宽厚板坯连铸过程非金属夹杂物的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽厚板产品在油气输送、船舶制造、桥梁工程、电站锅炉、压力容器、重型机械、海洋石油及军事工业中应用广泛。连铸过程的夹杂物控制已成为高品质宽厚板生产的关键环节。
     中间包内钢液流动的合理控制对其内夹杂物的去除至关重要,而结晶器内钢渣界面波动与卷混行为的控制则是该连铸过程顺行与夹杂物控制的关键。因此,开展宽厚板中间包内去夹杂控流技术及结晶器内流场特性及界面行为研究具有重要的科学意义和现实指导意义。本论文结合国内某厂宽厚板生产线的实际,采用物理模拟和数学模拟相结合的方法对连铸中间包和结晶器内的过程进行了研究,提出了有效净化中间包钢液的控流方案和结晶器卷渣控制的水口参数并实施了现场应用研究。主要研究内容和研究结果如下:
     (1)结合宽厚板连铸中间包的实际,基于相似原理,选择模型与原形的弗鲁德准数相等建立了几何比1:2.5的中间包物理模型研究体系。结合该物理模拟系统,对修正前后的组合模型的流动特性分析结果进行对比研究,找出了最优的流动特性分析模型。结果表明:传统的组合模型在死区体积分数的计算上存在较大差异,用此来分析中间包流动特性会造成很大的偏差;而Sahai的修正组合模型能准确的计算死区体积分数,能较合理分析中间包内的流动特性。
     (2)利用Sahai的修正组合模型考察了不同控流装置对中间包内钢液流场以及夹杂物去除效果的影响规律。结果表明:带顶缘和不带顶缘的抑湍器均能明显提高活塞区的体积分数,且死区体积分数也有不同程度的降低;与带顶缘的抑湍器组合的中间包出口附近的挡坝设计参数对中间包内钢液的流动特性有影响;与带顶缘的抑湍器组合的墙坝间距有一个控制钢液流动特性的最佳值。并利用计算机模拟对典型控流方案下中间包内的流场特性作出描述。在水模型研究和检验数学模型的基础上,进行综合分析研究,最终提出了有效提高钢水纯净度的中间包内控流装置。
     (3)结合宽厚板连铸结晶器的实际,利用数学模拟和物理模拟相结合的方法考察不同工艺参数对结晶器内界面波动行为和内部流场的影响,并对结晶器内的钢渣卷混机理进行了探索。
     (4)吹氩宽厚板坯结晶器内存在两种新的卷渣机理,即气泡群冲击卷渣和类旋涡卷渣,且在实验拉速范围内没有发现弯月面附近的剪切卷渣。在各铸坯宽度及对应的拉速范围内,吹气量小于4L/min时基本都不会发生卷渣。
     (5)对于2200×280mm2断面宽厚板坯结晶器控制液面波动的最佳工艺参数如下:4L/min的吹氩量、-15°的水口侧孔倾角、140mm的水口浸入深度。
     (6)宽厚板连铸的现场应用研究表明:连铸工艺参数改进后其夹杂物控制效果要明显好于改进前。改进后,中间包与铸坯中的夹杂物含量比改进前分别降低8%和20%;中间包和铸坯内典型夹杂物尺寸由改进前的30μm和15μm分别降至改进后的10μm和5μm。
Heavy plate products are widely used in the realms of oil and gas transmission, ship building, bridge engineering, boiler of power station, pressure vessels, heavy equipment, offshore oil, and military industry. The inclusion control in continuous casting process is a key for the high-quality heavy plate production.
     The reasonable control of molten steel flow is crucial for the inclusion removal in the tundish, and the control of the steel/slag interface and slag entrapment behavior in the mold is a key for guaranteeing the smooth operation of continuous casting process and controlling the macro inclusions. Therefore, it has important scientific and practical guidance significances for developing the tundish flow control technology and understanding the flow characteristics and interfacial behavior in the mold. In this paper, the transport phenomena in the tundish and mold were studied by using mathematical and physical simulations according to the heavy plate practical production process in one domestic steel corporation, and one scheme of flow control devices for cleaning the molten steel in the tundish and the optimum submerged entry nozzle (SEN) parameters for restraining the slag entrapment effectively in the mold were proposed. In addition, the effectiveness of applying the optimal flow control devices and SEN to the actual performance was investigated. The main contents and results obtained are as follows:
     (1) With the combination of the wide and thick slab continuous casting tundish practical process, a physical model with the scale 1:2.5 was established based on the Froude similarity. By means of the measured results of the physical model, two combined models for characterizing the melt flow were compared and the optimal combined model was found out. The results show that the traditional model may make mistakes both in the estimation on the melt flow characterization and in the choice of optimal flow control devices. As a reasonable modification has been made on the calculation of dead volume fraction, the modified combined model is suitable for characterizing the melt flow in single-strand tundish.
