环境因子对凡纳滨对虾性别分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲壳动物的性别分化由基因决定,并易受环境因子如温度、光照周期和寄生等影响。在一些经济甲壳动物中,特别是虾类,雌雄之间的个体大小差异显著,水产养殖中如若利用好这些雌性或雄性特征的优势,将能大大提高养殖效益。凡纳滨对虾的雌虾大于雄虾,因此,若对其进行雌性化诱导,可大幅度增加产量,提高经济效益。本实验通过外部形态观察和组织学连续切片,研究了不同温度、光照、盐度和壬基酚浓度对凡纳滨对虾性别分化的影响。主要研究结果如下:
     1、温度对凡纳滨对虾性别分化的影响
     研究了不同温度(25±1℃、29±1℃和33±1℃)对凡纳滨对虾生长早期性别分化的影响,并统计凡纳滨对虾的雌性率。结果表明:温度对凡纳滨对虾的雌性率没有显著影响(P﹥0.05),但显著影响了凡纳滨对虾的生长、性别分化时间及存活率;在29±1℃和33±1℃孵育条件下,凡纳滨对虾外部形态和性腺的分化时间早于25±1℃组,且平均体长也大于25±1℃组;在29±1℃孵育条件下,凡纳滨对虾存活率显著高于其他温度组,为31.4±3.1%。
     2、光照对凡纳滨对虾性别分化的影响
     研究了不同光照周期(6L:18D,12L:12D,18L:6D和24L:0D)和不同光照强度(800lx,3000lx和5000lx)对凡纳滨对虾生长早期性别分化的影响。结果表明:随光照时间的增长(从6L:18D到18L:6D),凡纳滨对虾的雌性率逐渐增大,18L:6D条件下雌性率达到57.5±1.4%;光照强度3000lx实验组凡纳滨对虾的雌性率高于800lx和5000lx组,但光照周期和光照强度的变化对凡纳滨对虾的雌性率没有显著性影响(P﹥0.05)。光照周期18L:6D和光照强度800lx条件下,凡纳滨对虾外部形态和性腺的分化最早,并且平均体长最大。凡纳滨对虾的存活率在光照周期24L:0D下最高(28.5±4.9%),显著高于6L:18D(P﹤0.05),但光照强度对凡纳滨对虾的存活率没有显著性影响(P﹥0.05)。
     3、盐度对凡纳滨对虾性别分化的影响
     研究了不同盐度(10,20,30和40)对凡纳滨对虾生长早期性别分化的影响。结果表明:盐度40条件下,凡纳滨对虾的雌性率最高(58.2±7.7%),且与10和20盐度组的雌性率之间存在显著性差异(P﹤0.05),30盐度组与其他三组之间没有显著性差异(P﹥0.05)。在盐度20~40范围内,随盐度的增高,凡纳滨对虾的雌性率逐渐增大,而存活率逐渐减小。10盐度组凡纳滨对虾的存活率最小,显著小于20和30盐度组(P﹤0.05),并且外部形态和性腺的分化迟于其他盐度组。
     4、壬基酚对凡纳滨对虾性别分化的影响
     研究了环境雌激素化合物壬基酚(4-nonylphenol,NP)对凡纳滨对虾生长早期性别分化的影响,将仔虾暴露于三个质量浓度(40、80、120μg/L)的NP中,并设空白对照组。结果显示:120μg/L NP处理组的凡纳滨对虾雌雄性比达到1.24:1,显著高于对照组(雌:雄=1:1.01)和80μg/L NP处理组。80μg/L和120μg/L NP处理组凡纳滨对虾的外部形态和性腺的分化早于对照组和40μg/L NP处理组。对照组与三个NP处理组的存活率之间没有显著性差异(P﹥0.05)。
Sex differentiation on crustacean was determined by genes, however, it was easily affected by some environmental factors, such as temperature, photoperiod and parasite, etc. There exists obviously different body size between male and female in many economical crustaceans, especially in shrimp. If those sexy superior characteristics can be applied well in aquaculture, the breed benefit would be improved greatly. Body size of female Litopenaeus vannamei is larger than that of fale. Hence, if a good work can be done in feminizating of L. vannamei, the shrimp production and the economic benefit would be increased drastically. Effects of temperature, light, salinity and nonylphenol on sex differentiation were studied by morphologic observation and continuous histological sections on juvenile L. vannamei at its early stage of growth. The primary results of these studies are listed below:
     1. Effects of temperature on the sex differentiation on L. vannamei:
     Effects of different temperatures (25±1℃, 29±1℃and 33±1℃) on sex differentiation were studied at the early stage of growth on L. vannamei. The female rate was calculated following the experiment. The results showed that temperature obviously influenced the growth, sex differentiation starting time and survival rate of L. vannamei, but there were no significantly difference of female rate among the shrimps under the three temperature treatments (P﹥0.05). Sex differentiating time of both gonad and external morphology on L. vannamei at 29±1℃and 33±1℃groups were earlier than that at the 25±1℃group, so were the mean body-length. What’s more, the survival rate at 29±1℃(31.4±3.1%) was significantly higher than that at other groups.
