高能化合物结构和性能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用量子力学(QM)和分子力学(MM)等理论和计算化学方法,对多系列高能化合物的结构和性能进行了较为系统的计算研究。特别注重潜在的高能量密度化合物HEDC的寻求和安全性评估,以满足航天、国防和国民经济相关发展的需要。本论文大体包括三部分内容:
     第一部分研究多系列芳烃化合物的结构和性能,兼顾HEDC的“分子设计”。
     在第一性原理DFT-B3LYP/6-31G~*水平上求得苯和苯胺类硝基衍生物的全优化几何构型、红外光谱(IR)及其归属,求得298~800K的热力学性质(C~0_(p,m)、S~0_m和H~0_m)及其与硝基、氨基数和温度的关系;按0.001e·Bohr~(-3)电子密度曲面所包含的体积求得分子理论密度(ρ);按Kamlet-Jacobs方程估算爆速(D)和爆压(P)。运用UHF-PM3方法求得该系列化合物的热解活化能(E_a),并以UB3LYP/6-31G~*方法求得三种可能热解引发步骤的键离解能(BDE),预测热解引发机理为C-NO_2键均裂并以此判别相对感度大小和稳定性。发现静态电子结构参数(C-NO_2键Mulliken键级M_(C-NO2)和硝基上净电荷Q_(-NO2))之间、动力学参数(BDE_(C-NO2)和E_a)之间以及该二类参数之间,均存在良好的线性关系,表明它们可平行或等价地用于判别同系物的稳定性和感度相对大小。
     对照我们研究小组建议的判别HEDC能量与稳定性的定量标准(密度ρ≈1.9g·cm~(-3)、爆速D≈9.0km·s~(-1)、爆压P≈40Gpa和引发键离解能BDE≈80~120kJ·mol~(-1)),发现五硝基苯、六硝基苯和五硝基苯胺符合HEDC要求。而DATB尤其是TATB(1,3,5-Triamino-2,4,6-trinitrobenzene),虽不是HEDC,但具有作为高能钝感耐热炸药的微观结构。
     对苯酚类和甲苯类硝基衍生物的类似DFT-B3LYP/6-31G~*计算,求得分子几何、IR谱、热力学性质(C~0_(p,m)、S~0_m和H~0_m)、理论密度、爆速和爆压以及各可能热解引发步骤的BDE;通过动力学计算比较研究,确定了苯酚类硝基衍生物的O-H上H转移异构化反应为其热解引发步骤,即O-H键断裂、H转移异构化优先于C-NO_2均裂:确定了甲苯类硝基衍生物的C-H上H转移异构化反应为该类化合物的热解引发步骤,亦即C-H键断裂、H转移异构化优先于C-NO_2均裂;综合考虑密度、爆轰特性并结合稳定性要求,确认五硝基苯酚和五硝基甲苯(PNT)是HEDC。
     第二部分对著名起爆药六硝基芪(HNS)和2,5-二苦基-1,3,4-噁二唑(DPO)的结构和性能进行了系统理论研究。
     在B3LYP/6-31G~*水平上,求得六硝基芪及其多取代基(-NO_2、-NH_2和-OH)衍生物的全优化分子几何,求得IR谱并作指认,求得298~800K的热力学性质(C~0_(p,m)、S~0_m和H~0_m)及其与基团种类数目和温度的关系:预测它们的理论密度、爆速和爆压;以(U)B3LYP/6-31G~*方法求得七种可能的热解引发步骤的BDE,并参照键电子集居数,确认C-NO_2键是HNS的硝基和氨基衍生物的热解和起爆引发键,而HNS羟基衍生物则以分子中O-H的H转移异构化反应为其热解引发步骤。根据HEDC能量和稳定性定量标准,判别九硝基芪和十硝基芪符合HEDC的要求。研究表明,通过向HNS分子中引入-NO_2基可提高能量和密度,而引入-NH_2基则利于钝感、增加稳定性。
     基于DFT-B3LYP/6-31G~*类似研究,首次求得DPO的全优化分子构型(属C_2点群),求得并解析IR谱,预示其298~800K的热力学性质(C~0_(p,m)、S~0_m和H~0_m)及其与温度的关系,求得分子理论密度、爆速和爆压;以(U)B3LYP/6-31G~*方法求得四种可能热解引发步骤的BDE,认为其热解或起爆可能是由均裂C-O、C-NO_2或N-N键而引发。由计算推测,在DPO中引进-NO_2基,可提高其ρ、D、P值直至符合HEDC标准。
     运用分子力学(MM)方法在Compass和Dreiding两种力场中,对DPO在七种最可几空间群(P21/c、P-1、P212121、P21、Pbca、C2/c和Pna21)中进行最佳分子堆积方式搜索,预测出其合理晶型属P212121空间群;运用DFT-GGA-RPBE方法,对该晶型进行周期性能带结构计算,从其态密度(DOS)和局域态密度(PDOS)分析,并考虑其带隙(△E_g=1.33 eV)值,可预示N-N、C-O和C-NO_2键可能是热解和起爆的引发键,预测DPO导电性较好,感度较大,确实适合作起爆药使用。
     第三部分运用线性回归方法建立关于感度的定量构效关系(QSAR)。
     对57种硝胺和硝基芳烃类高能化合物进行DFT-B3LYP/6-31G~*水平的计算研究。求得它们的全优化几何、电子结构;预测它们的理论密度、爆速和爆压;发现电子结构参数、爆速(D)、爆压(P)与静电感度(E_(ES))之间存在的定性或定量关系。
     对含-CH_2N(NO_2)-的硝胺(如ORDX、AcAn和HMX等)或对称性较高但不含-CH_2N(NO_2)-结构的环杂硝胺(如DNDC和TNAD),静电感度随爆速和爆压的增大而线性地增强,求得其线性关系式分别为:E_(ES)=-0.492 D~2+42.68,R=0.957;E_(ES)=-62.97011gP+100.903,R=0.955。