     (2) The effect of different control devices on the characteristics of melt flow in the tundish was analyzed by the above-mentioned modified combined model presented by Sahai. The results show that the turbulence inhibitors with and without top extending lip both can improve obviously the plug flow volume and decrease the dead volume to some extent. The design parameters of the dam nearby the outlet combined with turbulence inhibitor with top extending lip have some effect on the melt flow in tundish. And the distance between the weir and dam combined with turbulence inhibitor with top extending lip has an optimal value for the melt flow. And a three-dimensional mathematical model to simulate the flow of molten steel in the tundish was developed to analyze the melt flow in tundish with typical control devices. One proposal for the best inclusion removal is presented based on the physical modeling and mathematical modelling.
     (3) With the combination of the wide and thick slab continuous casting mold practical process, the effects of different operation parameters on the fluid flow, interface fluctuation behaviour as well as the mechanism of mold powder entrapment in the mold were investigated by combining the water model experiments and mathematical simulations.
     (4) There are two new mechanisms of mold powder entrapment in wide and thick slab mold with argon blowing, viz. powder entrapment caused by the attack of bubbles stream and the vortex, and a flow reversing from the narrow face of the mold give rise to the powder entrapment was not found in the experimental casting speed range. With different slab widths and correspondent casting speed, the powder entrapment will not occure in the mold if the gas flowrate blowing into the SEN is less than 4 L/min.
     (5) The optimum process parameters for controlling the surface fluctuation in the mold with the section of 2200×280mm2 are that the argon gas flow rate of 4L/min, the nozzle side port angle of-15°and the nozzle submergence depth of 140 mm.
     (6) The results of application of continuous casting process parameters in practice shows that the presented process parameters are better than the original ones on the control of non-metallic incusions. With the presented process parameters, the inclusion content in the tundish and slab are decreased by 8% and 20% than those under the original process parameters, respectively. And the typical inclusion sizes in tundish and slab is 10μm and 5μm with the presented process parameters, wihle it is 30μm and 15μm with the original ones.
引文
1. 殷瑞珏,潘荫华,苏天森.中国加快连铸的途径[J],钢铁,1998,33(3):72-76.
    2. 苏天森.近几年世界与中国钢铁技术的进步[A],河北钢铁工业发展循环经济高层论坛[C],2006,76-88.
    3. 殷瑞钰.第一届全国炉外处理学术会议[C],中国金属学会,1992,1-10.
    4. 蔡开科,程士富.连续铸钢与工艺[M],北京:冶金工业出版社,1994,46-47.
    5. 樊俊飞.六流连铸中间包内传输行为的模拟仿真及过程优化研究[D],沈阳:东北大学,1999.
    6. 曹娜.高拉速板坯连铸结晶器内钢/渣界面行为的数值仿真[D],沈阳:东北大学,2008.
    7. 钱振伦.我国宽厚板生产技术和装备的发展及评述[J],冶金管理,2008(3):57-60.
    8. Taniguchi S, Kikuchi A. Model experiment on the motion of fine particles of inclusion in liquidsteel[J], Tetsu-to-Hagane,1992,78:423-430.
    9. Sinha A K, Sahai Y. Mathematical modeling of inclusion transport and removal in continuous casting tundishes[J], ISIJ,1993,33:556-566.
    10. Miki Y, Shimada Y, Thomas B G, et al. Model of inclusion removal during RH degassing of steel[J], Ironmaker & Steelmaker,1997,8:31-38.
    11. Zheng X F, Hayes P C, Lee H G Particle removal from liquid phase using fine gas bubbles[J], ISIJ,1997,37:1091-1097.
    12. Johansen S T, Taniguchi S. Prediction of agglomeration and break-up of inclusions during metal refining[A], Light Metals[C],855-861.
    13.张立峰,蔡开科.连铸中间包钢水流动及夹杂物去除的研究[A],中国钢铁年会论文集[C],1999,405-410.
    14.薛正良,李正邦,‘张家雯.弹簧钢氧化物夹杂成分和形态控制理论与实践[J],特殊钢,2002,23:1-6.
