9-O-小檗碱糖苷同系物的合成与降糖药理活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小檗碱属异喹啉类生物碱,为黄连等传统中药的主要活性成分,在临床上被广泛用于治疗细菌感染引起的胃肠道疾病。现代科学研究显示,小檗碱不但具有良好的体内外抗菌作用,而且还表现出很好的调脂,降血糖,抗肿瘤,降血压,抗传染性原虫和抗心率失常等多种药理活性。本实验以小檗碱为先导化合物,通过小檗碱分子C9位去甲基后引入单糖分子发生糖苷化反应的方法制备了不同单糖取代的9-O-小檗碱糖苷同系物,并采用相应的实验方法研究了它们的药代动力学特性和体外降糖活性。实验方法与结果如下:
     1.9-O-小檗碱糖苷同系物的合成
     以常见的单糖作为取代基,借鉴7-羟基黄酮糖苷合成方法采用固-液相转移催化法,在小檗碱C9位进行亲水性结构修饰,合成了9-O-小檗碱糖苷同系物,并研究了不同反应条件(温度、反应溶剂、反应时间)对中间体9-O-乙酰小檗碱糖苷及终产物9-O-小檗碱糖苷合成产率的影响。结果发现以DMF为溶剂、45℃下反应3h为最优中间体生成工艺,以Na2CO3/NaHCO3为水解试剂、在40℃下反应1h为最优终产物生成工艺。合成化合物的分子结果分别通过紫外光谱和核磁共振分析等方法进行了确认。
     2.9-O-小檗碱糖苷同系物的药代动力学及组织分布研究
     用合成的9-O-小檗碱糖苷同系物对SD大鼠进行灌胃给药,通过采集大鼠血浆、组织器官,采用HPLC测定大鼠血浆中血药浓度、组织器官中药物分别,并对比小檗碱、9-O-辛基小檗碱药代动力学数据,结果显示9-O-小檗碱糖苷同系物在口服生物利用度方面与小檗碱、9-O-烷基小檗碱相比有显著优势,9-O-小檗碱葡萄糖苷的Cmax与AUC分别为小檗碱的9.3和13.5倍,达到63.421μg·L-1与268.945μg·L-1·h,提示亲水性糖苷化修饰有助于提高小檗碱生物利用度。同时发现小檗碱与9-O-小檗碱糖苷同系物在大鼠血液中经过代谢可以转化为其他小檗碱同系物,并可在体内各组织器官中检测出,验证了“网通虹势”理论。
     3.9-O-小檗碱糖苷同系物降糖活性初步研究
     通过一系列细胞实验,利用全自动生化分析仪和全自动酶标仪,研究了9-O-小檗碱糖苷同系物对人肝癌细胞HepG2的葡萄糖消耗量及对细胞存活率的影响,结果显示在不同葡萄糖浓度、不同胰岛素浓度环境中,9-O-小檗碱糖苷同系物并无明显降糖活性,但小檗碱的降糖活性非常明显,在中浓度条件下(1mg·L-1)即表现有效降糖活性,优于二甲双胍。继而通过对SD大鼠尾静脉注射四氧嘧啶获得实验性高血糖大鼠模型,分组对大鼠灌胃给药9-O-小檗碱葡萄糖苷、小檗碱与二甲双胍阳性对照药15天,并检测期间空腹血糖值。结果显示9-O-小檗碱葡萄糖苷具有明显体内降血糖与调节葡萄糖代谢异常能力,给药15天后高血糖大鼠血糖下降超过56%,优于小檗碱。
The isoquinoline alkaloids berberine, an important active component of Rhizoma Coptidis, is used in the treatment of bacterial gastrointestinal diseases such as diarrhea. Modern scientific research indicated that berberine has not only antimicrobial activity in vitro and in vivo, but also other important pharmacological activities such as lipid-modulating, antihyperglycemic, antitumor, antihypertension and antiarrhythmia. In order to increase the bioavailability of berberine,9-O-glycosyl-berberine homologues were synthesized in our laboratory by introducing different monosaccharide (glucose, arabinose and erythritol) at C9 position after demethylation of berberine. Some pharmacokinetic properties and in vitro hpyerglycemic activities of 9-O-glycosyl-berberine were studied according to corresponding methods. The methods and results are as follows:
     1. The synthesis of 9-O-glycosyl-berberine homologues
     With berberine as lead compound, common monosaccharide as substiuent groups, the synthesis approaches to 9-O-glycosyl-berberine were carried out according to solid-liquid phase transfer catalysis in different raction conditions, temperature, solvent and raction time. The results showed that the highest yields of the intermediates had been archieved when synthesized in DMF under 45℃, while the highest yields of the end products had been archieved with Na2CO3/NaHCO3 as hydrolysis reagent under 40℃. The structure of 9-O-glycosyl-berberine homologues synthesized were affirmed with Ultraviolet spectrum and 1H NMR.