     2. Effects of light on the sex differentiation on L. vannamei:
     Effects of different photoperiods (6L:18D, 12L:12D, 18L:6D and 24L:0D) and different light intensities (800lx, 3000lx and 5000lx) on the sex differentiation were studied at the early stage of growth on L. vannamei. The female rate generally raised with the illumination time from 6L:18D to 18L:6D, and the highest female rate (57.5±1.4%) existed at the 18L:6D group. The female rate at the 800lx group was higher than that at the other groups. However, it was not affected significantly by the changes of photoperiod and light intensity on L. vannamei (P > 0.05). The earliest sex differentiations time of both external morphology and gonad, as well as the largest mean length was found at the 18L:6D and 800lx group. The highest survival rate (28.5±4.9%) was found at the 24L:0D group, which was significantly higher than that at the 6L:18D group (P﹤0.05). However, no significant difference (P﹥0.05) in survival rate was found among the light intensity groups.
     3. Effects of salinity on the sex differentiation on L. vannamei:
     Effects of different salinity levels (10, 20, 30 and 40) on the sex differentiation were examined at the early stage of growth on L. vannamei. The results showed that female rate (58.2±7.7%) at the salinity 40 group was significantly higher than that both at the 10 and 20 salinity groups (P﹤0.05), however, no significant difference in female rate was observed between the salinity 30 group and the other three groups (P﹥0.05). The female rate increased and the survival rate decreased with the increasing salinity from 20 to 40. The lowest survival rate was found in salinity 10 group, which was significantly lower (P﹤0.05) than that at salinity 20 and 30 groups. Moreover, the sex differentiations of external morphology and gonad at salinity 10 were later than that at the other three salinity groups.
     4. Effects of nonylphenol on the sex differentiation on L. vannamei:
     Effects of environmental estrogen compound—4-nonylphenol (NP, 0μg/L, 40μg/L, 80μg/L and 120μg/L) on the sex differentiation were examined at the early stage of growth on L. vannamei. The results showed that the sex ratio (female: male) was up to 1.24:1 at the 120μg/L NP group, which was significantly higher than that both at the control (1:1.01) and the 80μg/L NP group (P﹤0.05). The sex differentiations time of both external morphology and gonad at the 80μg/L and 120μg/L NP group were earlier than that at the control and the 40μg/L NP group. There were no significant differences (P﹥0.05) in survival rate between the control and the three NP groups.
引文
[1]徐耀辉.遗传学[M].武汉:华中师范大学出版社, 1994: 73-79.
    [2]龚军辉.环境与性别分化[J].高等函授学报, 2005, 19(3): 48-49.