    15. Yamada W, Nakashima J I, Kiyose A, et al. Simulation of coagulation of non-metallic inclusions in tundish and their trapping into solidified shell in continuous casting mould[J], Ironmaking and Steelmaking,2003,30(2):151—157.
    16. Zhu Miaoyong, Zheng Shuguo. Physical behavior of non-metallic inclusions during the processes of secondary refining and continuous casting[A], Asia Steel International Conference[C],2006,290-300.
    17.郑淑国,朱苗勇.钢包内喷嘴与透气砖吹氩去夹杂水模型研究[J],金属学报,2006,42(11):1143-1148.
    18.杨小容.连铸中间包内钢中夹杂物运动行为模拟研究[D],武汉:武汉科技大学,2004.
    19. Emling W H, Waugaman T A, Feldbauer S L, et al. Subsurface mold slag entrapment in ultra low carbon steel[A],77th steelmaking conference proceedings[C],1994, 371-379.
    20. Sahai Y, Ahuja R. Fluid flow and mixing of melt in steelmaking tundishes[J], Ironmaking Steelmaking,1986,13(5):241-247.
    21. Sahai Y, Ahuja R. Fluid dynamics of continuous casting tundishes-physical mdeling [A], Steelmaking Conference Proceedings[C], Washington DC:ISS-AIME, PA,1986, 69:677-687.
    22. Sahai Y, Emi T. Melt flow characterization in continuous casting tundish[J], ISIJ, 1996,36(6):667-672.
    23. Palafox-Ramos J, Barreto J de J, Lopez-Ramirez S, et al. Melt flow optimisation using turbulence inhibitors in large volume tundishes[J], Ironmaking Steelmaking, 2001,28(2):101-109.
    24. Lopez-Ramirez S, Barreto J de J, Vite-Martinez P, et al. Physical and mathematical determination of the influence of input temperature changes on the molten steel flow characteristics in slab tundishes[J], Metall Trans B,2004,35B(5):957-966.
    25.钟良才,王胡强,丁宁,等.单流板坯连铸中间包流体流动控制与效果[J],炼钢,2007,23(4):33-35.
    26.程树森,成国光,程子建,等.板坯中间包等温钢液流动的物理模拟与应用[J],炼钢,2008,24(2):15-18.
    27.程子建,成东全,程树森,等.酒钢板坯中间包等温钢液流场的数值模拟[J],钢铁研究学报,2008,20(2):60-63.
    28.周俐,刘合萍,韩乃川,等.中间包吹气的水力学研究[J],连铸,2007,1:1-3.
    29.夏文勇,刘建华,赖朝彬,等.新钢板坯连铸中间包采用控流槽的水模拟实验[J],钢铁研究,2007,35(2):4-7.
    30.曹娜,朱苗勇.板坯连铸中间包内控流装置结构的优化[J],材料与冶金学报,2007,6(2):109-112.
    31.李志月,倪修华,奚卫英,等.二流连铸中间包内型优化水模试验[J],安徽工业 大学学报,2005,22(1):6-8.
    32.朱正海,周俐,彭世恒,等.单流板坯中间包内湍流控制器对流场的影响[J],宽厚板,2005,11(6):1-3.
    33.周俐,王建军,张雪松,等.板坯连铸中间包内型优化水模研究[J],炼钢,2003,19(3):34-36.
    34.岳峰,齐新霞.板坯连铸机中间包的物理模拟[J],河南冶金,2003,11(5):11-12.
    35.樊俊飞.六流连铸中间包内传输行为的模拟仿真及过程优化研究[D],沈阳:东北大学,1999.
    36. Nakajian H, Sebo F, Tanaka S, Dumitru L, et al. On the separation of non-metallic inclusion from tundishes in continuous casting operations—a water model study[A], Tundish Metallurgical[C],1990,1:101-112.
    37. Knoepke J, Mastervich J. Water modeling inland steel's no.3 combination caster tundish[A],Tundish Metallurgical[C],1:113-124.
    38. Sahai Y, Ahuja R. Fluid dynamics of continuous casting tundishes—physical modeling[A], Steelmaking Confer. Proc.[C],1986,69:677-687.
    39. Martinez E, Maeda M, Heaslip L J, et al. Effects of fluid flow on the inclusion separation in continuous casting tundish[J], Trans. ISIJ,1986,26:724-731.
    40. Sahai Y, Emi T. Physical modeling of melt flow in continuous casting tundishes[A], Proc. of Intern. Confer. on Modeling and Simulation Metallurgical Engineering and Materials Science[C], Beijing,1996,323-325.