     对硝基芳烃类化合物则分类进行研究,并获得如下定量关系:第一类是包括芳烃硫化物的CHNO类(其中N、O由-NO_2提供):线性关系式为E_(ES)=-0.246D~2+20.465,R=0.861;E_(ES)=-0.489p+18.891,R=0.866。第二类分子中含与硝基相邻的-CH_3或-CH_2CH_2-基团:线性关系式为E_(ES)=-0.984D~2+60.101,R=0.998;E_(ES)=-1.748P+48.103,R=0.998。第三类分子中含-NH_2、-OH、-N=N-和-NH-等基团:线性关系式为E_(ES)=-0.520D~2+41.488,R=0.963;E_(ES)=-0.925P+35.170,R=0.966。由此表明,从较易估算的爆轰性质(D或P)可定性判别或定量预示难于求得的静电感度。
     总之,本文对多系列高能化合物的结构-性能关系进行了系统的计算研究和分子设计,解释了大量已有实验事实,预示了许多未知的结果,提供了丰富信息和规律、利于指导实验合成,既能减少盲目实验造成的浪费,又能缩短实验周期和增强安全性,从而很好地完成了国家“973”和国家自然科学基金项目赋予的各项任务。
The dissertation is devoted to systematic researches on the structures and properties of several series of energetic compounds and well-known high energy density compounds(HEDC),using modern theoretical and computational chemistry methods,such as quantum mechanics(QM)and molecular mechanics(MM).The whole work can be divided into three parts:
     The first part concentrates on the theoretical studies on the structures and properties of series of arenes,and at the same time considers the "molecular design" of HEDC.
     The fully optimized structures,assigned infrared(IR)spectra,and thermodynamic properties(C_(p,m)~0,S_m~0 and H_m~0)related with the number of nitro and amino groups as well as the temperature in 200~800 K of two types of nitro derivatives of benzene and aminobenzenes are obtained at the DFT-B3LYP/6-31G~* level.According to the volume inside a contour of 0.001e/Bohr~3,the molecular theoretical density(ρ)is evaluated,and detonation velocity(D)and detonation pressure(P)are estimated according to the Kamlet-Jacobs equation.The UHF-PM3 method is employed to evaluate thermolysis activation energies(E_a).Bond dissociation energies(BDEs)of three possible trigger bonds in their thermolysis are computed by the B3LYP/6-31G~* method under the unrestricted model,and their pyrolysis mechanisms are ascertained to be the homolysis of C-NO_2 bond.It is found that,the static electronic structural parameters(the Mulliken bond population M_(C-NO2) and the net charge of the nitro group Q_(-NO2))and the kinetic parameters(BDE and E_a) are related with each other,which indicates that they all can parallelly or equivalently be used to identify the stability and the relative magnitude impact sensitivity for homologous energetic materials.