    [3]戴爱云.甲壳动物生物学[J].动物学杂志, 1991, 26 (2): 42-48.
    [4]楼允东,刘艳红,邱高峰.虾蟹类性别决定研究进展[J].上海水产大学学报, 2004, 13(2): 157-163.
    [5] Niiyama, H. A comparative study of the chromosomes in decapods and amphipods, with some remark on cytotaxonomy and sex determination in the crustacea[J]. Mem. Fac, Fish, Hokkaido univ , 1959, 7(1-2): 1-60.
    [6] Niiyama H. The X-Y chromosomes of the shore-crab, Hemigrapsus sanguineus (de Hann)[J]. Japanese Journal of Genetics, 1938, 14 (1-2): 34-38.
    [7] Niiyama H. An XX-Y sex mechanism in the male of a decapod Crustacea, Cervimunida princeps Benedict[J]. Bull Fac Fish Hokkaido Univ, 1959, X(2): 106-112.
    [8]邱高峰.罗氏沼虾核型及长臂虾亚科核型演化关系的探讨[J].水产学报, 1996, 20(4): 294-300.
    [9]解焱.罗氏沼虾的性别决定机制及性逆转[J].国外水产, 1994, 3: 10-11.
    [10]吴融.甲壳动物的性别决定[J].生物学通报, 1996, 31(5): 22-23.
    [11]相建海.中国对虾染色体的研究[J].海洋与湖沼, 1988, 19(3): 206-209.
    [12] Miligan D J. A method for obtaining metaphase chromosome spreads from marine shrimp with notes on the karyotypes of Penaeus aztecus, Penaeus setiferus, and Penaeus duorarum[J]. Proc World Maricult Soc., 1976, 7: 327-332.
    [13] Hayashi K, Fujiwara Y. A new method for obtaining metaphase chromosomes from the regeneration blastema of Penaeus (Marsupenaeus) japonicus[J]. Nippon Suisan Gakkaishi, 1988, 54: 1563-1565.
    [14] Dai J, Zhang Q, Bao Z. Karyotype studies on Penaeus oriental[J]. J Ocean Univ., 1989, 19: 97-103.
    [15] Chow S, Dougherty W J, Sandifer P A. Meiotic chromosome complements and nuclear DNA contents of four species of shrimps of the genus Penaeus J[J]. Crustacean Biol., 1990, 10: 29-36.
    [16]康现江,王所安.高等甲壳动物性别决定机制及其性逆转[J].动物学杂志, 1998, 33(3): 43-46.
    [17]吴仲庆.水产生物遗传育种学[M].厦门:厦门大学出版社,1991.
    [18]王桂忠,陈雷洪,李少菁.锯缘青蟹染色体核型的分析研究[J].海洋科学, 2002,26(l): 9-13.
    [19] Charniaux-Cotton H. Découverte chez un CrustacéAmphipode (Orchestia gammarellus) d′une glande endocrine responsable de la diffèrenciation des caractères sexuels primaries et sécondaires males[J]. C R Acad Sci Paris, 1954, 239:780-782.
    [20]吴萍,楼允东,邱高峰.甲壳动物雄性腺研究的进展[J].水产学报, 1999, 41(3): 311-319.
    [21] Hasegawa Y, Fukushima K H, Katakura Y.. Isolation and properties of androgenic gland hormone from the terrestrial isopod, Armadillidium vulgare[J]. Gen and Comp Endocrinol, 1987, 67:101-110.
    [22] Katakura Y, Fujimaki Y, Unno K. Partial purification and characterization of androgenic gland hormone from the isopod crustacean, Armadillidium vulgare[J]. Anno Zool Japon, 1975, 48(4): 203-209.
    [23] Katakura Y, Hasegawa Y. Masculinizaton of females of the isopod crustacean, Armadillidium vulgare, following injections of an active extract of the androgenic gland[J]. Gen Comp Endocrinol, 1983, 48: 57-62.