    41. Damle C, Sahai Y. A criterion for water modeling of non-isothermal melt flows in continuous casting tundishes[J], ISIJ,1996,36(6):681-689.
    42. Chiang L K. Water modeling of IPSCO's slab-caster tundish[A], Steelmaking Confer. Proc.[C],1992,75:437-450.
    43. Martinez R E, Solis T H. Modelling of asymmetrical tundishes[A], Steelmaking Confer. Proc.[C],1992,75:893-898.
    44. Liu X T, Zhou Y H, Shang B L, et al. Flow behaviour and filtration of steel melt in continuous casting tundish[J], Ironmaking Steelmaking,1992,19(3):221-225.
    45. Sahai Y, Burval M D. Validity of reynolds and froude similarity criteria for water modeling of melt flow in tundishes[A], Electric Furnace Confer. Proc[C],1992,50: 469-474.
    46. Singh S, Koria S C. Model study of the dynamics of flow of steel melt in the tundish[J], ISIJ,1993,33(12):1228-1237.
    47. Singh S, Koria S C. Physical modelling of steel flow in continuous casting tundish[J], Ironmaking and Steelmaking,1993,20(3):221-230.
    48. Koria S C, Singh S. Physical modeling of effects of the flow modifier on the dynamics of molten steel flowing in a tundish[J], ISIJ,1994,34(10):784-793.
    49. Godiwalla K M, Sinha S K, Sivaramakrishnan C S. Thermal stratification phenomena in a 4-strand CC tundish during teeming of steel-water model study[J], ISIJ,1993, 33(4):519-521.
    50. Bolger D, Saylor K. Development of a turbulence inhibiting pouring pad/flow control device for the tundish[A], Steelmaking Confer. Proc.[C],1994,77:225-233.
    51. Godiwalla K M, Sinha S K, Sivaramakrishnan C S. Statistical analysis of residence time distribution of fluid elements in continuous casting water model tundish with one side entry[A], Steelmaking Confer. Proc.[C],1994,77:703-712.
    52. Crowley R W, Lawson G D. Cleanliness improvements using a turbulence-suppressing tundish impact pad[A], Steelmaking Confer. Proc.[C],1995, 78:629-636.
    53. Purdie J, McPherson N. The development and operational experience of a rotary valve for tundish flow control[A], Steelmaking Confer. Proc.[C],1988,71:447-451.
    54. Mazumdar D, Guthrie R I L. The physical and mathematical modelling of continuous casting tundish systems[J], ISIJ,1999,39(6):524-547.
    55. Damle C, Sahai Y. A criterion for water modeling of non-isothermal melt flows in continuous casting tundishes[J], ISIJ,1996,36(6):681-689.
    56.樊俊飞,朱苗勇,张清朗,等.六流T形连铸中间包内控流装置优化的水模研究[J],钢铁,1998,33(5):24-28.
    57.戴朝珊,王建军,朱本立,等.马钢六流小方坯连铸机中间包内型优化水模试验[J],华东冶金学院学报,1997,14(4):381-386.
    58.包燕平,曲英,张洪,等.矩形连铸中间包钢液流动现象的测定[J],化工冶金,1990,11(4):364-367.
    59.赵凤林,李仁超,赵沛,等.连铸中间包温度场的水模拟[J],化工冶金,1990,11(4):369-373.
    60.郑淑国,朱苗勇,姜桂连,等.四流矩形中间包冲击碗应用水模实验研究[J],钢铁,2004,39(5):23-25.
    61. Debroy T, Sychterz J A. Numerical calculation of fluid flow in a continu ous casting tundish[J], Met. Trans. B,1985,16B(4):497-504.
    62. Szekely J, El-Kaddah N. The mathematical modelling of three-dimensional heat flow, fluid flow and turbulence phenomena in tundishes[A], Steelmaking Confer. Proc., [C], 1986,69:761-776.
    63. He Y, Sahai Y. Fluid dynamics of continuous casting tundishes—mathematical modeling[A], Steelmaking Confer. Proc.[C],1986,69:745-754.
    64. He Y D, Sahai Y The effect of tundish wall inclination on the fluid flow and mixing[J], Met. Trans. B,1987,18B(2):81-92.
    65. Tacke K H, Ludwig J. Steel flow and inclusion separation in continuous casting tundishes[J], Steel Res.,1987,58(6):262-270.
    66. Hsu K C, Chou C L. The mathematical modelling of steel flow and particle trajectory in two-strands slab tundish[A], Steelmaking Confer. Proc.[C],1988,71:405-410.
