MEMS探卡的设计及制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶圆级IC测试在经济生产中是非常必要的,通过早期放弃有缺陷的元件部分,可以避免不必要的封装成本,同时,晶圆测试数据还提供了早期整体制造过程状况的反馈,以便及早检测到偏差并采取措施改正。随着VLSI技术向更大级集成和更高速度发展,使得I/O的数量急剧增加,引脚的尺寸和间距缩小,于是产品的检测变得更加关键。而限制测试系统性能的关键元件之一就是探卡。实践证明,传统手工制作的探卡和薄膜型探卡已经越来越难以满足使用要求,MEMS探卡则可以有效地突破传统针卡在配针方向、配针密度、配针精度等方面的限制,能明显地改善探卡在测试运用过程中的稳定性,并最大程度降低由于人为因素而造成的测试问题,提升测试整体的效率,因而成为探卡的发展趋势。本文针对目前MEMS探卡存在的问题和不足,提出了三种新型MEMS探卡结构及其制作工艺,来减少工艺步骤和制作成本,使探卡兼具理想的力学和电学性能,更加具有应用可行性。论文的主要内容及结果如下:
     1.采用UV-LIGA工艺制备金属悬臂梁型和简支梁型三维MEMS探卡结构。利用ANSYS有限元软件对悬臂梁和简支梁探针结构进行了受力分析,得出探针位移和最大应力随悬臂梁和简支梁厚度的变化关系。对设计结构进行HFSS高频仿真,得到了四根探针结构S参数在1-20 GHz的变化曲线。通过多次套刻、电镀的UV-LIGA工艺实现了悬臂梁和简支梁结构探卡的制备,解决了工艺中光刻胶和种子层的去除问题。采用Nano Indenter XP纳米压痕仪对制备后的探卡结构进行力学性能测试,测得悬臂梁和简支梁的弹簧常数分别为2556 Nm-1和26280 Nm-1,与2838Nm-1和23935 Nm-1的理论设计值相差9.94%和8.92%;采用直流探针和HP 4194A阻抗分析仪对简支梁型探卡结构进行了电学性能测试,从简支梁探针到引线末端的直流接触电阻为0.6Ω,在5-40 MHz范围内,探针间特征阻抗大于20 kΩ,电容在0.17 pF至0.27 pF之间,测试结果表明探针的接触电阻小、射频隔离性能好。
     2.体硅微加工与UV-LIGA复合工艺制备三维悬臂梁型MEMS探卡结构,这种结构可以同时具有金属悬臂梁和硅悬臂梁结构的优点。首先对体硅微加工与UV-LIGA复合工艺方法进行了研究,分别制备了SU-8胶在硅凸台上和凹槽中的三维结构,以及它们的金属模具和PETG热模压复制品。通过对T型截面、两种材料的复合悬臂梁结构进行理论分析,得到了反映复合悬臂梁结构最大挠度随各结构参数变化规律的公式;利用ANSYS有限元方法分析了复合悬臂梁结构的最大挠度和最大应力,分别得出硅层厚度和宽度、铜层厚度和宽度、以及铜层悬臂梁长度对悬臂梁性能影响的规律。采用体硅微加工与UV-LIGA复合工艺方法实现了悬臂梁结构MEMS探卡的制备,并采用Dektak 6M表面轮廓仪、直流探针和HP 4194A阻抗分析仪对制备后的探卡进行了力学性能和电学性能测试。结果表明:力学性能测试结果与理论设计比较吻合;探卡接触电阻仅0.035Ω,直流损耗低;在5-40 MHz射频范围内,探针间特征阻抗在20 kΩ以上,电容值保持在0.13 pF左右,具有很好的隔离性能。
     3.以PDMS材料为基底,聚酰亚胺为中间层,制备弹性基底的探卡结构。采用COMSOL软件对设计结构进行二维力学分析,得出探针位移随PDMS层和聚酰亚胺层厚度的变化规律。对探针结构进行HFSS高频仿真,得到了四根圆柱型探针结构S参数在1-20 GHz的变化曲线。通过MEMS加工工艺制备出PDMS弹性基底探卡结构。工艺中,利用单晶硅湿法刻蚀制作台阶基片,来提供外围电路打线高度,并解决电路引线在台阶处间断的问题;应用氧等离子处理方法来提高聚酰亚胺与溅射金属种子层之间的结合力。采用Nano Indenter XP纳米压痕仪对弹性基底和探针结构进行了力学性能测试,当PDMS层厚度为150μm、聚酰亚胺层厚度为50μm时,PDMS和聚酰亚胺基底的弹簧常数为4582 Nm-1,上方电镀金属探针结构的弹簧常数为7317 Nm-1;采用直流探针和HP 4194A阻抗分析仪对制备后的探卡结构进行了电学性能测试,从探针到引线末端的直流接触电阻为1.4Ω,在5-40 MHz测试频率内,探针间特征阻抗大于20 kΩ,电容在0.19pF至0.28 pF之间。
Wafer level IC testing is very essential for economical manufacture because unnecessary packaging costs can be avoided by rejecting defective components at the early stage. In addition, this wafer test data provides early feedback on the overall status of the fabrication process, so that deviations can be detected and corrective action taken with minimum delay. As VLSI technology continues to evolve towards greater levels of integration and higher operating speeds, the I/O number of ICs increases and the dimension and pitch of pads shrinks, the test of these products becomes more and more important. One of the critical components that limit the test system is the probe card. The traditional needle/epoxy probe cards and the membrane probe card become unsuitable, while the MEMS probe card has no limitations of probe direction, density and precision. Furthermore, it can improve the test stability and efficiency, and minimize the influences of operator. So MEMS probe card is the developing trend of probe card technology. In this dissertation, to overcome the problems and shortcomings of current MEMS probe cards, we propose three kinds of new MEMS probe card structures and their fabrication processes, which can reduce the process steps and the fabrication costs, and possess ideal mechanical and electrical properties at the same time. The main contents and results are listed as follows:
