagnetic separation and flow cytometry. Cytometry. 2003 53A(2): 88-96
    40 Rasoamanana B, Coulanges P, Michel P et al. [Sensitivity of Yersinia pestis to antibiotics: 277 strains isolated in Madagascar between 1926 and 1989]. Arch. Inst. Pasteur. Madagascar. 1989 56(1): 37-53
    41 Frean J, Klugman KP, Amtzen L et al. Susceptibility of Yersinia pestis to novel and conventional antimicrobial agents. J. Antimicrob. Chemother. 2003 52(2): 294-296
    42 Jefferson T, Demicheli V, Pratt M Vaccines for preventing plague. Cochrane Database Syst Rev. 2000 3; CD000976
    43 Titball RW and Williamson ED Vaccination against bubonic and pneumonic plague. Vaccine 2001 19(30): 4175-4184
    44 Russell P, Eley SM, Hibbs SE et al. A comparison of Plague vaccine USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine 1995 13(16): 1551-1556
    45 GL C and H JM Plague in india:a new warning from an old nemesis. Ann. Intern. Med. 1995 122: 151-153
    46 Hernandez E, Girardet M, Ramisse F et al. Antibiotic susceptibilities of 94 isolates of Yersinia pestis to 24 antimicrobial agents. J. Antimicrob. Chemother. 2003 52(6): 1029-1031
    47 Titball RW and Williamson ED Second and third generation plague vaccines. Adv. Exp. Med. Biol. 2003 529: 397-406
    48 周冬生 韩延平 戴二黑 等 鼠疫耶尔森菌活疫苗株的比较基因组学研究解放军医学杂志2004 29(4):310-314
    49 Sabhnani L, Manocha M, Sridevi K et al. Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of Yersinia pestis using novel delivery vehicles. FEMS Immunol. Med. Microbiol. 2003 38(3):215-229
    50 江凌晓 俞守义 鼠疫疫苗的研究 中国地方病学杂志 2004 23(3):285-287
    51 Nersesov V and G Tsikhistavi Sh [The mechanism of the existence of Yersinia
    
    pestis in nature]. Zh Mikrobiol. Epidemiol. Immunobiol. 1997(1): 102-106
    52 Favis R and Barany F Mutation detection in K-ras BRCA1 BRCA2 and p53 using PCR/LDR and a universal DNA microarray. Ann. N Y Acad Sci. 2000 906: 39-43
    53 周冬生 韩延平 戴二黑 等 鼠疫耶尔森菌全基因组DNA芯片的研制及用于比较基因组学分析解放军医学杂志2004 29(3):200-203
    54 Flashner Y, Mamroud E, Tidhar A et al. Generation of Yersinia pestis attenuated swains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun. 2004 72(2): 908-915
    55 Williamson ED Plague vaccine research and development. J. Appl. Microbiol. 2001 91(4): 606-608
    56 Meyer KF, Hightower JA and McCrumb FR Plague immunization Ⅵ Vaccination with the fraction Ⅰantigen of Yersinia pestis. J. Infect. Dis. 1974 129: Suppl:S41-45
    57 Williamson E Plague vaccine research and development. J. Appl. Microbiol. 2001 91(4): 606-608
    58 Williamson E, Eley S and Stagg A A single dose sub-unit vaccine protects against pneumonic plague. Vaccine 2000 19(4-5): 566-571
    59 Anderson GW, Leary SE, Williamson ED et al. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by Fl-capsule-positive and-negative strains of Yersiniapestis. Infect Immun. 1996 64(11): 4580-4585
    60 Osorio JE, Powell TD, Frank RS et al. Recombinant raccoon pox vaccine protects mice against lethal plague. Vaccine 2003 21(11-12): 1232-1238
    61 Hallett AF Evaluation of live attenuated plague vaccines in Pmomys (Mastomys) natalensis. Infect Immun. 1977 18(1): 8-13
    62 Fehrenbach E, Zieker D, Niess AM et al. Microarray technology--the future analyses tool in exercise physiology? Exerc. Immunol. Rev. 2003 9: 58-69
    63 Wang J, Ibanez A and Chatrathi MP On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J. Am. Chem. Soc. 2003 125(28): 8444-8445
    64 Bilitewski U, Genrich M, Kadow S et al. Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem. 2003 377(3): 556-569
    65 Hans CP, Weisenburger DD, Greiner TC et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004 103(1): 275-282
    66 Madoz-Gurpide J and Hanash SM Molecular analysis of cancer using DNA and protein microarrays Adv Exp Med Biol 2003 532: 51-58