    67. Ilegbusi O J, Szekely J. Effect of externally imposed magnetic field on tundishes performance[J], Ironmaking and Steelmaking,1989,16(2):110-115.
    68. Ilegbusi O J, Szekely J. Effect of magnetic field on flow, temperature and inclusion removal in shallow tundishes[J], ISIJ,1989,29(12):1031-1039.
    69. Joo S, Guthrie R I L. Heat flow and inclusion behaviour in a tundish for slab casting[J], Can. Met. Quarterly,1991,30(4):261-269.
    70. Gaston A, Laura R, Medina M. Model for predicting steel temperature and thermal state of casting tundishes[J], Ironmaking and Steelmaking,1991,18(5):370-373.
    71. Chakraborty S, Sahai Y. Role of near-wall node lacation on the prediction of melt flow and residence time distribution in tundishes by mathematical modeling[J], Met. Trans. B,1991,22B(4):429-437.
    72. Chakraborty S, Sahai Y. Mathematical modelling of transport phenomena in continuous casting tundishes:part 1 transient effects during ladle transfer operations[J], Ironmaking and Steelmaking,1992,19(6):479-487.
    73. Chakraborty S, Sahai Y. Mathematical modelling of transport phenomena in continuous casting tundishes:part 2 transient effects owing to varying ladle stream temperature[J], Ironmaking and Steelmaking,1992,19(6):488-494.
    74. Chakraborty S, Sahai Y. Effect of holding time and surface cover in ladles on liquid steel flow in continuous casting tundishes[J], Met. Trans. B,1992,23B(2):153-167.
    75. Joo S, Han J W, Guthrie R I L. Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations [J], Met. Trans. B,1993,24B(5):767-777.
    76.蒋国璋,孔建益,李公法,等.中间包温度分布的模拟研究[J],钢铁,2007,42(4):27-29.
    77. Sinha A K, Sahai Y Mathematical modeling of inclusion transport and removal in continuous casting tundishes[J], ISIJ,1993,33(5):556-566.
    78. Ilegbusi O J. Application of the two-fluid model of turbulence to tundish problems[J], ISIJ,1994,34(9):732-738.
    79. Damle C, Sahai Y. The effect of tracer density on melt flow characterization in continuous casting tundishes:a modeling study[J], ISIJ,1995,35(2):163-169.
    80.盛东源,干勇,肖泽强.中间包钢液流动、温度控制和夹杂物行为的数学模拟[J],金属学报,1996,32(6):743-747.
    81.朱苗勇.连铸中间包内三维湍流流动的数值模拟[J],金属学报,1997,33(11):1215-1221.
    82.朱苗勇.连铸中间包内流动与传热耦合过程的计算机模拟[J],金属学报,1997,33(9):933-938.
    83.王建军.小方坯连铸机中间包等离子枪加热三维温度场数模研究[J],钢铁,1995,30(6):22-26.
    84.朱本立,王建军.宝钢板坯连铸机中间包三维流场数模研究[J],钢铁,1994,29(8):19-23.
    85.贺友多,Sahai Y.连铸机中间包内的流体流动[J],金属学报,1988,24(2):B79-B86.
    86.贺友多,Sahai Y.不同因素对连铸机中间包流场的影响[J],金属学报,1989,25(4):272-276.
    87.贺友多.更换钢包时中间包的流场[J],钢铁,1990,25(10):20-24.
    88.程乃良,朱苗勇,肖泽强.非等温双流连铸中间包内流动与传热特征[J],钢铁,2001,36(10):23-25.
    89.程乃良.梅钢40t板坯中间包冶金特性的现场实验和理论研究[D],北京:钢铁研究总院,2000.
    90. Cramb A W, Byrne M. Chemical interactions in ladle, tundish and mold slags[A], Steelmaking Confer. Proc.[C],1986,69:719-735.
    91. Yeh J L, Hwang W S, Chou C L. The development of a mathematical model to predict composition distribution in casting slab and intermix slab length during ladle changeover period and its verification by physical model[J], ISIJ,1993,33(5): 588-594.
    92. Lowry M L, Sahai Y. Investigation of steel flow in a continuous casting tundish with multiple hole baffles using mathematical models and tracer studies[A], Steelmaking Confer. Proc.[C],1989,72:71-79.
    93. Robertson T, Perkins A. Physical and mathematical modelling of liquid steel temperature in continuous casting[J], Ironmaking and Steelmaking,1986,13(6): 301-310.