     1. Study on metal cantilever type and simply supported beam type 3D MEMS probe cards fabricated by UV-LIGA technology. First, ANSYS finite elements analysis software was utilized to simulate their mechanical behavior, and the relationships between the tip displacement and Von Mises stress and the beam thickness was got. HFSS software was used to simulate the high frequency property, and the curves of S parameters of four probe structures at 1-20 GHz were achieved. Then, the cantilever type and simply supported beam type structures probe cards were fabricated by the repeated lithography and electroplating UV-LIGA process, the problems of removal of the photoresist and seed layer were solved. Last, Nano Indenter XP was used to measure the mechanical properties of the fabricated probe structures, the results show that the spring constants of cantilever type and simply supported beam type probe structures were 2556 Nm-1 and 26280 Nm-1 respectively, which were close to the designed values of 2838 Nm-1 and 23935 Nm-1 with the error of 9.94% and 8.92%. DC probes and HP 4194A Impedance/Gain-phase Analyzer were adopted to measure the electrical properties of the simply supported beam probe card. The contact resistance from the probe tip to the end of stripline was 0.6Ω. In the frequency range of 5 to 40 MHz, the characterized impedance between two probes was larger than 20 kΩ, and the capacitance was from 0.17 pF to 0.27 pF. These data proves that the designed probe cards have small contact resistance and good radio frequency isolation property.
     2. Study on 3D cantilever MEMS probe card structure fabricated by combining bulk silicon micromachining and UV-LIGA technology. This proposed structure can obtain the advantages of metal structure and silicon structure at the same time. First, the combining technique of bulk silicon micromachining and UV-LIGA technology was studied. 3D SU-8 photoresist standing on the silicon bump and concave microstructures as well as their metal molds and PETG replica were fabricated. Then, through theoretical analyzing the T-section, bi-materials cantilever structure, the equation that reflects the relationship between the maximum displacement and von Mises stress and the structure parameters was achieved. ANSYS finite element method was used to analyze the impact of the Si thickness, Cu thickness, Si width, Cu width and cantilever length on the maximum displacement of the composite cantilever. Last, the cantilever MEMS probe card was fabricated by the combining silicon micromachining and UV-LIGA technology, and its mechanical and electrical properties were measured by Dektak 6M surface profiler stylus, DC probes and HP 4194A Impedance/Gain-phase Analyzer. The mechanical test results agree well with the theoretical design. The probe contact resistance was only 0.035Ω, which means very low DC loss during testing. In the frequency range of 5 to 40 MHz, the characterized impedance between two probes was larger than 20 kΩ, and the capacitance was around 0.13 pF, these results show good radio frequency isolation property.