     2. The pharmacokinetic studies of 9-O-glycosyl-berberine homologues
     The pharmacokinetc profiles of 9-O-glycosyl-berberine were investigated after i.g. administration of rats via HPLC analysis of plasma and tissue, compared with berberine and 9-O-alkyl-berberine. The results showed that maximum concentration (Cmax) and area under concentration-time curve (AUC) of berberine which was metabolite of 9-O-glycosyl-berberine increased dramatically. The Cmax and AUC of 9-O-glucosyl-berberine were 9.3 and 13.5 times, i.e.63.42μg·L-1 and 268.94μg·L-1, respectively, higher than that of berberine and 9-O-alkly-berberine, which indicated that glycosylated modification could increase the hydrophilic activity and bioavailability of berberine. All derivatives could be transformed into proberberine derivatives in vivo, the concentrations of that were proportional and they would reach an equilibrium state at the end, which demonstrated the phenomena of "global systems biology".
     3. The hypoglycemic activity preliminary studies of 9-O-glycosyl-berberine homologues.
     To investigate the hypoglycemic effects of 9-O-glycosyl-berberine homologues, the glucose consumption of human hepatoma cell (HepG2) were analysized by automatic biochemistry analyzer and the cell survival rates were measured according to MTT assay. Further more, to evaluate the hypoglycemic ability of 9-O-glycosyl berberine in vivo, a hyperglycemic rats model were established by tail vein injection of alloxan and the FBG (fasting blood-glucose) were assaied after i.g. adminstration of 9-O-glucosyl-berberine upon hyperglycemic rats, compared with berberine and metformin. The results showed that 9-O-glycosyl-berberine homologues had no significant in vitro hypoglycemic activities in various glucose concentration either insulin concentration environment. However, The FBG results showed that after 15 days i.g. administration,9-O-glucosyl-berberine had significant in vivo hypoglycemic activity, the hypoglycemic rate was up to over 56%.
引文
[1]于俊林,杨文娣,小檗碱的植物资源[J].中草药,2005,36:1434-1436.
    [2]潘清平,黄连,北京,中国中医药出版社,2001:3-4.
    [3]殷峻,胡仁明,唐金凤,et al.,小檗碱的体外降糖作用[J].上海第二军医大学学报,2001,21(5):425-427.
    [4]陈其明,谢明智,黄连及小蘖碱降血糖作用的研究[J].药学学报,1986, 21(6):401-406.
    [5]谢琳,王蓉蓉,王文艳,et al.,小檗碱对2型糖尿病大鼠肝脏保护作用的实验性研究[J].中华实用中西医杂志,2006,19(20):2450-2453.
    [6]Tang, L. Q., Wei, W., Chen, L. M., et al., Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats[J]. J Ethnopharmacol,2006,108(1):109-115.
    [7]Bian, X., He, L., Yang, G., Synthesis and antihyperglycemic evaluation of various protoberberine derivatives[J]. Bioorg Med Chem Lett,2006,16(5): 1380-1383.
    [8]周丽斌,陈名道,宋怀东,et al.,小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    [9]周丽斌,杨颖,小檗碱对脂肪细胞糖代谢的影响[J].上海第二军医大学学报,2002,22(5):412-414.
    [10]Zhou, L., Yang, Y., Wang, X., et al., Berberine stimulates glucose transport through a mechanism distinct from insulin[J]. Metabolism,2007,56(3): 405-412.