    94. Morales R D, Barron-Meza M A, Barreto J J, et al. Analysis of steel flow and heat transfer in a tundish heated by plasma through physical and mathematical modeling[A], Steelmaking Confer. Proc.[C],1997,80:325-336.
    95. Sheng D Y, Kim C S, Yoon Z K, et al. Study on the non-isothermal fluid flow in continuous casting tundishes[J], ISIJ,1998,38(6):843-851.
    96. Lai K Y M, Salcudean M, Tanaka S, et al. Mathematical modeling of flows in large tundish systems in steelmaking[J], Met. Trans. B,1986,17B(5):449-459.
    97. Joo S, Guthrie R I L, Dobson C J. Modelling of heat transfer, fluid flow and inclusion flotation in tundishes[A], Steelmaking Confer. Proc. [C],1989,72:401-408.
    98. Camplin J M, Herbertson J, Holl H, et al. The application of mathematical and water modelling in the selection of tundish design for the proposed combicaster at BHP whyalla[A], Proc. of 6th Int. Iron and Steel Congress[C],1990,3:207.
    99. Lee S M, Koo Y S, Kang T, et al. Mathematical and physical modelling of 3-d fluid flow in a tundish with dam and weir[A], The Sixth International Iron and Steel Congress[C],1990,3:239-245.
    100.Brisson D J, Pinkowski J W. Study of slab casting operating variables and their impact on cold sheet quality[A], Tundish Metallurgy [C],1990,1:171-178.
    101. Mountford N D G, Heaslip L J, Bednarek E, et al. The development of an ultrasonic sensor for metal quality in steel casting tundishes[A], Steelmaking Confer. Proc. [C], 1986,69:699-704.
    102. Van der Heiden A, van Hasselt P W, de Jong W A, et al. Inclusion control for continuously cast poducts[A], Steelmaking Confer. Proc.[C],1986,69:755-760.
    103. Madias J, Martin D, Ferreyra M, et al. Design and plant experience using an advanced pouring box(APB) to receive and distribute the steel in a six strand tundish[A], Steelmaking Confer. Proc.[C],1998,81:73-82.
    104. Collur M M, Love D B, Putil B V. Use of flow modifiers to improve performance of a tundish[A], Steelmaking Confer. Proc.[C],1997,80:313-324.
    105.Hintikka S, Konttinen J, Leiviska K. Optimization of molten steel flow in continuous casting mold[A],75th Steelmaking Conference Proceedings [C],1992,887-891.
    106.李宝宽赫冀成.炼钢中的计算流体力学[M],北京:冶金工业出版社,1998,265-265.
    107.#12
    108.#12
    109.彭一川,肖泽强.卷油现象的理论和实验研究[J],化工冶金,1988,9(1):71-77.
    110.Jonsson L, Jonsson P. Modeling of fluid flow conditions around the slag/metal interface in a gas-stirred ladle[J], ISIJ,1996,36(9):1127-1134.
    111. Iguchi M, Sumida Y, Okada R, et al. Evaluation of critical gas flow rate for the entrapment of slag unsing a water model[J], ISIJ,1994,34(2):164-170.
    112. Gupta D, Lahiri A K. Cold model study of the surface profile in a continuous slab casting model:effect of second phase[J], Metallurgical and Material Transactions. 1996,27B(8):695-697.
    113.雷洪,许海虹,朱苗勇,等.高速结晶器内卷渣机理及其控制研究[J],钢铁,1999,34(8):20-23.
    114.万晓光,韩传基,蔡开科,等.连铸板坯结晶器浸入式水口试验研究[J],钢铁,2000,35(9):20-23.
    115.包燕平,张涛,蒋伟,等.安钢板坯连铸机结晶器冷态模型和结构优化[J],特殊钢,2001,2(4):7-9.
    116.包燕平,田乃媛,徐保美.薄板坯连铸机新型浸入式水口[J],北京科技大学学报,2002,24(3):262-265.
    117. Qinglin H E. Observation of vortex formation in the mold of a continuous slab caster [J], ISIJ International,1993,33(2):343-345.
    118.Gebhard M, He Q L, Herbertson J. Vortexing phenomena in continuous slab casting moulds [A],76th Steelmaking Conference Proceedings[C],1993,441-446.
    119. Dauby P H, Emling W H, Sobdewski R. Lubrication in the mold:a multiple variable system[J], Iron and Steelmaker,1986,13(2):28-36.
    120.文光华,何俊范,李刚.薄板坯连铸伸入式水口的研究[J],重庆大学学报,1994,17(1):89-94.