     3. Study on elastic substrate probe card based on PDMS and polyimide. First, COMSOL finite elements analysis software were utilized to simulate the 2D mechanical behavior of the designed structure, the relationship between the tip displacement and the PDMS and PI thickness was got. HFSS was used to simulate its high frequency property, and the curves of S parameters of four column probe structures at 1-20 GHz were achieved. Then, the PDMS elastic probe card was fabricated by MEMS fabrication technology. In the fabrication process, the single crystal silicon wet etching was used to form a step substrate with 54.7 degree angle, so as to provide the height of wire bonding and solve the problem of the interrupted line at the vertical step. Oxygen plasma treatment was adopted to improve the adhesion between PI and seed layer. Last, Nano Indenter XP was employed to measure the mechanical properties of elastic substrate and its upper probe. When the thickness of PDMS and PI was 150μm and 50μm respectively, the spring constant of elastic substrate was 4582 Nm-1, and spring constant of the upper metal probe was 7317 Nm-1. DC probes and HP 4194A Impedance/Gain-phase Analyzer were used to measure the electrical properties of the fabricated probe. The contact resistance from the probe tip to the end of stripline was 1.4Ω. In the frequency range of 5 to 40 MHz, the characterized impedance between two probes was larger than 20 kΩ, and the capacitance was from 0.19pF to 0.28 pF.
引文
[1]赵正平, 21世纪初微电子技术发展展望.半导体情报, 1999, 36(1): 1-9
    [2]涂苏龙,黄新波, MEMS技术及应用.青岛建筑工程学院学报, 2003, 24(3): 73-78
    [3]黄新波,贾建援,王卫东, MEMS技术及应用的新进展.机械科学与技术, 2003, 22(7):21-24
    [4]李朝东,微电机研究的最新动态与应用展望.微特电机, 2003, 1:3-6
    [5]张西慧,梁春广,微机电系统技术进展.河北工业大学学报, 2003, 32(5): 104-109
    [6]林忠华,胡国清,刘文艳等,微机电系统的发展及其应用.纳米技术与精密工程, 2004, 2(2): 117-123
    [7] R.P. Feynman,“There’s plenty of room at the bottom”, presented at the American Physical Society Meeting in Pasadena, CA, December 26,1959; reprinted in J. Microelectromechanical Systems, 1992, 1(1):60-66
    [8] S. Terry, A miniature silicon accelerometer with Built-in damping. IEEE Solid-State Sensor and Actuator,1988:114-116
    [9] X. Thompson, New Microsystems application. Fast Growth. Http://www.smalltimes.com, 2002
    [10] E.W. Becker, W. Ehrfeld, P. Hagman, et al., Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA) process. Microelectronic Engineering, 1986(4): 35–56
    [11] Romankiw L.T. A path: from electroplating through lithographic masks in electronics to LIGA in MEMS, Electrochimica Acia, 1997, 42(20-22), 2985-3005.
    [12] Hirata Y. LIGA process - micromachining technique using synchrotron radiation lithography - and some industrial applications. Nucl. Instrum. Meth. B, 2003,208, 21-26.
    [13] Singleton L. Manufacturing aspects of LIGA technologies. J Photopolymer Sci. Tech. 2003, 16(3), 413-421
    [14]陈迪,赵旭, LIGA技术及其应用.高技术通讯, 1996, 6(9): 60-62
    [15] H. Guckel, LIGA and LIGA-like processing with high energy photons, Microsystem. Technologies, 1996, 2 (3): 153–156
    [16] H.Lorenz, M. Despont, P. Vettiger, et al., Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist. Microsystem Technologies, 1998, 4:143–146
    [17] K. Hesch, J. Arnold, U. Dasbach, Combination of excimer laser micromachining and replication processes suited for large scale production. Applied Surface Science, 1995, 86: 251-258
    [18] C.M. Cheng, R.H. Chen, Experimental investigation of fabrication properties of electroformed Ni-based micro mould inserts. Microelectronic Engineering, 2004, 75: 423–432
    [19] R.Huber, Conrad J., Schmitt L , et al. Fabrication of multilevel silicon structures by anisotropic deep silicon etching, Microelectronic Engineering, 2003, 67-68, 410-416.