    67 Wilson WC Jr and Boland T Cell and organ printing 1: protein and cell printers.
    
    Anat. Rec. 2003 272A(2): 491-496
    68 Afshari CA Perspective: microarray technology seeing more than spots. Endocrinology 2002 143(6): 1983-1989
    69 Afshari CA, Nuwaysir EF and Barrett JC Application of complementary DNA microarray technology to carcinogen identification toxicology and drug safety evaluation. Cancer Res. 1999 59(19): 4759-4760
    70 Schoolnik GK Microarmy analysis of bacterial pathogenicity. Adv. Microb. Physiol. 2002 46: 1-45
    71 Cahill DJ and Nordhoff E Protein arrays and their role in proteomics. Adv. Biochem. Eng. Biotechnol. 2003 83: 177-187
    72 Carlson KA, Ciborowski P, Schellpeper CN et al. Proteomic fingerprinting of HIV-1-infected human monocyte-derived macrophages: a preliminary report. J. Neuroimmunol. 2004 147(1-2): 35-42
    73 Ligler FS, Taitt CR, Shriver-Lake LC et al. Army biosensor for detection of toxins. Anal. Bioanal. Chem. 2003 377(3): 469-477
    74 Nettikadan SR, Johnson JC, Mosher C et al. Virus particle detection by solid phase immunocapture and atomic force microscopy. Biochem. Biophys. Res. Commun. 2003 311(2): 540-545
    75 Conrads TP, Zhou M Petricoin EF 3rd et al. Cancer diagnosis using proteomic patterns Expert. Rev. Mol. Diagn. 2003 3(4): 411-420
    76 Feng Y, Ke X, Ma R et al. Parallel detection of autoantibodies with microarrays in rheumatoid diseases. Clin. Chem. 2004 50(2): 416-422
    77 Urbanowska T, Mangialaio S, Hartmann C et al. Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis disease. Cell Biol. Toxicol. 2003 19(3): 189-202
    78 Copeland S, Siddiqui J and Remick D Direct comparison of traditional ELISAs and membrane protein arrays for detection and quantification of human cytokines. J. Immunol. Methods. 2004 284(1-2): 99-106
    79 Huang RP Cytokine antibody arrays: a promising tool to identify molecular targets for drug discovery. Comb. Chem. High Throughput Screen 2003 6(8): 769-775
    80 Zhu H, Bilgin M and Snyder M Proteomics. Annu. Rev. Biochem. 2003 72: 783-812
    81 Stoll D, Templin MF, Sehrenk M et al. Protein microarray technology. FrontBiosci. 2002 7: c13-32
    82 Smith EM, Dalmeida W and Hughes TK Signaling pathway-related gene expression in neuroimmunoregulation. J. Neuroimmunol. 2004 147(1-2): 138-140
    83 Snapyan M, Lecocq M, Guevel L et al. Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive
    
    protein array method combining a near-infrared fluorescence detection. Proteomics 2003 3(5): 647-657
    84 Zheng Y, Xu Y, Ye B et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 2003 98(12): 2576-2582
    85 Petricoin EF and Liotta LA Clinical applications of proteomics. J. Nutr. 2003 133(7 Suppl): 2476S-2484S
    86 Tannapfel A, Anhalt K, Hausermann P et al. Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J. Pathol. 2003201(2): 238-249
    87 Flashner Y, Mamroud E, Tidhar A et al. Identification of genes involved in Yersinia pestis virulence by signature-tagged mutagenesis. Adv. Exp. Med. Biol. 2003529: 31-33
    88 Hinchliffe SJ, Isherwood KE, Stabler RA et al. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res. 2003 13(9): 2018-2029
    89 Grandi G Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol. 2001 19(5): 181-188