    [24] Hoffman D L. The development of the androgenic glands of a protandric shrimp[J]. Biol Bull, 1969, 137: 286-296.
    [25] Chang E S, Brody M D. Crustacean organ and cell culture. Advances in cell culture[J], 1989, 7: 20-86.
    [26] Charniaux-Cotton H. Surgical castration in an amphipod crustacean (Orchestia gammarella) and determination of the secondary sexual characteristics: first results[J]. CRAcad Sci Paris, 1952, 234: 2570-2572.
    [27] Barzotti R, Pelliccia F, Rocchi A. Sex chromosome differentiation revealed by genomic in situ hybrodization[J]. Chro-mosome Res, 2000, 8: 459-464.
    [28] Nagamine C, Knight AW. Induction of female breeding characteristics by ovarian tissue implants in androgenic gland ablated male freshwater prawns Macrobrachium rosenbergii (deMan) (DecapodaPalaemonidae)[J]. Int J Invertebr Reprod Dev, 1987, 11: 225-234.
    [29]吴仲庆.虾类性别决定和控制[C].水产生物技术发展战略研讨会论文集, 1990, 65-72.
    [30] Ginsburger-Vogel T, Charniaux-Cotton H. Sex determination[A]. The biology of Crustacea[M]. Acsdemic Press Inc, 1982, 2: 257-281.
    [31]刘红,蔡生力,张成锋,等.注射中华绒螯蟹及锯缘青蟹促雄性腺提取物对中华绒螯蟹雌蟹雄性化的影响[J].水产学报, 2006, 30 (5): 577-585.
    [32] Charniaux-Cotton, H. Sex determination in physiology of crustacea[J]. Academic Press United Kingdom. 1960, (Volume.1): 41l-447.
    [33] Kinne, O. Die Geschlechts-bestimung des Gammarus duebeni[J]. Crustacea, 1961, 3: 56-B8.
    [34] Puckett D H. Experimental studies on the crayfish androgenic gland in relation to testicular function [J]. Doctocal Disserlation, Department of Zoology, University of Virginia, 1964, 23-28.
    [35] Sagi A, Cohen D, Milher Y. Effect of androgenic gland ablation on morpphctypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii[J]. Gen Comp Endocrinol, 1990b, 77:15-22.
    [36]李富花,相建海.中国对虾促雄腺形态结构和功能的初步研究[J].科学通报, 1996, 41(15): 1419-1422.
    [37] Katakura Y. Progeny from the mating of the normal female and the masculinized female of Armadillidium vulgare, an isopod cruxtacean[J]. Anno Zool Japon, 1961, 34 (4): 197-199.
    [38] Sagi A, Cohen D. Growth, maturation and progeny of sex-reversed Macrobrachium rosenbergii males[J]. World Aquacult, 1990a, 21(4): 87-90.
    [39] Malecha S R, Nevin P A, Phyllis H, et al. Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii[J]. Aquaculture, 1992, 105 (3-4): 201-218.
    [40] Suzuki, S. and Yamasaki, K. Sex reversal by implantations of ethanol-treated androgenic glands of female Isopods, Armadillidium vulgare (Malacostraca, Crustacea) [J], General and Comparative Endocrinology, 1998, 111 (3): 367-375.
    [41]李大雄,山崎文雄.对日本绒螯蟹的雌体进行雄性腺移植促使部分雄性化[J].水产增殖, 1993, 41(3): 311-319.
    [42] Nagamine, C., A. W. Knight, A. Maggenti et al. Effect of androgenic gland ablation on the male primary and secondary sexual characteristics in the malaysian prawn, Macrobrachium rosenbergii (de Man) (Decapoda, Palaemonidae) with first evidence of induced ferminization in a nonhermaphroditic decapod[J]. Gen. Comp. Endocrinol., 1980, 41: 423-441.