    [20] D. Chen, F. Yang, M. Tang, et al., DEM microfabrication technique and its applications in bioscience and microfluidic systems. Proceedings of SPIE, 2001, 4601: 205-209
    [21]陈迪,张大成,丁桂甫等, DEM技术研究.微细加工技术, 1998, (4): 1-6
    [22] G.E. Moore, Cramming more components onto integrated circuits. Electronics, 1965, 38(8): 114-117
    [23] Justin Leung, Active substrate membrane probe card. In Doctoral Dissertation of Stanford University, 1997:5-27
    [24]曾芷德,数字系统测试和可测性设计.国防科技大学出版社,长沙, 1992
    [25]杨士元,数字系统的故障诊断与可靠性设计.清华大学出版社,北京, 2000
    [26]高燕,基于寄存器传输级层次模型的测试生成研究. [学位论文].中国科学院计算技术研究所博士学位论文, 2003
    [27]刘晓华,一种先进的时序电路测试生成算法.电子质量, 2004, 9:6-8
    [28] Michael L. Bushnell, Vishwani D. Agrawal, Essentials of electric testing for digital, memory, and mixed-signal VLSI circuits. [M]. Kluwer Academic Publishers, 2000
    [29] Rochit Rajstuman, System-on-a-chip: design and test. [M]. Ar-tech House Publishers, 2000
    [30] Erik Jan Marinissen, Rohit Kapur, Maurice Lousberg, On IEEE P1500’s Standard for Embedded Core Test. Joumal of Electronic Testing: Theory and Applications, 2002, 18:365-383
    [31]潘曙娟,钟杰,基于ATE的IC测试原理、方法及故障分析.半导体学报, 2006, 27:354-357
    [32]朱莉,林其伟,超大规模集成电路测试技术.中国测试技术, 2006, 32(6):117-120
    [33] J.S. Davis, D.C. Keezer, Multi-purpose digital test core utilizing programmable logic. IEEE International Test Conference, 2002: 438-445
    [34] A. Starikov, Model-based WYSIWYG :Dimensional metrology infrastructure for design and integration. Proc. SPIE Conf. Design Process Integration, and Characterization for Microelectronics, 2003, 4692:312–327
    [35] D. Bartelink, Statistical metrology-At the root of manufacturing control. J. Vac. Sci. Technol. B, 1994, 12(4):2785–2794
    [36] C. Yu, T. Maung, C.J. Spanos, et al., Use of short-loop electrical measurements for yield improvement. IEEE Trans. Semiconduct. Manufact., 1995, 8:150–159
    [37] W. Lukaszek, K.G. Grambow, W.J. Tarbrough, Test vehicle based approach to automated diagnosis of CMOS yield problems. IEEE Trans. Semiconduct. Manufact., 1990, 3:18–27
    [38] C. Weber, Generic test chip formats for ASIC-Oriented semiconductor process development. Proc.IEEE Int. Conf. Microelectronic Test Structures, 1993:247–252
    [39] M.W. Cresswell, M. Gaitan, R.A. Allen, et al., A modified silding wire potentiometer test structure for mapping nanometer-level distances. Proc. IEEE Int. Conf. Microelectronic Test Structures, 1999: 129–134
    [40] R.A. Allen, M.W. Cresswell, L.M. Buck, A new test structure for the electrical measurement of the width of short features with arbitrarily wide voltage taps. IEEE Electron Device Lett., 1992, 13: 322–324
    [41] M.W. Cresswell, R.A. Allen, L.W. Linholm, et al., Hybrid optical-electrical overlay test structure, Proc. IEEE Int. Conf. Microelectronic Test Structures, 1996: 9-12
    [42] R.A. Allen, M.W. Cresswell, C.H. Ellenwood, et al., The enhanced voltage-dividing potentiometer for high-precision feature placement metrology, IEEE Trans. Instrumentation and Measurement, 1996: 45(1):136-1414
    [43] T. Ternisien d’Ouville, J.P. Jeanne, J.L. Leclercq, Automatic test chip and test program generation:An approach to parametric test computer-aided design, Proc. IEEE Int. Conf. Microelectronic Test Structures, 1992: 145-149
    [44] M.V. Kumar, W. Lukaszek, J.D. Plummer, A test structure advisor and acoupled library-based test structure layout and testing environment, IEEE Trans. Semiconduct. Manufact., 1997, 10: 370–383
    [45] L. Kasel, C.C. McAndrew, P. Drennan, et al., Automated generation of SPICE characterization test masks and test databases. Proc. IEEE Int. Conf. Microelectronic Test Structures, 1999:74-79
    [46] W. Nagorski, W. McGee, E.G. Piccioli, et al., Automatic test chip documentation synthesis. Proc. IEEE Int. Conf. Microelectronic Test Structures, 1996: 221-225
    [47] http://www.testchip.com
    [48] http://www.dolphin.fr/flip/teststructure/rycs.html
    [49] Y. Shigehiro, T. Nagata, I. Shirakawa, et al., Automatic layout recycling based on layout description and linear programming. IEEE Trans. Computer-Aided Design,1996, 15: 959-967
    [50] A. Domic, Layout synthesis of MOS digital cells. Proc. Design Automation Conf.. Hudson, MA, 1990:241-245
    [51] D.A. Bensouiah, R.J. Mack, R.E. Massara, Analog layout generation: From design assistant to automated layout.Proc. 40th Midwest Symp. Circuits and Systems, 1997, 2:1038-1041
    [52] William R. Mann, Frederick, L. Taber, Philip W. Seitzer, et al., The leading edge of production wafer probe test technology. IEEE International test conference, 2004:1168-1193
    [53] Otto Weeden, Probe card tutorial. Keithey Instrments Inc.