    90 李衍达 孙之荣 生物信息学 清华大学出版社 2000 第一版
    91 张成岗 贺福初 生物信息学方法与实践 科学出版社 2002 第一版
    92 Stabler RA, Hinds J, Witney AA et al. Construction of a Yersinia pestis microarray. Adv. ExP. Med. Biol. 2003 529: 47-49
    93 周冬生 童宗中 宋亚军 等 鼠疫耶尔森菌生物型变异遗传基础的研究和新生物型棗田鼠型的提出 解放军医学杂志 2004 29(3):211-215
    94 Munier-Lehmann H, Chenal-Francisque V, lonescu M et al. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent. Biochem J. 2003 Pt
    95 金冬雁 黎孟枫 分子克隆实验指南 科学出版社 1998第二版
    96 Sullivan RM and Lucas SG Fossil squamata from the San-Jose formation early eocene San-Juan Basin New-Mexico. J. Paleontology 1998 62(4): 631
    97 Stamnes K, Henriksen K and Ostensen P Simultaneous measurement of uv radiation received by the biosphere and total ozone amount. Geophysical Research Letters 2000 15(8): 784
    98 黄培堂 译 分子克隆实验指南 科学出版社 2002 第三版
    99 www.millipore.com
    100 颜子颖 王海林 精编分子生物学实验指南 科学出版社 1998 第一版
    101 www.qiagen.com
    102 卢圣栋 现代分子生物学实验技术 北京协和医科大学出版社 1999 第二版
    103 李永明 赵玉琪 实用分子生物学方法手册 科学出版社 1999 第一版
    
    
    104 Cornelis GR Molecular and cell biology aspects of plague. Proc. Natl. Acad. Sci. USA 2000 97(16): 8778-8783
    105 Perry RD, Straley SC, Fetherston JD et al. DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun. 1998 66(10): 4611-4623
    106 Miller J, Williamson ED, Lakey JH et al. Macromolecular organisation of recombinant Yersinia pestis F1 antigen and the effect of structure on immunogenicity. FEMS Immunol. Med. Microbiol. 1998 21(3): 213-221
    107 Zavialov AV, Berglund J, Pudney AF et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 2003 113(5): 587-596
    108 Nilles ML, Fields KA and Straley SC The V antigen of Yersinia pestis regulates Yop vectorial targeting as well as Yop secretion through effects on YopB and LcrG. J. Bacteriol. 1998 180(13): 3410-3420
    109 Lahteenmaki K, Kukkonen M, Jaatinen S et al. Yersinia pestis Pla has multiple virulence-associated functions. Adv. Exp. Med. Biol. 2003 529: 141-145
    110 Evdokimov AG, Tropea JE, Routzahn KM et al. Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci. 2002 11(2): 401-408
    111 Evdokimov AG, Tropea JE, Routzahn KM et al. Three-dimensional structure of the type Ⅲ secretion chaperone SycE from Yersinia pestis. Acta Crystallogr D Biol. Crystallogr 2002 58(Pt 3): 398-406
    112 Evdokimov AG, Tropea JE, Routzahn KM et al. Structure of the N-terminal domain of Yersinia pestis YopH at 2 0 A resolution. Acta Crystallogr D Biol. Crystallogr 2001 57(Pt 6): 793-799
    113 Liang F, Huang Z, Lee SY et al. Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH an essential virulent factor of Yersinia pestis the agent of plague. J. Biol. Chem. 2003 278 (43): 41734-41741
    114 Orth K, Xu Z, Mudgett M et al. Disruption of signaling by Yersinia effector YopJ a ubiquitin-like protein protease. Science 2001 290: 1594-1597
    115 Leung KY and Straley SC The yopM gene of Yersinia pestis encodes a released protein having homology with the human platelet surface protein GPIb alpha. J. Bacteriol. 1989 171(9): 4623-4632
    116 Evdokimov AG, Anderson DE, Routzahn KM et al. Overproduction purification crystallization and preliminary X-my diffraction analysis of YopM an essential virulence factor extruded by the plague bacterium Yersinia pestis. Acta Crystallogr D Biol. Crystallogr 2000 56 Pt 12: 1676-1679