    [43] WU Chang-gong, XIANG Jian-hai. Genetic Determination and Exogenous Influence in Sex Differentiation in Crustacean[J]. Developmental & Reproductive Biology, 2002, 11 (2): 88-94.
    [44] Issakowitsch, A. Geschlects-Bestimmonde Ursachen bei den Daphniden[J], Bid. Centroid., 1905, 25: 329.
    [45] Papanicolau, G. Smith, G. The life Cycle of Movie rectirostris[J]. Bid. Zentralbl., 1910, 30: 430-440.
    [46] Grosvenor, G. H., Uber die Bedigungen der sexuellen Differenziertung bei Daphniden[J]. Quart. J. Sci., 1913,58: 511.
    [47] Smith. G. The life cycle of Cladocera[J]. Proc. Roy. Soc. Lond., Ser. B, 1915, 88: 415.
    [48] McClendon, J. F.. On the effect of external conditions on the reproduction of Daphnia[J]. Am. Nat. 1910, 44: 404-411.
    [49]郑重.甲壳动物的环境型性决定和性比研究[J].台湾海峡, 1990, 9 (3): 191-199.
    [50]郑重,曹文清.中国海洋枝角类研究[J].海洋学报, 1984, 6(3): 377-388.
    [51] Onbe. T. Studies on the Ecology of Marine Cladocerens[J]. J. Fac. Fish. Anim. Husb., Hiroshima Univ., 1974, 18: 83-179.
    [52] YokoTaketomi. Androgenic gland secondary sexual characters in the crayfish Procambarus clarkii[J]. Crusta Biol,1990,10(3):492-497.
    [53]杨丛海.高温处理中国对虾受精卵对性比结构的影响[J].海洋科学, 1993, 4:1-2.
    [54]王所安.诱导培育雌性化对虾的尝试[J].生物学通报, 2002, 37 (4): 10-11.
    [55] Pradeille-Rouquette M. The effect of temperature on the reproductive function of female crabs, Pachygrapsus marmoratus[J]. C. R. Acad. Sci. Hebd. Seances A cad Sci D., 1975, 281 (11): 711-713.
    [56] Bulnheim H P.“Variability of the mode of sex determination in littoral amphipods”, in marine organisms (Eds.B Battaglia and J Beardmore)[J]. Plenum Publishing Corporation, New York, 1978, 529-548.
    [57]魏薇,吴嘉敏,魏华.盐度对中华绒螯蟹性早熟生理机制的影响[J].中国水产科学, 2007, 14(2): 275-280.
    [58]魏华,张高峰.环境内分泌干扰物(E D C s)对水产养殖的危害[J].中国水产, 2006, 3: 72-74.
    [59]谢观体,张臣,刘辉.环境内分泌干扰物的研究进展[J].广东化工, 2007, 34 (10): 69-72.
    [60] Cook J W, Dodds E C, Hewett C L. A synthetic oestrus-exciting compound[J]. Nat, 1933, 131: 56-57.
    [61] Carson R. Silent spring[M]. NewYork: Houghton Mifflin, 1962.
    [62] Colborn T, Dumanoski D, Peterson Myers J. Our stolen future[M]. New York:Dutton, 1996.
    [63]朱丽岩,齐亚超,刘光兴.海洋环境中内分泌干扰物对无脊椎动物的影响[J].环境科学研究, 2004, 17(5): 27-31.
    [64] Dodson S I, Hanszato T. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems [J]. Environmental Health Perspectives, 1995, 103 (S 4): 7-11.
    [65]刘征涛,张颖,徐镜波,等.烷基酚类的生殖干扰毒性与结构相关研究[J].环境科学研究, 2002, 15 (6): 39-41.
    [66] Gross M Y, Maycock D S, Thorndyke C, et al. Abnormalities in sexual development of the amphipod Gammarus pulex(L.) found below sewage treatment works[J]. Environ Toxicol Chem, 2001, 20: 1792-1797.