     Based on the QM calculations,the quantitative criteria of detonation performance as HEDCs(ρ≈1.9 g/cm~3,D≈9.0 km/s,and P≈40.0 GPa)and the stability requirement(BDE of the initial step in thermolysis BDE≈80~120 kJ/mol) are employed to recommend several potential HEDC objectives from the title compounds.Pentanitrobenzene,hexanitrobenzene and pentanitroaniline agree with the forementioned criteria of HEDCs.
     The nitro derivatives of phenols and methylbenzenes have been studied similarly at the DFT-B3LYP/6-31G~* level.The fully optimized structures,IR,thermodynamic properties(C_(p,m)~0,S_m~0 and H_m~0),theoretical molecular densityρ,detonation velocity D, detonation pressure P and BDEs of the possible trigger bonds in their thermolysis are obtained.Comparing the kinetic result,it is found that,for the nitro derivatives of phenols,their pyrolysis initiation is the isomerization reactions of the O-H bond,i.e., breaking of O-H bond followed by the isomerization reactions of the H transferring is prior to the homolysis of C-NO_2 bond,and for the nitro derivatives of methylbenzenes, their pyrolysis mechanism is the breaking of C-H bond followed by the H transferring. According to the quantitative criteria of HEDCs and stability demand, 2,3,4,5,6-pentanitrobenzenephenol and 2,3,4,5,6-pentanitrotoluene are potential candidates.
     The second part focuses on the theoretical studies on the structures and properties for the typical detonation-transferring explosives,such as the derivatives HNS(2,2',4,4',6,6'-hexanitrostilbene)and 2,5-dipicryl-1,3,4-oxadiazole(DPO).
     For the derivatives of HNS substituted for nitro,amino and hydroxy groups,the fully optimized structures,assigned IR spectra,and thermodynamic properties(C_(p,m)~0, S_m~0 and H_m~0)related with the various groups and the temperature in 200~800 K are obtained at the DFT-B3LYP/6-31G~* level.Theoretical densityρ,detonation velocity D,and detonation pressure P of each compound are predicted.BDEs of seven possible trigger bonds in their thermolysis are computed by the(U)B3LYP/6-31G~* method.Refering to the bond overlap populations,the homolysis is initiated from breaking the trigger linkage C-NO_2 bond for the nitro and amino derivatives of HNS, while for hydroxy derivatives it is started from breaking O-H bond followed by the isomerization reactions of the H transferring.Considering the energetic characteristic and the thermal stability,2,2',3,3',4,4',5,6,6'-nonanitrostilbene and 2,2',3,3', 4,4',5,5',6,6'-decanitrostilbene essentially satisfy the quantitative criteria of HEDCs. The energy and density of HNS are improved when it is substituted by -NO_2 group. However,the substitution of -NH_2 group increases the insensitivity and stability of HNS.
     The fully optimized structures(C_2),assigned IR spectra,and thermodynamic properties(C_(p,m)~0,S_m~0 and H_m~0)related with the temperature in 200~800 K are obtained similarly at the DFT-B3LYP/6-31G~* level.Theoretical densityρ, detonation velocity D,and detonation pressure P are predicted.BDEs of four possible trigger bonds in their thermolysis are computed by the(U)B3LYP/6-31G~* method.The pyrolysis mechanism is found to be the homolysis of C-NO_2,N-N or C-O bond.It is presumed thatρ,D and P are probably improved so as to become HEDC when DPO is substituted by -NO_2 group.
     MM method is used to search for the most possible packing of DPO among the seven most possible space groups(P2_1/c,P-1,P2_12_12_1,P2_1,C2/c,Pbca and Pna2_1) with Dreiding and Compass force field,the reasonable crystal structures are predicted to pack in P2_12_12_1 space group.Periodic ab initio calculations are performed on the predicted crystal structure using the DFT-GGA-PBE method,and the density of states (DOS),the partial density of states(PDOS)and the band gap(△Eg)are obtained, which indicates that the N-N,C-O or C-NO_2 bonds are possible trigger bonds and DPO is suitable to be used as a detonation-transferring explosive.
     The third part centers on establishing QSAR on sensitivity using linear regression method.
     The 57 nitramines and nitro arenes have been studied at the DFT-B3LYP/6-31G~* level.The fully optimized structures,theoretical densityρ,detonation velocity D,and detonation pressure P of each compound are predicted.It is found that,there are qualitative or quantitative relationships between the detonation velocity,pressure and electric sensitivity(E_(ES)).