    117 Skrzypek E, Cowan C and Straley SC Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol.
    
    1998 30(5): 1051-1065
    118 Day JB, Ferracci F and Piano GV Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN tyeA sycN yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol. Microbiol. 2003 47(3): 807-823
    119 Williams AW and Straley SC YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J. Bacteriol. 1998 180(2): 350-358
    120 Piano GV and Straley SC Mutations in yscC yscD and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis. J. Bacteriol. 1995 177(13): 3843-3854
    121 www.invitrogen.com
    122 Gray S, Thibeault S and Treseo P Witnessing a revolution in voice research: genomics tissue engineering biochips and what's next! Logoped Phoniatr Vocol.2003 28(1): 7-13; discussion 14-7
    123 Ross DW DNA on a chip. Arch Pathol. Lab Med. 1996 120(6): 604-605
    124 马立人 蒋中华 生物芯片 化学工业出版社 2002 第二版
    125 Khandurina J and Guttman A Microchip-based high-throughput screening analysis of combinatorial libraries. Curr. Opin Chem. Biol. 2002 6(3): 359-366
    126 Liotta LA, Espina V, Mehta AI et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 2003 3(4): 317-325
    127 Glokler J and Angenendt P Protein and antibody microarray technology. J.Chromatogr B Analyt Technol Biomed Life Sci. 2003 797(1-2): 229-240
    128 Vamum SM, Woodbury RL and Zangar RC A protein microarray ELISA for screening biological fluids. Methods Mol. Biol. 2004 278: 161-172
    129 Kusnezow W and Hoheisel JD Solid supports for microarray immunoassays. J. Mol. Recognit 2003 16(4): 165-176
    130 Lee Y, Lee EK, Cho YW et al. ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteomics 2003 3(12): 2289-2304
    131 Haab BB Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov. Devel. 2001 4(1) 116-123
    132 www.AmershamPharmacia.com
    133 黄海燕 韩金祥 基因芯片接触式点样条件的优化 生物技术通讯 2003 14(2):119-122
    134 MARCOLINI S Antigen microarrays for the serodiagnosis of infectious diseases. MINERVA BIOTEC 2001 13(4): 287-293
    135 Zhou H, Roy S, SchulmanH etal. Solution and chip arrays in protein profiling.
    
    Trends Biotechnol. 2001 19(10 Suppl): S34-39
    136 Takahashi N, Kaji H, Yanagida M et al. Proteomics: advanced technology for the analysis of cellular function. J Nutr. 2003 133(6 Suppl 1): 2090S-2096S
    137 Morozov VN, Morozova TY, Johnson KL et al. Parallel determination of multiple protein metabolite interactions using cell extract protein microarmys and mass spectrometric detection. Rapid Commun Mass Spectrom 2003 17(21): 2430-2438
    138 Rimm DL, Camp RL, Charette LA et al. Tissue microarray: a new technology for amplification of tissue resources. Cancer 2001 7(1): 24-31
    139 Heller MJ DNA microarray technology: devices systems and applications. Annu Rev. Biomed Eng. 2002 4: 129-153
    140 Forster T, Roy D and Ghazal P Experiments using microarray technology: limitations and standard operating procedures J. Endoerinol 2003 178(2): 195-204
    141 Kreil DP, Karp NA and Lilley KS DNA microarray normalization methods can remove bias from differential protein expression analysis of 2-D difference gel electrophoresis results. Bioinformatics 2004
    142 Svrakic NM, Nesic O, Dasu MR et al. Statistical approach to DNA chip analysis. Recent Prog. Horm Res. 2003 58: 75-93
    143 Cui X and G A Churchill Statistical tests for differential expression in eDNA microarray experiments Genome Biol 2003 4(4): 210