    [11]Pan, G. Y, Huang, Z. J., Wang, G. J., et al., The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption[J]. Planta Med, 2003,69(7):632-636.
    [12]Li, Y., Wen, S., Kota, B. P., et al., Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats[J]. J Ethnopharmacol,2005,99(2):239-244.
    [13]殷峻,陈名道,唐金凤,et al.,小檗碱对实验大鼠糖脂代谢的影响[J].中华糖尿病杂志,2004,12(3):215-128.
    [14]Kong, W., Wei, J., Abidi, P., et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med,2004,10(12):1344-1351.
    [15]左彦方,郭毅,姜昕,et al.,小檗碱对兔动脉粥样硬化及其血脂的影响[J].中国脑血管病杂志,2006,3(5):204-207.
    [16]Zhang, Y., Li, X., Zou, D., et al., Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine[J]. J Clin Endocrinol Metab, 2008,93(7):2559-2565.
    [17]Yin, J., Xing, H., Ye, J., Efficacy of berberine in patients with type 2 diabetes mellitus[J]. Metabolism,2008,57(5):712-717.
    [18]Cicero, A. F., Rovati, L. C, Setnikar, I., Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation[J]. Arzneimittelforschung,2007,57(1): 26-30.
    [19]黄伟民,吴子达,黄连素抗缺血性室性心律失常的作用[J].中华心血管病杂志,1989,17(5):300-301.
    [20]黄伟民,干以庆,黄连素治疗室性快速心律失常[J].中华心血管病杂志,1990,18(3):155-156.
    [21]李萍,小檗碱对心血管系统的药理作用[J].中国药理学通报,1991,7(5):324-328.
    [22]Olmez, E., Ilhan, M., Evaluation of the alpha-adrenoceptor antagonistic action of berberine in isolated organs[J]. Arzneimittelforschung,1992,42(9): 1095-1097.
    [23]智光,黄大显,黄连素治疗心功能衰竭的实验和临床观察[J].中华内科杂志,1991,30(9):581-582.
    [24]Cernakova, M., Kostalova, D., Antimicrobial activity of berberine--a constituent of Mahonia aquifolium[J]. Folia Microbiol (Praha),2002,47(4): 375-378.
    [25]Amin, A. H., Subbaiah, T. V., Abbasi, K. M., Berberine sulfate: antimicrobial activity, bioassay, and mode of action[J]. Can J Microbiol,1969, 15(9):1067-1076.
    [26]Rabbani, G. H., Butler, T., Knight, J., et al., Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae[J]. J Infect Dis,1987,155(5):979-984.
    [27]Sack, R. B., Froehlich, J. L., Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins[J]. Infect Immun, 1982,35(2):471-475.
    [28]Akhter, M. H., Sabir, M., Bhide, N. K., Anti-inflammatory effect of berberine in rats injected locally with cholera toxin[J]. Indian J Med Res,1977, 65(1):133-141.
    [29]Sun, D., Abraham, S. N., Beachey, E. H., Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli[J]. Antimicrob Agents Chemother,1988,32(8):1274-1277.
    [30]Zhu, B., Ahrens, F. A., Effect of berberine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in jejunum of pigs[J]. Am J Vet Res,1982,43(9):1594-1598.
    [31]李建军,李亿,黄连素治疗非淋菌性尿道炎疗效观察[J].中药材,1999,22(6):319-319.
    [32]Subbaiah, T. V., Amin, A. H., Effect of berberine sulphate on Entamoeba histolytica[J]. Nature,1967,215(5100):527-528.
    [33]McCalla, D. L. C., Alexanderb, J., Barbera, J., et al., The first protoberberine alkaloid analogue with in vivo antimalarial activity [J]. Bioorg Med Chem Lett,1994,4(14):1663-1666.
    [34]蒋激扬,耿东升,黄连素的抗炎作用及其机制[J].中国药理学通报,1998,14(5):434-437.
    [35]Lee, C. H., Chen, J. C., Hsiang, C. Y., et al., Berberine suppresses inflammatory agents-induced interleukin-lbeta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells[J]. Pharmacol Res,2007,56(3):193-201.
    [36]黄才国,储钟禄,小檗碱对兔血小板TXA2和血浆中PGI2生成的影响[J].中国药理学报,1991,12(6):526-528.