    [67] Brown R J, M Conradi, Depledge M H. Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas,1766)[J]. Sci Total Environ, 1999, 233 (1-3): 77-88.
    [68] Zou E, Fingerman M. Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of a cladoceran, Daphnia magna[J]. Bull Envrion Contam Toxicol, 1997a, 58 (4): 596-602.
    [69]堵南山.甲壳动物学[M].北京:科学出版社, 1987,163-191.
    [70] Moore C G, Stevenson J M. Intersexuality in benthic parpacticoid copepods in the Firth of Forth, Scotland[J]. J Nat Hist, 1994, 28: 1213-1230.
    [71] Hutchinson T H, Pounds N A, Hampel M, et al. Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbebattagliai)[J]. Sci Total Environ, 1999, 233: 167-179.
    [72] Banta A. M., Thelma R. Wood, L. A.Bromn, et al. Studies on the Physiology, Genetics and Evolution of Some Cladocera[J]. Curneg. Inst. Wash., 1939, 513: 1-285.
    [73] Benta, A. M. Brown, L. A. Control of Sex in Cladocera. I. Crowding of Mothers as a Means of Controlling Male Production[J]. Physid. Zod., 1929, 2(1): 80-82.
    [74] Berg, K. Cyclic reproduction, Sex Determination and Depression in Cladocera[J]. Bid. Rev., 1934, 9(2): 139-174.
    [75] Rubiliani C, Rubiliani-Durozoi M, Payen G G. Effects de la Sacculine sur les gametogeneses chez les glands androgenes et le systeme nerveux central des crabs Carcinus maenas (L.) et C. mediterraneus Czerniavsky[J]. Bull Soc Zool Fr., 1980, 105: 95-100.
    [76] Souty-Grosset C, Juchault P. Study of the synthesis of vitellogenin in intersexual males of Armadillidium vulgare, Latreille (oniscoid isopod crustacean): comparison with males and with intact or ovariectomized females[J]. Gen Comp Endocrinol, 1987, 66 (2): 163-170.
    [77] Dunn A M, Rigaud T. Horizontal transfer of parasitic sex ratio distorters between crustacean hosts[J]. Parasitology, 1998, 117 ( Pt 1): 15-19.
    [78] Rigaud T, Juchault P. Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare[J]. Latr. Genetics, 1993, 133 (2): 247-252.
    [79] Kulkarni G K. Effect of progesterone on ovarian maturation in a marine penaeid prawn Parapenaeopsis hardwickii [J]. India J Exp Biol, 1979,17: 986-988.
    [80]王桂忠,李少菁.乙烯雌酚影响锯缘青蟹幼蟹的初探[J].厦门大学学报(自然科学版), 1989, 28(2): 199-202.
    [81]吴仲庆. 17β-雌二醇作用下长毛对虾性别比例[J].海洋科学, 1990, (2): 53-56.
    [82]高连勇.中国对虾性别控制机制探讨[A].全国海水养殖学术讨论会论文集[C].中国水产学会海水养殖专业委员会, 1992, 118-121.
    [83] Malecha S R. Crustacean genetics and breeding: an overview[J]. Aquac, 1983, 33: 395-419.
    [84] Kanazawa, A., S. Teshima. In vivo conversion of cholesterol to steroid hormones in the spiny lobster, Panulirus japonicus[J]. Bull. Jpn. Sci. Fish. 1971, 37(9): 891-898.
    [85] Teshima, S., A. Kanazawa. Bioconversion of progesterone by the ovaries of crab, Portunus trituberculatus [J]. Gen..Copm. Endocrinol. 1971, 17 (1): 52-57.
    [86]姜仁良,谭玉钧,吴嘉敏,等.中华绒螯蟹血淋巴中20-羟基蜕皮酮、17-β雌二醇和睾酮含量的波动[J].水产学报, 1992, 16(2): 101-106.
    [87]廖家遗.外源性激素对对虾的卵巢发育作用[J].动物学杂志, 1993, 28:56-58.