    144 Angenendt P, Glokler J, Sobek J et al. Next generation of protein microarray support materials: evaluation for protein and antibody mieroarray applications. J. Chromatogr 2003 1009(1-2): 97-104
    145 Ng JH and Ilag LL Biochips beyond DNA: technologies and applications. Bioteehnol. Annu Rev. 2003 9: 1-149
    146 Xiang Z, Yang Y, Ma X et al. Mieroarray expression profiling: analysis and applications. Curr Opin Drug Diseov Devel. 2003 6(3): 384-395
    147 Epstein CB and Butow RA Microarray technology-enhanced versatility persistent challenge. Curt Opin Biotechnol. 2000 11(1): 36-41
    148 Matson J and Nilles M LcrG-LcrV interaction is required for control of Yops secretion in Yersiniapestis. J.Baeteriol. 2001 183(17): 5082-5091
    149 JE G and C A Type Ⅲ secretion machines: baterial devicesfor protein delivery into host cells. Science 1999 284: 1322-1328
    150 Andrews GP, Straehan ST, Benner GE et al. Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and noneneapsulated Yersinia pestis. Infect Immun. 1999 67(3): 1533-1537
    151 Benner GE, Andrews GP, Byrue WR et al. Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infect Immun. 1999 67(4): 1922-1928
    
    
    152 Cornelis G, A Boland A and Boyd A The virulence plasmid of Yersinia an antihost genome. Mierobiol Mol.Biol. Rev. 1998 62(4): 1315-1352
    153 Cornelis G and Wolf-Watz H The Yersinia yop virulon: a bacterial system for subverting eukaryotie cells. Mol. Microbiol.1997 23:861-867
    154 Leary SE, Griffin KF, Galyov EE et al. Yersinia outer proteins(YOPS) E K and N are antigenic but non-protective compared to V antigen in a murine model of bubonic plague. Microb Pathog. 1999 26(3): 159-169
    155 Abath FG, Almeida AM and Ferreira LC Surface-exposed antigenic determinants in outer membranes of wild Yersinia pestis isolates. Zentralbl Bakteriol. 1991 276(1): 73-85
    156 Pantos O, Cooney RP, Le Tissier MD et al. The bacterial ecology of a plague-like disease affecting the Caribbean coral. Montastrea annularis Environ Microbiol. 2003 5(5): 370-382
    157 Simpson WJ, Thomas RE and Schwan TG Recombinant capsular antigen (fraction 1) from Yersinia pestis induces a protective antibody response in BALB/c mice. Am J Trop Med Hyg 1990 43(4): 389-396
    158 Sabhnani L and Rao DN Identification of immunodominant epitope of F1 antigen of Yersinia pestis. FEMS Immunol Med Microbiol. 2000 27(2): 155-162
    159 Anderson GW, Jr DG Heath, Bolt CR et al. Short-and long-term efficacy of single-dose subunit vaccines against Yersinia pestis in mice. Am J Trop Med. Hyg. 1998 58(6): 793-799
    160 Meka-Mechenko TV F1-negative natural Y pestis strains. Adv. Exp. Med. Biol. 2003 529: 379-381
    161 Anderson GW Jr PL Worsham, Bolt CR et al. Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the F1 protein of Yersiniapestis. Am J Trop Med Hyg 1997 56(4): 471-473
    162 Welkos S, Friedlander A, McDowell D et al. V antigen of Yersinia pestis inhibits neutrophil chemotaxis. Microb. Pathog. 1998 24(3): 185-196
    163 Weeks S, Hill J, Friedlander A et al. Anti-V antigen antibody protects macrophages from Yersinia pestis -induced cell death and promotes phagocytosis. Microb. Pathog. 2002 32(5): 227-237
    164 Eyles JE, Williamson ED, Spiers ID et al. Generation of protective immune responses to plague by mueosal administration of mierosphere eoencapsulated recombinant subunits. J Control Release. 2000 63(1-2): 191-200.