    [37]Marinova, E. K., Nikolova, D. B., Popova, D. N., et al., Suppression of experimental autoimmune tubulointerstitial nephritis in BALB/c mice by berberine[J]. Immunopharmacology,2000,48(1):9-16.
    [38]张昊晴,邹鹏,王华东,et al.,小檗碱抗小鼠脂多糖性肺损伤的作用机制[J].中国病理生理杂志,2007,23(3):495-499.
    [39]Hwang, J. M., Wang, C. J., Chou, F. P., et al., Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver[J]. Arch Toxicol,2002,76(11):664-670.
    [40]Hsiang, C. Y., Wu, S. L., Cheng, S. E., et al., Acetaldehyde-induced interleukin-lbeta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells[J]. J Biomed Sci,2005,12(5):791-801.
    [41]Choi, D. S., Kim, S. J., Jung, M. Y., Inhibitory activity of berberine on DNA strand cleavage induced by hydrogen peroxide and cytochrome c[J]. Biosci Biotechnol Biochem,2001,65(2):452-455.
    [42]耿东升,刘发,硫酸黄连素对免疫系统的影响[J].中国药理学通报,1996,12(6):536-539.
    [43]何贤辉,徐丽慧,黄连素对T淋巴细胞活化和增殖的抑制作用[J].中国病理生理杂志,2002,18(10):1183-1186.
    [44]李素迎,姚运纬,伍忍,盐酸檗碱对链脲霉素致大鼠离体胰岛B细胞损伤的影响[J].中国现代医学杂志,2002,12(18):6-7.
    [45]Eizirik, D. L., Sandler, S., Palmer, J. P., Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM?[J]. Diabetes,1993,42(10):1383-1391.
    [46]Yin, J., Hu, R., Chen, M., et al., Effects of berberine on glucose metabolism in vitro[J]. Metabolism,2002,51(11):1439-1443.
    [47]高从容,张家庆,黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志,1997,17(3):162-164.
    [48]周吉银,周世文,小檗碱降糖调脂作用机制的研究进展[J].解放军药学学报,2007,23(3):201-204.
    [49]宋菊敏,李石良,黄连素对非胰岛素依赖性糖尿病大鼠的抗氧化[J].中草药,1992,(11):590-591.
    [50]Ko, B. S., Choi, S. B., Park, S. K., et al., Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma[J]. Biol Pharm Bull,2005, 28(8):1431-1437.
    [51]潘淮宁,王书奎,王自正,et al.,盐酸小檗硷对人肝Bel-7402细胞株LDLR表达的影响[J].南京医科大学学报(自然科学版),2005,25(12):865-868.
    [52]师凌云,田蜜,常伟,et al .,小檗碱对脂质代谢相关基因PPARα和 CPTIA表达的影响[J].中国药理学通报,2008,24(11).
    [53]王树海,王文健,汪雪峰,et al.,黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    [54]常伟,王红,尹华峰,et al.,小檗碱对胆固醇代谢及肝脏Insig-2基因表达的影响[J].中国药理学通报,2009,25(1):85-88.
    [55]Makhey, D., Yu, C., Liu, A., et al., Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons[J]. Bioorg Med Chem,2000, 8(5):1171-1182.
    [56]Goldman, G. H., Yu, C., Wu, H. Y., et al., Differential poisoning of human and Aspergillus nidulans DNA topoisomerase I by bi-and terbenzimidazoles[J]. Biochemistry,1997,36(21):6488-6494.
    [57]Wang, L. K., Rogers, B. D., Hecht, S. M., Inhibition of topoisomerase I function by coralyne and 5,6-dihydrocoralyne[J]. Chem Res Toxicol,1996,9(1): 75-83.
    [58]Li, Y. H., Li, Y., Yang, P., et al., Design, synthesis, and cholesterol-lowering efficacy for prodrugs of berberrubine[J]. Bioorg Med Chem, 2010,18(17):6422-6428.
    [59]Han, Y. H., Lee, K. D., Lee, D. U., Anti-Helicobacter pyori Activity and Structrue-Activity Relationships of Berberine Derivatives[J]. Bull. Korean Chem. Soc.,2009,30(12):3147-3149.