    [88]王兴强,马生生,董双林,等.凡纳滨对虾生物学及养殖生态学研究进展[J].海洋湖沼通报, 2004, (4): 94-100.
    [89]周志明.南美白对虾的生物学特性及淡养技术[J].内陆水产, 2001, 6: 20-21.
    [90]王广军.南美白对虾的生物学特性及繁殖技术[J].产科技情报, 2000, 27 (3): 128-132.
    [91]陈永乐,张亮森,朱新平等.南美白对虾的生物学及其养殖技术要素[J].淡水渔业, 2003, 33 (1): 54-55.
    [92]王吉桥.南美白对虾健康养殖技术[J].水产科学, 2002, 21 (5): 43-46.
    [93]赵光凤,李广丽,朱春华.凡纳滨对虾性别分化的初步研究[J].广东海洋大学学报, 2009, 29 (3): 19-23.
    [94]隋元成,赵显,赵峰,等.降低母猪子宫内pH值对仔猪出生性比的影响[J].河南畜牧兽医, 2005, 26(10): 5-6.
    [95]冯玉麟,刘怡虹,宋伟奇,等.精氨酸对科尔沁黄牛后代性比的影响[J].中国草食动物, 2005, 26 (2): 23-24.
    [96]王占云.我国鱼类性别控制研究现状[J].闽西职业大学学报, 1999, 4: 28-30.
    [97]王德寿,吴天利,张耀光等.鱼类性别决定及其机制的研究进展[J].西南师范大学学报. 2000, 25 (3): 296-304.
    [98]李卓佳,曹煜成,李色东等.集约式养殖凡纳滨对虾体长与体重的关系[J].热带海洋学报, 2005, 24 (6): 67-71.
    [99]王渊源,方丽珊,陈世希.池养长毛对虾体长与体重的关系[J].台湾海峡, 1996, 15 (1): 25-31.
    [100]洪水根,林嘉涵,陈细法等.长毛对虾卵子发生的研究[J].海洋与湖沼, 1988, 19 (4): 301一305.
    [101]李怀梅,张乃禹.中国对虾卵母细胞发育的初步研究[J].海洋与湖沼, 1994, 25 (3): 243-247.
    [102]曹玉萍,王所安.人工诱导雌性化中国对虾性腺组织学观察[J].河北大学学报, 1994, 14 (1): 49-52.
    [103]尹左芬,宋微波,王琳等.对虾(Penaeus orientalis)外生殖器官的发育与分化[J].海洋与湖沼通报, 1986, 4: 56-61.
    [104]李富花,相建海.中国对虾早期性别分化研究[J].海洋科学集刊, 2002, 44: 101-105.
    [105] Nakamura, K. Differentiation of genital organs and androgenic gland in the kuruma prawn Penaeus japonicus[J]. Mem. Fac. Fish. Kagoshimadai Suisangakubu Kiyo, 1992, 41: 87-94.
    [106] Lee, TH., M.Yamaguchi and F.Yamazaki, Sex differentiation in the crab Eriocheir japonicus (Decapoda, Grapsidae) [J], Invert. Reprod. Develop, 1994, 25: 123-138.
    [107]张培军主编.海水鱼类繁殖发育和养殖生物学[M].济南:山东省科学技术出版社, 1999. 1-207。
    [108]王念民,孙大江,曲秋芝等.温度对鱼类性别分化和性别决定的影响[J].水产学杂志, 2007, 20 (2): 91-93.
    [109] S. C.Chakraborty, L.G. Ross, B. Ross. The effect of photoperiod on the resting metabolism of carp (Cyprinus carpio) [J]. Comp. Biochem. Physiol., 1992, 101A(1) : 77-82.
    [110]林小涛,杞桑,曹双俊,等.光周期对罗氏沼虾幼体生长及能量收支的影响[J].海洋与湖沼, 1998, 29(2): 119-127.