    [54] Brian Leslie, Farid Matta, Membrane probe card technology (The future for high performancewafer test), International Test Conference, 1988, 601-607
    [55] Mark Beiley, Justin Leung, S. Simon Wong, A micromachined array probe card-fabrication process, IEEE Transactions on Components, Packaging and Manufacturing Technology B, 1995, 18(1):179-183
    [56] Mark Beiley, Justin Leung, S. Simon Wong, A micromachined array probe card-characterization, IEEE Transactions on Components, Packaging and Manufacturing Technology B, 1995, 18(1):184-191
    [57] Masoud Zargari, Justin Leung, S. Simon Wong, et al., A BiCMOS active substrate probe card technology for digital testing. IEEE International Solid-State Circuits Conference, 1996:308-464
    [58] Masoud Zargari, Justin Leung, S. Simon Wong, et al., A BiCMOS active substrate probe card technology for digital testing. IEEE Journal of Solid-State Circuits, 1999, 34(8):308-464
    [59] Robert Berger, W. Gregory Lyons, Antonio Soares, A 1.3-GHz SOI CMOS test chip for low-power high-speed pulse processing. IEEE Journal of Solid-State Circuit, 1998, 33(8):1259-1261
    [60] O. Takahashi, N. Aoki, J. Silberman, et al., A 1-GHz logic circuit family with sense amplifiers. IEEE Journal of Solid-State Circuit, 1999, 34(5):616-622
    [61] T. Tada, R. Takagi, S. Nakao, et al., A fine pitch probe technology for VLSI wafer testing. International Test Conference, 1990: 900-906
    [62] M. A. Frautschi, S. C. Seidel, A. Webster, A fixture for probing double-sided silicon microstrip dedectors, Nuclear Instruments and Methods in Physics Research A, 1995, 355: 521-525
    [63] Hausila P. Singh, Robert A. Sadler, John F. Naber, et al., A high-speed GaAs error-detection circuit for fiber-optic transmission systems. IEEE Transactions on Electron Devices, 1988, 35(9): 1405-1411
    [64] David L. Landis, A self-test system architecture for reconfigurable WSI. International Test Conference, 1989: 275-282
    [65] David L. Landis, A test methodology for wafer scale systems. IEEE Transactions on Computer-Aided Design, 1992, 11(1): 76-82
    [66] Normand Nadeau, Sylvle Perreault, An analysis of tungsten probes’effect on yield in a production wafer probe environment. International Test Conference, 1989: 208-215
    [67] F. Anghinolfi, W. Bialas, N. Busek, et al., ASIC wafer test system for the ATLAS semiconductor tracker front-end chip. IEEE Transactions on Nuclear Science, 2002, 49(3): 1080-1085
    [68] J. M. Geary, G. P. Vella-Coleiro, Cryogenic wafer prober for josephson devices. IEEE Transactions on Magnetics, 1983, 19(3): 1190-1192
    [69] K. Shingo, K. Kataoka, T. Itoh, et al., Design and fabrication of electrostatically actuated MEMSprobe card. The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, 2003:1522-1525
    [70] T. Akashi, T. Chikai, T. Hamano, et al, Eutectic solder bumped flip chip development. IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1997: 319-325
    [71] Toshinori Ishii, Hideaki Yoshida, Fine pitch (45 micron) P4 probing. International Test Conference, 1998: 272-276
    [72] Seiji Sasho, Teruhisa Sakata, Four multi probing test for 16 bit DAC with vertical contact probe card. International Test Conference, 1996:86-91
    [73] Cristo da Costa, Hardware for production test of RFID interface embedded into chips for smart cards and labels used in contactless applications. ITC International Test Conference, 2000:485-491
    [74] S. Maekawa, M. Takemoto, Y. Kashiba, et al., Highly reliable probe card for wafer testing. Electronic Components and Testing Conference, 2000: 1152-1156
    [75] Kuo-Ming Chen, Kuo-Ning Chiang, Impact of probing procedure on flip chip reliability. Microelectronics Reliability, 2003, 43:123-130