    [60]Park, K. D., Lee, J. H., Kim, S. H., et al., Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents[J]. Bioorg Med Chem Lett,2006,16(15):3913-3916.
    [61]郑洪艳,原小檗碱类生物碱作用差异的机理研究[硕士学位论文].天津:天津医科大学,2004:54-62.
    [62]Bustanji, Y., Taha, M. O., Yousef, A. M., et al., Berberine potently inhibits protein tyrosine phosphatase 1B:investigation by docking simulation and experimental validation[J]. J Enzyme Inhib Med Chem,2006,21(2):163-171.
    [63]杨勇,8-烷基小檗碱同系物的合成与药理活性[博士学位论文].重庆:西南大学,2008:74-84.
    [64]熊程亿,施绪保,代宗顺,et al.,3H-小檗碱在家兔及小鼠体内的药代 动力学研究[J].中国药理学通报,1989,5(5):293-296.
    [65]温悦,贺英菊,罗巍伟,反相高效液相色谱法测定兔血浆中盐酸小檗碱的浓度[J].中国药房,2005,16:900-901.
    [66]Miyazaki, H., Shirai, E., Ishibashi, M., et al., Quantitative analysis of berberine in urine samples by chemical ionization mass fragmentography[J]. J Chromatogr,1978,152(1):79-86.
    [67]Zuo, F., Nakamura, N., Akao, T., et al., Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry[J]. Drug Metab Dispos,2006, 34(12):2064-2072.
    [68]余琛,徐修容,以DL-樟脑-10-磺酸为离子对试剂反相高效液相色谱测定[J].色谱,1992,10:167-168.
    [69]Tsai, P., Tsai, T. H., Simultaneous determination of berberine in rat blood, liver and bile using microdialysis coupled to high-performance liquid chromatography[J]. J Chromatogr A,2002,961(1):125-130.
    [70]余琛,张慧,潘俊芳,et al.,健康人口服盐酸黄连素片剂后的尿药分析与药物代谢初步研究[J].中国临床药理学杂志,2000,16(1):36-39.
    [71]Liu, Y. T., Hao, H. P., Xie, H. G., et al, Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats[J]. Drug Metab Dispos,2010,38(10):1779-1784.
    [72]盛美萍,孙淇,王宏,盐酸小檗碱在Beagle狗静脉注射和口服药动学研究[J].中国药理学通报,1993,13(1):64-67.
    [73]李宝馨,杨宝峰,郝晓敏,et al.,黄连素单用及合用谷维素在家兔及健康志愿者体内的药代动力学研究[J].中国药学杂志,2000,35(1):33-35.
    [74]白小红,魏雁声,刘长松,反相胶束增稳荧光法测定兔血浆中痕量盐酸小檗碱的研究[J].分析科学学报,1999,(05):363-367.
    [75]Chen, C. M., Chang, H. C., Determination of berberine in plasma, urine and bile by high-performance liquid chromatography[J]. J Chromatogr B Biomed Appl,1995,665(1):117-123.
    [76]包丽华,李宝馨,杨宝峰,et al.,人口服黄连素的药代动力学研究[J]. 中国药理学通报,1997,13:95-95.
    [77]赵长春,郑维发,李梦秋,小檗碱与人血清白蛋白的相互作用[J].光谱学与光谱分析,2004,(1):111-113.
    [78]谭毓治,谢金生,盐酸小檗碱与白蛋白结合的研究[J].中国中药杂志,1996,21(03).
    [79]Shitan, N., Tanaka, M., Terai, K., et al., Human MDR1 and MRP1 recognize berberine as their transport substrate[J]. Biosci Biotechnol Biochem, 2007,71(1):242-245.
    [80]丁志平,林力,郑晓鹤,et al.,不同粒径黄连粉在大鼠体内药代动力学的研究[J].中医药学刊,2004,20(5):835-836+846.
    [81]李亚梅,叶小利,李雪梅,et al.,助剂对小鼠吸收黄连总生物碱的影响及药代动力学的研究[J].中国中药杂志,2009,34(3):344-348.