    121. Emling W H, Waugaman T A, Feldbauer S L, et al. Subsurface mold slag entrapment in ultra low carbon steel[A],77th Steelmaking Conference Proceedings[C],1994,77: 371-379.
    122.包燕平,朱建强,蒋伟,等.薄板坯结晶器内卷渣现象的研究[J],北京科技大学学报,1999,21(6):530-534.
    123. Iguchi M, Yoshida J, Shimizu T, et al. Model study on the entrapment of mold powder into molten steel [J], ISIJ,2000,40(7):685-691.
    124.齐新霞,岳峰.板坯连铸结晶器钢液卷渣现象研究[J],河南冶金,2003,2:12-14.
    125.齐新霞,刘国林,包燕平,等.板坯连铸机结晶器钢液卷渣的水模型研究[J],特殊钢,2004,25(3):29-31.
    126.齐新霞,包燕平.结晶器钢液卷渣指数的讨论[J],钢铁研究,2005,3:17-20.
    127.陈芝会,王恩刚,王清成,等.薄板坯连铸结晶器内涡流及卷渣行为的研究[J],炼钢,2005,21(5):37-41.
    128. Kasai N, Iguchi M. Water-model experiment on melting powder trapping by vortex in the continuous casting mold[J], Tetsu-to-Hagane,2006,92(9):544-550.
    129. Wang Z, Mukai K, Izu D. Influence of wettability on the behavior of argon bubbles and fluid flow inside the nozzle and mold[J], ISIJ,1999,39(2):154-163.
    130.马范军,文光华,李刚.板坯连铸结晶器内吹入气体对钢液行为的影响[J],炼钢,2000,16(3):42-45.
    131. Kasai N, Iguchi M. Water-model experiments on gas and liquid flow in continuous casting immersion nozzle and mold[J], Tetsu-to-Hagane,2005,91(12):847-855.
    132. Kasai N, Iguchi M. Water-model experiments on gas and liquid flow in the continuous casting immersion nozzle[J], Tetsu-to-Hagane,2005,91(6):546-552.
    133. Iguchi M, Kasai N. Water model study of horizontal molten steel-Ar two-phase jet in a continuous casting mold[J], Metallurgical and Materials Transactions B,2000, 31(3):453-460.
    134.雷洪,朱苗勇,汪湿泉,等.水口吹氩对结晶器弯月面波动的影响[J],中国有色金属学报,1998,8(S2):468-471.
    135. Wang Z, Mukai K, Ma Z Y, et al. Influence of injected ar gas on the involvement of the mold powder under different wettabilities between porous refractory and molten steel[J], ISIJ International,1999,39(8):795-803.
    136.陆巧彤,杨荣光,王新华,等.板坯连铸结晶器保护渣卷渣及其影响因素的研究[J],钢铁,2006,41(7):29-32.
    137.张胜军,朱苗勇,张永亮,等.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J],金属学报,2006,42(10):1087-1090.
    138.张永亮,朱苗勇,张胜军,等.浸入式水口堵塞过程板坯结晶器内流动与液面波动的模拟[J],特殊钢,2006,27(5):27-29.
    139.Panaras G A, Theodorakakos A, Bergeles G Numerical investigation of the free surface in a continuous steel casting mold model[J], Metallurgical and Materials Transactions B,1998,29(5):1117-1126.
    140.Takatani K, Tanizawa Y, Mizukami H, et al. Mathematical model for transient fluid flow in a continuous casting mold[J], ISIJ,2001,41(10):1252-1261.
    141.谭利坚,沈厚发,柳百成,等.连铸结晶器液位波动的数值模拟[J],金属学报,2003,39(4):435-438.
    142. Dash S K, Mondal S S, Ajmani S K. Mathematical simulation of surface wave created in a mold due to submerged entry nozzle[J], International Journal of Numerical Methods for Heat and Fluid Flow,2004,14(5):606-632.
    143. Yuan Q, Thomas B G, Vanka S P. Study of transient flow and particle transport in continuous steel caster molds:Part Ⅰ. Fluid flow[J], Metallurgical and Materials Transactions B,2004,35 (4):685-702.
    144.Theodorakakos A, Bergeles G. Numerical investigation of the interface in a continuous steel casting mold water model[J], Metallurgical and Materials Transactions B,1998,29(6):1321-1327.
    145.Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model[J], Metallurgical and Materials Transactions B,1999,30(6):1095-1105.
    146. Huang X, Thomas B G. Modeling of transient flow phenomena in continuous casting of steel[J], Canadian Metallurgical Quarterly,1998,37(3-4):197-212.