    [76] Dominique Langlois, Mechel Fardel, Karl R. Heiman, et al., Implementing fiducial probe card alignment technology for production wafer probing. IEEE/SEMI Advanced Manufacturing Conference, 2003: 238-243
    [77] Samuel Schleifer, Improving wafer sort yields with redius-tip probes. International Test Conference, 1990:896-899
    [78] Jim Anderson, Integrated probe card/interface solutions for specific test applications. International Test Conference, 1998: 282-283
    [79] Frank Pietzshmann, Living daily with“Monster”probe cards. IEEE/SEMI International Electronics Manufacturing Technology Symposium, 2003:439-442
    [80] K. Kataoka, T. Itoh, K. Okumura, et al., Low contact force probing on copper electrodes. ITC International Test Conferencce, 2002: 424-429
    [81] Marlene J. Begay, MCM市场中裸芯片测试对策.电子工业专用设备, 1994, 4(23):44-49
    [82] Wai Yuen Lau, Measurement challenges for on-wafer RF-SOC test. SEMI Technology Symposium: International Electronics Manufacturing Technology (IEMT) symposium. 2002:353-359
    [83] K. Kataoka, T. Itoh, K. Inoue, et al., Multi-layer electroplated micro-spring array for MEMS probe card. MEMS’04, Maastricht, Netherlands, 2004: 733-736
    [84] Koji Soejima, Mitsuru Kimura, Yuzo Shimada, et al., New probe microstructure for full-wafer, contact-probe cards. Electronic Components and Technology Conference, 1999:1175-1180
    [85] M. Maeda, M. Nakamura, Y. Ota, et al., On-wafer power measurement method using a new RFprobe card. Proceedings of International Symposium on Power Semiconductor Devices & ICs, Yokohama, 1995:369-373
    [86] Sangjun Park, Bonghwan Kim, Jongpal Kim, et al., A novel 3D process for single-crystal silicon micro-probe structures, Journal of Micromechanics and Microengineering, 2002, 12: 650-654
    [87] Younghak Cho, Tony Kuri, Yamato Fukuta, et al., Fabrication of sharp knife-edged micro probe card combined with shadow mask deposition, 2004, 114: 327-331
    [88] Fei Wang, Xinxin Li, Nanxiang Guo, et al., A silicon cantilever probe card with tip-to-pad electric feed-through and automatic isolation of the metal coating, Journal of Micromechanics and Microengineering, 2006, 16: 1215-1220
    [89] Yanwei Zhang, Yongxia Zhang, R. B. Marcus, Thermally actuated microprobes for a new wafer probe card, IEEE Journal of MicroElectroMechanical Systems, 1999, 8(1): 43-49
    [90] T. Itoh, T. Suga, G. Engelmann, et al., Applicability of MEMS probe card to wafer-level test, Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference Hawaii USA, June 1999: 123–130
    [91] K. Kataoka, S. Kawamura, T. Itoh, et al., Electroplating Ni micro-cantilevers for low contact-force IC probing, Sensors and Actuators A, 2003, 103: 116–121
    [92] T. Itoh, T. Suga, G. Engelmann, et al., Characteristics of fritting contacts utilized for micromachined wafer probe cards, Rev. Sci. Instrum. 2000, 71: 2224–2227
    [93] T. Itoh, S. Kawamura, K. Kataoka, et al., Contact properties of micromachined Ni probes, Proceedings of the 49th IEEE Holm Conference on Electrical Contacts Washington DC, USA, September 2003: 223–227
    [94] T. Itoh, K. Kataoka, T. Suga, Characteristics of low force contact process for MEMS probe cards, Sens. Actuators A, 2002,97–98: 462–467
    [95] K. Kataoka, T. Itoh, T. Suga, Characterization of fritting phenomena on Al electrode for low contact force probe card, IEEE Trans. Compon. Packag. Technol., 2003, 26: 382–387
    [96] T. Itoh, S. Kawamura, K. Kataoka, et al., Electroplated Ni microcantilever probe with electrostatic actuation, Sensors and Actuators A, 2005, 123-124:490-496
    [97] Mark Rosamond, David Wood, Substrate independent fabrication of a non-planar probe card. Microelectronic Engineering, 2007, 84:1207-1210