    [82]Tsai, P. L., Tsai, T. H., Hepatobiliary excretion of berberine[J]. Drug Metab Dispos,2004,32(4):405-412.
    [83]Wang, X., Wang, R., Xing, D., et al., Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract[J]. Life Sci,2005,77(24):3058-3067.
    [84]Wang, X., Xing, D., Wang, W., et al., The uptake and transport behavior of berberine in Coptidis Rhizoma extract through rat primary cultured cortical neurons[J]. Neurosci Lett,2005,379(2):132-137.
    [85]申竹芳,谢明智,高效薄层荧光光密度法测定生物样品中的小檗碱含量[J].药学学报,1993,28(7):532-536.
    [86]卢芳,刘树民,黄连的药动学研究概况及未来研究思路[J].中国药房,2008,19(30):2396-2399.
    [87]Pan, J.F., Yu, C., Zhu, D. Y., et al., Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunteers'urine after oral administration[J]. Acta Pharmacol Sin,2002,23(1):77-82.
    [88]邱峰,朱志勇,朴淑娟,et al.,人口服盐酸小檗碱后尿液中代谢产物的研究[J].中国医学研究与临床,2005,3(8):6-9.
    [89]朱志勇,小檗碱在人及大鼠体内代谢产物的研究[硕士学位论文].沈 阳:沈阳药科大学,2002:21-34.
    [1]Cernakova, M., Kostalova, D., Antimicrobial activity of berberine--a constituent of Mahonia aquifolium[J]. Folia Microbiol (Praha),2002,47(4): 375-378.
    [2]Zhang, H., Wei, J., Xue, R., et al., Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J]. Metabolism,2010,59(2):285-292.
    [3]Kong, W., Wei, J., Abidi, P., et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med,2004,10(12):1344-1351.
    [4]钱红英,金芪降糖片治疗2型糖尿病临床观察[J].吉林医学,2010,31(15):2212-2212.
    [5]申竹芳,谢明智,金芪降糖片对实验动物糖代谢的影响[J].中药新药与临床药理,1996,7(2):24-26.
    [6]熊程亿,施绪保,代宗顺,et al.,3H-小檗碱在家兔及小鼠体内的药代动力学研究[J].中国药理学通报,1989,5(5):293-296.
    [7]Wang, X., Xing, D., Wang, W., et al., The uptake and transport behavior of berberine in Coptidis Rhizoma extract through rat primary cultured cortical neurons[J]. Neurosci Lett,2005,379(2):132-137.
    [8]盛美萍,孙淇,王宏,盐酸小檗碱在Beagle狗静脉注射和口服药动学研究[J].中国药理学通报,1993,13(1):64-67.
    [9]包丽华,李宝馨,杨宝峰,et al.,人口服黄连素的药代动力学研究[J].中国药理学通报,1997,13:95-95.
    [10]李宝馨,杨宝峰,郝晓敏,et al,黄连素单用及合用谷维素在家兔及健康志愿者体内的药代动力学研究[J].中国药学杂志,2000,35(1):33-35.
    [11]李亚梅,叶小利,李雪梅,et al,助剂对小鼠吸收黄连总生物碱的影响及药代动力学的研究[J].中国中药杂志,2009,34(3):344-348.
    [12]Pan, J. F., Yu, C., Zhu, D. Y., et al., Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunteers'urine after oral administration[J]. Acta Pharmacol Sin,2002,23(1):77-82.
    [13]邱峰,朱志勇,朴淑娟,et al.,人口服盐酸小檗碱后尿液中代谢产物的研究[J].中国医学研究与临床,2005,3(8):6-9.
    [14]Li, Y. H., Li, Y., Yang, P., et al., Design, synthesis, and cholesterol-lowering efficacy for prodrugs of berberrubine[J]. Bioorg Med Chem, 2010,18(17):6422-6428.
    [15]Zhang, W. J., Ou, T. M., Lu, Y. J., et al,9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA[J]. Bioorg Med Chem,2007,15(16):5493-5501.
    [16]Bian, X., He, L., Yang, G., Synthesis and antihyperglycemic evaluation of various protoberberine derivatives[J]. Bioorg Med Chem Lett,2006,16(5): 1380-1383.