    147.Kastner G., Brandstatter W, Kaufmann B, et al. Numerical study on mould powder entrapment caused by vortexing in a continuous casting process[J], Steel Research, 2006,77(6):404-408.
    148. Thomas B G, Huang X, Sussman R C. Simulation of argon gas flow effects in a continuous slab caster[J], Metallurgical and Materials Transactions B,1994,25(8): 527-547.
    149. Thomas B G, Dennisov A, Bai H. Behavior of argon bubbles during continuous casting of steel[A],80th Steelmaking Conference[C],1997,375-384.
    150. Kubo N, Ishii T, Kubota J, et al. Two-phase flow numerical simulation of molten steel and argon gas in a continuous casting mold[J], ISIJ,2002,42(11):1251-1258.
    151. Kubo N, Ishii T, Kubota J, et al. Numerical simulation of molten steel flow under a magnetic field with argon gas bubbling in a continuous casting mold[J], ISIJ International,2004,44 (3):556-564.
    152.刘和平,王忠英.板坯结晶器液面波动的数学物理模拟及其特点[J],钢铁研究,2002,2:47-50.
    153. Miranda R, Barron M A, Barreto J, et al. Experimental and numerical analysis of the free surface in a water model of a slab continuous casting mold[J], ISIJ International, 2005,45(11):1626-1635.
    154.李宝宽,李东辉.连铸结晶器内钢液涡流现象的水模型观察和数值模拟[J],金属学报,2002,38(3):315-320.
    155.Ramos-Banderas A, Morales R D, Sanchez-Perez R, et al. Dynamics of two-phase downwards flows in submerged entry nozzles and its influence on the two-phase flow in the mold[J], International J of Multiphase Flow,2005,31(5):643-665.
    156. Singh V, Dash S K, Sunitha J S, et al. Experimental simulation and mathematical modeling of air bubble movement in slab caster mold[J],2006,46(2); 210-218.
    157..Thomas B G, Mika L J, Najjar F M. Simulation of fluid inside a continuous slab-casting machine[J], Metal.Trans.B,1990,21B:387-400.
    158. Thomas B G., ZHANG L F. Mathematical modeling of fluid flow in continuous casting[J], ISIJ,2001,41(10):1181-1191.
    159.Huang X, Thomas B G, Najjar F M. Modeling superheats removal during continuous casting of steel slabs[J], Metal.Trans.B,1992,23B(6) 339-356.
    160. Brian G. Modeling of the continuous casting of steel-past present and future[A], Electric Furnace Conf.Proc.[C],2001,59:3-30.
    161. Huang X, Thomas B G. Turbulence flow of liquid steel and argon bubbles in slide-gate tundish nozzles[J], Metal.&Material Trans.B,2001,32B(2):269-284.
    162.Kitano Y, Kariya K, Asaho R, et al. Improvement of slab surface quality of ultra low carbon steel[J]. Tetsu-to-Hagane,1994,80:T165-168.
    163. Takaoka T, Kamemizu A, Kodaira K, et al. Quality improvement of ultra low carbon steel[J]. Tetsu-to-Hagane,1994,80:T60-62.
    164.何况年,肖寄光,韦耀环,等.宽板坯连铸结晶器SEN结构和操作参数优化试验研究[J],钢铁,2008,43(1):26-29.
    165.冯巍,朱传运,余挺进,等.水口吹氩工艺条件下连铸结晶器内钢液流动行为的模拟和优化[J],连铸,2007,4:4-7.
    166.陆巧彤,杨荣光,王新华,等.板坯连铸结晶器内液面波动的水模型研究[J],包头钢铁学院学报,2006,25(1):13-17.
    167.干勇,仇圣桃.连续铸钢过程数学物理模拟[M],北京:冶金工业出版社,2001.
    168.于会香,朱国森,王新华,等.连铸板坯结晶器内钢液吹氩行为的数值模拟[J],北京科技大学学报,2003,25(3):215-217.
    169.于海岐,朱苗勇.板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J],金属学报,2008,44(5):619-625.
    170.曹娜,朱苗勇.高拉速板坯连铸结晶器内钢/渣界面行为的数值模拟[J],金属学报,2007,43(8):834-838.
    171.于海岐,朱苗勇.板坯结晶器电磁制动和吹氩过程的钢/渣界面行为[J],金属学报,2008,44(9):1141-1148.
    172.刘和平,王忠英.板坯结晶器液面波动的数学物理模拟及其特点[J],钢铁研究,2002,2:47-50.
    173.王福军.计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004,26,87-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700