    [98] Chingfu Tsou, Shuen-Lung Huang, Hungchung Li, et al., Electroplated nickel micromachined probes with out-of-plane predeformation for IC chip testing. J. Micromech. Microeng., 2006, 16: 2197-2202
    [99] Keekeun Lee, Bruce Kim, MEMS spring probe for non-destructive wafer level chip test. J.Micromech. Microeng., 2005, 15:953-957
    [100] Takahiro Namazu, Youichi Tashiro, Shozo Inoue, Ti-Ni shape memory alloy film-actuated microstructures for a MEMS probe card, J. Micromech. Microeng., 2007, 17:154-162
    [101] Nicholas Sporck, A new probe card technology using compliant microspringsTM. International Test Conference, 1997: 527-532
    [102] Rajiv Pandey, Dan Higgins, P4 probe card- a solution for at-speed, high density, wafer probing. International Test Conference, 1998:836-842
    [103] A. Singh, J. Plusquellic, A. Gattiker, Power supply transient signal analysis under real process and test hardware models. Proceedings of the 20th IEEE VLSI Test Symposium, 2002:357-362
    [104] S. Asai, K. Kato, N. Nakazaki, et al., Probe card with probe pins grown by the vapor-liquid-solid method. IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, 1996, 19(2):258-267
    [105] Navin Tandon, Adriana Sanchez, Simran Arora, et al., Reduce your cycle time by utilizing automation fro wafer test data collection. IEEE/CPMT/SEMI International Electronics Manufacturing Technology Symposium, 2003:201-205
    [106] Jerry J. Brozt, James C. Anderson, Reynaldo M. Rincont, Reducing device yield fallout at wafer level test with electrohydrodynamic (EHD) cleaning. ITC International Test Conference, 2000:477-484
    [107] Qing Tan, Craig Beddingfield, Addi Mistry, Reliability evaluation of probe-before-bump technology. IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1999:320-324
    [108] Y. Cho, T. Kuri, Y. Fukuta, et al., Si-based micro probe card with sharp knife-edged tips combined metal deposition. The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 2003:774-777
    [109] Karl F. Zimmernann, Si probe-a new technology for wafer probing. International Test Conference, 1995:106-112
    [110] C. Barsotti, S. Tremaine, M. Bonham, Very high density probing. International Test Conference, 1988:608-614
    [111] Ching-Lang Chiang, Wafer level backside emission microscopy: dynamics and effects. Microelectronics Reliability, 1999, 39: 695-708
    [1] E. Gmelin, M. Asen-Palmer, M. Reuther, et al., Thermal boundary resistance of mechanical contacts between solids at subambient temperatures. J. Appl Phys., 1999, 32:19-43
    [2] Angel Colin, Thermal contact resistance of different materials between 0.3K and 4.5K. Cryogenics, 2008, 48(1-2):83-85
    [3] Beiley Mark Adam, Micro-machined array probe card. Stanford University, 1993
    [4] D. S. Liu, M. K. Shih, W. H. Huang, Measurement and analysis of contact resistance in wafer probe testing. Microelectronics Reliability, 2007, 47:1086-1094
    [5] Holm, Theory of metal contact, Springer, 1967
    [6] Mark Beiley, Justin Leung, S. Simon Wong, A micromachined array probe card-characterization, IEEE Transactions on Components, Packaging and Manufacturing Technology B, 1995, 18(1):184-191
    [7] T. Itoh, K. Kataoka, T. Suga, Characteristics of low force contact process for MEMS probe cards, Sens. Actuators A, 2002,97–98: 462–467
    [8] T. Itoh, T. Suga, G. Engelmann, et al., Characteristics of fritting contacts utilized for micromachined wafer probe cards, Rev. Sci. Instrum. 2000, 71: 2224–2227
    [1] Y. Saotome, S. Yokote, T. Okamoto, et al., Design and in-situ mechanical testing system for probe card/ UV-LIGA Ni microspring. Proceedings of MEMS, 2003:670-673