    [17]Iwasa, K., Lee, D. U., Kang, S. I., et al., Antimicrobial activity of 8-alkyl-and 8-phenyl-substituted berberines and their 12-bromo derivatives[J]. J Nat Prod,1998,61(9):1150-1153.
    [18]Iwasa, K., Nanba, H., Lee, D. U., et al., Structure-activity relationships of protoberberines having antimicrobial activity[J]. Planta Med,1998,64(8): 748-751.
    [19]Kim, S. H., Lee, S. J., Lee, J. H., et al., Antimicrobial activity of 9-O-acyl-and 9-O-alkylberberrubine derivatives[J]. Planta Med,2002,68(3): 277-281.
    [20]Yang, Y., Ye, X. L., Li, X. G., et al., Synthesis and antimicrobial activity of 8-alkylberberine derivatives with a long aliphatic chain[J]. Planta Med,2007, 73(6):602-604.
    [21]郭瑞霞,李伟,韩卫荣,7-羟基黄酮糖苷的合成研究[J].化学试剂,2008,30(2):123-124.
    [22]Iwasa, K., Kamigauchi, M., Ueki, M., Antibacterial activity and structure-activity relationships of berberine analogs[J]. Eur. J. Med. Chem.,1996, 31(6):469-478.
    [1]于俊林,杨文娣,小檗碱的植物资源[J].中草药,2005,36:1434-1436.
    [2]潘清平,黄连,北京,中国中医药出版社,2001:3-4.
    [3]Cernakova, M., Kostalova, D., Antimicrobial activity of berberine--a constituent of Mahonia aquifolium[J]. Folia Microbiol (Praha),2002,47(4): 375-378.
    [4]Zhang, H., Wei, J., Xue, R., et al., Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J]. Metabolism,2010,59(2):285-292.
    [5]Kong, W., Wei, J., Abidi, P., et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004,10(12):1344-1351.
    [6]吴宇娟,李兰芳,孟俊华,小檗碱的药代动力学研究概况[J].数理医学杂志,2008,21(2):217-219.
    [7]熊程亿,施绪保,代宗顺,et al.,3H-小檗碱在家兔及小鼠体内的药代动力学研究[J].中国药理学通报,1989,5(5):293-296.
    [8]Wang, X., Wang, R., Xing, D., et al., Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract[J]. Life Sci,2005,77(24):3058-3067.
    [9]Chen, C. M., Chang, H. C., Determination of berberine in plasma, urine and bile by high-performance liquid chromatography[J]. J Chromatogr B Biomed Appl,1995,665(1):117-123.
    [10]Wang, X., Xing, D., Wang, W., et al., The uptake and transport behavior of berberine in Coptidis Rhizoma extract through rat primary cultured cortical neurons[J]. Neurosci Lett,2005,379(2):132-137.
    [11]盛美萍,孙淇,王宏,盐酸小檗碱在Beagle狗静脉注射和口服药动学研究[J].中国药理学通报,1993,13(1):64-67.
    [12]包丽华,李宝馨,杨宝峰,et al.,人口服黄连素的药代动力学研究[J].中国药理学通报,1997,13:95-95.
    [13]李宝馨,杨宝峰,郝晓敏,et al.,黄连素单用及合用谷维素在家兔及健康志愿者体内的药代动力学研究[J].中国药学杂志,2000,35(1):33-35.
    [14]李亚梅,叶小利,李雪梅,et al.,助剂对小鼠吸收黄连总生物碱的影响及药代动力学的研究[J].中国中药杂志,2009,34(3):344-348.
    [15]余琛,张慧,潘俊芳,et al.,健康人口服盐酸黄连素片剂后的尿药分析与药物代谢初步研究[J].中国临床药理学杂志,2000,16(1):36-39.
    [16]Pan, J. F., Yu, C., Zhu, D. Y., et al., Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunteers'urine after oral administration[J]. Acta Pharmacol Sin,2002,23(1):77-82.
    [17]邱峰,朱志勇,朴淑娟,et al.,人口服盐酸小檗碱后尿液中代谢产物的研究[J].中国医学研究与临床,2005,3(8):6-9.
    [18]杨秀伟,中药成分代谢分析,北京,北京医药科技出版社,2003:84-94.