    165 Carr S, Miller J, LearySE et al. Expression of a reeombinant form of the V antigen of Yersinia pestis using three different expression systems. Vaccine 1999 18(1-2): 153-159
    166 Hill J, Leary SE, Griffin KF et al. Regions of Yersinia pestis V antigen that
    
    contribute to protection against plague identified by passive and active immunization. Infect Immun. 1997 65(11): 4476-4482
    167 Pullen JK, Anderson GW Jr S L Welkos et al. Analysis of the Yersinia pestis V protein for the presence of linear antibody epitopes. Infect Immun. 1998 66(2): 521-527
    168 Griffin KF, Conway BR, Alpar HO et al. Immune responses to V antigen of Yersinia pestis co-encapsulated with IFN-gamma: effect of dose and formulation. Vaccine 1998 16(5): 517-521
    169 Hill J, Copse C, Leary S et al. Synergistic protection of mice against plague with monoclonal antibodies specific for the F1 and V antigens of Yersinia pestis. Infect Immun. 2003 71(4): 2234-2238
    170 Griffin KF, Eyles JE, Spiers ID et al. Protection against plague following immunisation with microencapsulated V antigen is reduced by co-encapsulation with IFN-gamma or IL-4 but not IL-6. Vaccine 2002 20(31-32): 3650-3657
    171 Straley SC and Cibull ML Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect Immun. 1989 57(4): 1200-1210
    172 Nemeth J and Straley SC Effect of Yersinia pestis YopM on experimental plague. Infect Immun. 1997 65(3): 924-930
    173 Evdokimov AG, Anderson DE, Routzahn KM et al. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 2001 312(4): 807-821
    174 Leung KY, Reisner BS and Straley YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infect Immun. 1990 58(10): 3262-3271
    175 Payne PL and Straley SC YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J Bacteriol. 1998 180(15): 3882-3890
    176 Haddix PL and Straley SC Structure and regulation of the Yersinia pestis yscBCDEF operon. J Bacteriol. 1992 174(14): 4820-4828
    177 Jackson MW and Piano GV DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J Bacteriol. 1999 181(16): 5126-5130
    178 Wulff-Strobel CR, Williams AW and Straley SC LcrQ and SycH function together at the Ysc typeⅢ secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 2002 43(2): 411-423
    179 Day JB and Piano GV The Yersinia pestis YscY protein directly binds YscX a secreted component of the type Ⅲ secretion machinery. J Bacteriol. 2000 182(7): 1834-1843
    
    
    180 Jackson MW, Day JB and Plano GV YscB of Yersinia pestis functions as a specific chaperone for YopN. J Bacteriol. 1998 180(18): 4912-4921
    181 Hinnebusch BJ, Rudolph AE, Cherepanov P et al. Role of Yersinia murine toxin in survival of Yersiniapestis in the midgut of the flea vector. Science 2002 296(5568): 733-735
    182 Hinnebusch J, Cherepanov P, Du Y et al. Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol. 2000 290(4-5): 483-487
    183 Bemardini ML, Sanna MG, Fontaine A et al. OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect Immun. 1993 61: 3625-3635
    184 Negrn RS and Pistole TG The porin OmpC of Salmonella typhimurium mediates adherence to macrophages. Can J Microbiol. 1999 45: 658-669
    185 Iovane G, PagniniP, GaldiemM etal. Role of Pasteurella multocida porinon cytokine expression and release by murine splenocytes. Vet Immunol.Immunopathol. 1998 66: 391-404
    186 Samoilova SV, Samoilova LV, Yezhov IN et al. Virulence of pPst+ and pPst- strains of Yersinia pestis for guinea-pigs. J Med Microbiol. 1996 45(6): 440-444
    187 Kutyrev VV, Filippov AA, Oparina OS et al. Analysis of Yersinia pestis chromosomal determinants Pgm+ and Psts associated with virulence. Micmb. Pathog. 1992 12(3): 177-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700