    [2] Bong-Hwan Kim, Sang-jun Park, Dong Cho, et al., Fabrication of Nickel Electroplated Cantilever-type MEMS Probe Card with Through-Hole Interconnection. Microprocesses and Nanotechnology Conference, 2003: 170- 171
    [3] K. Kataoka, T. Itoh, K. Inoue, et al., Multi-Layer Electroplated Micro-Spring Array for MEMS Probe Card. 17th IEEE International Conference on MEMS, 2004: 733- 736
    [4]殷有泉,邓成光,材料力学,北京大学出版社, 1992
    [5]王国强,实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社, 2000
    [6]陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南.中国铁道出版社, 2001
    [7] ANSYS技术报告及help文档,美国ANSYS公司
    [1] Z.G. Ling, K. Lian, Expansion of SU-8 application scope by PAG concentration modification, Proceeding of SPIE, 2003: 402-409
    [2] A. Bertsch, H. Lorenz and P. Renaud, 3D microfabrication by combining microstereo- lithography and thick resist UV lithography, Sensors and Actuators 1999: 14–23
    [3] Chienhung Ho and Wensyang Hsu, Experimental investigation of an embedded root method for stripping SU-8 photoresist in the UV-LIGA process, J. Micromech. Microeng. 2004, 14: 356-364
    [4] Ewan H Conradie, David F Moore, SU-8 thick photoresist processing as a functional material for MEMS applications. J. Micromech. Microeng., 2002, 12:368-374
    [5] B. Puers, W. Sansen, Compensation structures for convex corner micromachining in silicon, Sensors and Actuators A, 1990, 23: 1036-1041
    [6] M. Bao, Chr. Burrer, J. Esteve, et al., Etching front control of <110> strips for corner compensation, Sensors and Actuators A, 1993, 37-38: 727-732
    [7] G. K. Mayer, H. L. Offereins, H. Sandmaier, et al., Fabrication of non-underetched convex corners in anistropic etching of (100)-silicon in aqueous KOH with respect to novel micromechanic elements, Journal of the Electrochemical Society, 1990, 137: 3947-3951
    [8] R. B. Dupaix, M. C. Boyce, Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG), Polymer 46 (2005) 4827–4838.
    [9] Sangjun Park, Bonghwan Kim, Jongpal Kim, et al., A novel 3D process for single-crystal silicon micro-probe structures. Journal of Micromechanics and Microengineering, 2002, 12: 650-654
    [10] Younghak Cho, Tony Kuri, Yamato Fukuta, et al., Fabrication of sharp knife-edged micro probe card combined with shadow mask deposition. Sensors and Actuators A, 2004, 114: 327-331
    [11] Fei Wang, Xinxin Li, Nanxiang Guo, et al., A silicon cantilever probe card with tip-to-pad electric feed-through and automatic isolation of the metal coating. Journal of Micromechanics and Microengineering, 2006, 16: 1215-1220
    [12]张大伦,李宗,材料力学.同济大学出版社, 1987
    [13]杨绪灿,弹性力学.高等教育出版社, 1987
    [1] Chang Liu, Recent developments in polymer MEMS. Advanced Materials, 2007, 19:3783-3790
    [2]周明,郑傲然,杨加宏,复制模塑法制备超疏水表面及其应用.物理化学学报, 2007, 23(8):1296-1300
    [3] F. Jiang, Y. Tai, K. Walsh, et al., A flexible MEMS technology and its first application to shear stress sensor skin. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Nagoya, Japan, January 1997: 465–470
    [4] Brian Leslie, Farid Matta, Membrane probe card technology (The future for high performance wafer test). International Test Conference, 1988, 601-607
    [5] Sylgard 184, Dow Corning Corporation, Midland, MI.
    [6] Unger, M. A.; Chou, H.-P.; Thorsen, T.; Scherer, A; Quake, S. R. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science 2000, 288, 113-116;
    [7] Chaudhury, M. K.; Whitesides, G. M. Direct Measurement of Interfacial Interactions between Semispherical Lenses and Flat Sheets of Poly(dimethylsiloxane) and Their Chemical Derivatives, Langmuir 1991, 7, 1013-1025
    [8]过增元,赵文华.电弧和热等离子体,北京:科学出版社, 1986: 12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700