    [19]贺福元,周宏灏,罗杰英,et al.,生物遗传多态性规律揭示中药材质量稳定性规律的探讨[J].中草药,2008,39(1):2-6.
    [20]Nicholson, J. K., Wilson, I. D., Opinion:understanding 'global'systems biology:metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov,2003,2(8):668-676.
    [21]Iwasa, K., Kamigauchi, M., Ueki, M., Antibacterial activity and structure-activity relationships of berberine analogs[J]. Eur. J. Med. Chem., 1996,31(6):469-478.
    [22]Kim, S. H., Lee, S. J., Lee, J. H., et al., Antimicrobial activity of 9-O-acyl-and 9-O-alkylberberrubine derivatives[J]. Planta Med,2002,68(3):277-281.
    [23]Zhang, Y., Huo, M., Zhou, J., et al., PKSolver:An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel[J]. Comput Methods Programs Biomed,2010,99(3):306-314.
    [24]Zuo, F., Nakamura, N., Akao, T., et al., Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry[J]. Drug Metab Dispos, 2006,34(12):2064-2072.
    [25]焉巧娜,张朔,张振秋,黄连及其与肉桂药对配伍中盐酸小檗碱在大鼠体内的组织分布研究[J].中药材,2009,32(4):575-578.
    [26]王亮,叶小利,李学刚,et al.,黄连生物碱在大鼠体内的代谢转化及分布[J].中国中药杂志,2010,35(15):2017-2020.
    [27]吴晓霞,彭娟,范斌,et a.,LC-MS-MS测定黄连解毒汤中3种生物碱在大鼠血清的含量及其药代动力学研究[J].中国中药杂志,2009,34(10):1276-1280.
    [28]朱志勇,小檗碱在人及大鼠体内代谢产物的研究[硕士学位论文].沈阳:沈阳药科大学,2002:21-34.
    [1]陆再英,钟南山,内科学,北京,人民卫生出版社,2008:770-771.
    [2]Nathan, D. M., Buse, J. B., Davidson, M. B., et al., Management of hyperglycemia in type 2 diabetes:A consensus algorithm for the initiation and adjustment of therapy:a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes[J]. Diabetes Care,2006,29(8):1963-1972.
    [3]Arbones-Mainar, J. M., Johnson, L. A., Altenburg, M. K., et al., Impaired adipogenic response to thiazolidinediones in mice expressing human apolipoproteinE4[J]. FASEB J,2010,24(10):3809-3818.
    [4]殷峻,胡仁明,唐金凤,et al.,小檗碱的体外降糖作用[J].上海第二军医大学学报,2001,21(5):425-427.
    [5]周丽斌,杨颖,小檗碱对脂肪细胞糖代谢的影响[J].上海第二军医大学学报,2002,22(5):412-414.
    [6]陈其明,谢明智,小檗碱对正常小鼠血糖调节的影响[J].药学学报, 1987,22(3):161-165.
    [7]陈其明,谢明智,黄连及小蘖碱降血糖作用的研究[J].药学学报,1986,21(6):401-406.
    [8]Tang, L. Q., Wei, W., Chen, L. M., et al., Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats[J]. J Ethnopharmacol,2006,108(1):109-115.
    [9]高从容,张家庆,黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志,1997,17(3):162-164.
    [10]石利天,张瑞增,黄连素治疗68例2型糖尿病的临床评价[J].山西临床医药,2000,9(3):181-182.
    [11]高芳,岳桂华,王庆斌,黄连素改善Ⅱ型糖尿病患者胰岛素抵抗的临床研究[J].甘肃中医,2002,15(6):34-36.
    [12]保健食品检测与评价技术规范,中华人民共和国卫生部,2003:38-39.
    [13]Iwasa, K., Nanba, H., Lee, D. U., et al., Structure-activity relationships of protoberberines having antimicrobial activity[J]. Planta Med,1998,64(8): 748-751.
    [14]Hong, S. W., Kim, S. H., Jeun, J. A., et al., Antimicrobial activity of 9-O-acyl-and 9-O-benzoyl-substituted berberrubines[J]. Planta Med,2000,66(4): 361-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700