    [111]吴志新,陈孝煊,刘小玲等.不同光周期对红螯螯虾繁殖生长的影响[J].淡水渔业, 2000, 30(3): 4-5.
    [112] Forster J R M, Beard T W. Growth experiments with the prawn,Palaemon serratus [J]. British Ministry of Agriculture and Fisheries Investigation SeriesⅡ,1973, 27: 1-16.
    [113] Chittleborough R G.. Environmental factors affecting growth and survial of juvenile western rock lobster,Panilurus longipes[J].Austr J Mar Freshw Res, 1975, 26:177-196.
    [114] Tung Hoang, Matteo Barchiesis, Lee S Y, et al. Influences of light intensity and photoperiod on moulting and growth of Penaeus merguiensis cultured under laboratory condition [J]. Aquaculture, 2003, 216(1-4): 343-354.
    [115]王芳,董双林,董少帅,等.光照周期对中国对虾稚虾蜕皮和生长的影响[J].中国水产科学, 2004, 11(4): 354-359.
    [116] Al-Ablani, S A. and Farmer, A D D. The effect of different levels of illuminance on the survival and growth of the shrimp (Penaeus semisulcatus)[J]. KuWAIT-BULL-MAR-SCI, 1986, 165-172.
    [117]沈丽琼,陈政强,陈昌生等.盐度对凡纳滨对虾生长与免疫功能的影响[J].集美大学学报, 2007, 12 (2): 108-113.
    [118]朱春华.盐度对南美白对虾生长性能的影响[J].水产科技情报, 2002, 29 (4) :166-168.
    [119] Nimrod A C, Benson W H. Environmental estrogenic effects of alkylphenol ethoxylates[J]. Crit.Rew.Toxicol., 1996, 2(3):335-364.
    [120] Soto A M, Justicia H, Wray J W, et al. p-Nonylphenol: an estrogenic xenobiotic released from“Modified”polystyrene[J]. Environmental Health Perspectives, 1991, 92:167-173.
    [121]芦军萍,蔡德培. 4-壬基酚、双酚A对雌性SD幼鼠生殖器官拟雌激素样作用的联合效应[J].环境与职业医学, 2009, 26(2): 182-185.
    [122]吴楠,张毅,李惠云,等.壬基酚和雌二醇干扰罗氏沼虾卵黄蛋白原VTG基因表达的效应[J].动物学杂志, 2007, 42 (4): 1-7.
    [123]周忠良,李康,于静等.壬基酚对鲫鱼(Carassius auratus)的雌激素效应研究[J],环境科学研究, 2004, 17 (3): 60-61.
    [124]李祥军,周忠良,顾建华.壬基酚对河川沙塘鳢性腺分化和发育影响的研究[J].水产科学, 2009, 28 (1): 15-19.
    [125]吴伟,瞿建宏.壬基酚在鱼体组织中的累积及对鱼类性腺的影响[J].中国环境科学, 2005, 25 (4): 420-423.
    [126]尹德玉,汝少国,田华.环境内分泌干扰物对鱼类性别决定的影响研究进展[J].生态毒理学报, 2009, 4 (4): 467-474.
    [127]郑晓晶,张育辉.壬基酚对中国林蛙蝌蚪生长发育的毒性效应[J].生态学杂志, 2008, 27 (8): 1332-1336.
    [128] Hill R L, Janz DM. Developmental estrogenic exposure in zebrafish (Danio rerio). I. Effects on sex ratio and breeding success[J]. Aquatic Toxicology, 2003, 63 (4): 417-429.
    [129] Balch G, Metcalfe C. Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonyphenol ethoxylates and their degradation products[J]. Chemosphere, 2006, 62 (8): 1214-1223.
    [130]袁红霞,裔洪根,徐世清.壬基酚对家蚕(Bombyx mori)生长发育的影响[J].农业环境科学学报, 2009, 28 (4): 777-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700