     For the compounds with metylenenitramine units(-CH_2N(NO_2)-)in their molecules(such as ORDX,AcAn and HMX)or with the better symmetrical cyclic nitramines but without metylenenitramine units(such as DNDC and TNAD),there is a linear relationship between the square of detonation velocity(D~2)and electric spark sensitivity E_(ES),and the equation are E_(ES)=-0.492 D~2+42.68(R=0.957)and E_(ES) =-62.97011gP+100.903(R=0.955).
     For nitro arenes,this series of compounds are classified and discussed and there are linear relationships between D~2 or P and E_(ES).For the first type of compounds mainly belonging to C,H,N,O type explosives,whose N and O atoms are in the form of -NO_2 group,and including the aromatic sulfides,the formula are E_(ES)=-0.246 D~2+20.465(R=0.861)and E_(ES)=-0.489P+18.891(R=0.866);For the compounds with -CH_3 or -CH_2CH_2- groups whose ortho position have -NO_2 group,their linear relationships are E_(ES)=-0.984D~2+60.101(R=0.998)and E_(ES)=-1.748P+48.103 (R=0.998);For the compounds with -NH_2,-OH,-N=N- and -NH- groups in the molecules,their linear relationships are E_(ES)=-0.520D~2+41.488(R=0.963)and E_(ES) =-0.925P+35.170(R=0.966).Therefore,the more easily calculated detonation characteristics(D and P)can be used to theoretically predict or judge the magnitude of E_(ES)which is difficult to mensurate.
     In a word,the systemic theroretical studies on the structures and properties and the molecular design have been investigated for the energetic compounds,which explain a great deal of the experimental fact and predict many unknown results.The abundance of information and the rules provided are used to instruct the experimental synthesize,which not only decrease the waste that may be resulted from experiment, but also shorten the period of experiment and increase safety.The work of thesis has successfully completed the various tasks assigned by the projects of National 973 and National Nature Science Foundation of China.
引文
(1)Jackson,C.L.;Wing,J.F.J.Am.Chem.Soc.,1887,7,9:354.
    (2)董海山,周芬芬.高能炸药及相关物性能.北京:科学出版社,1989
    (3)Benziger,T.M.;Rohwer,R,K.;Urizar,M.J.Los Alamos Scientific Laboratory,Priyate communication,1973.
    (4)[波]T.乌尔班斯基著,孙荣康译.火炸药的化学与工艺学,国防工业出版社,1976
    (5)Gilbert P S,Jack A.Research towards novel energetic materials.J.Energ.Mater.1986,45:5-28
    (6)Iyer S,Damavarapu R,Strauss B,Bracuit A,Alster J,Stec D.Ⅲ.New high density materials for propellant application.J.Ballistics.1992,11:72-79
    (7)施明达.高能量密度材料合成的研究进展.火炸药学报.1992,1:19-25
    (8)Agrawal P J.Recent trends in high-energy materials.Prog.Energy Combust.Sci.1998,24:1-30
    (9)肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    (10)欧育湘,陈进全.高能量密度化合物.北京:国防工业出版社,2005
    (11)Nielsen A T,Chafin A P,Christian S L,Moore D W,Nadler M P,Nissan R A,Vanderah D J,Gilardi R D,George C F,Flippen-Anderson J L.Synthesis of polyazapolycyclic caged polynitramines.Tetrahedron.1998,54:11793-11812
    (12)Jalovy Z,Zeman S,Sucesks M.1,3,3-trinitroazetidine(TNAZ)Part Ⅰ:Synthesis and properties.J.Energ.Mater.2001,19:219-239
    (13)鲁鸣久.一种新颖的高能炸药:六硝基六氮杂三环十二烷二酮.火炸药学报,2000,1:23-24
    (14)Christe,K.O.;Wilson,W.W.;Sheehy,J.A.;Boatz,J.A.N_5~+:A novel HOMO.N_5~+:A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material.Angew.Chem.Int.Ed.1999,38:2004-2009
    (15)Zhang M X,Eaton P E,Gilardi R L.Hepta- and octanitrocubanes.Angew.Chem.Int.Ed.2000,3:401-404
    (16)Zhang J,Xiao H M.Computational studies on the infrared vibrational spectra,thermodynamic properties,detonation properties and pyrolysis mechanism of octanitrocubane.J.Chem.Phys.2002,116(24):10674-10683
    (17)Zhang J,Xiao H M,Gong X D.Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP methods and semiempirical MO methods.J.Phys.Org.Chem.2001,14:583-588
    (18)Xiao H M,Zhang J.Theoretical prediction on heats of formation for polyisocyanocubanes-Looking for typical high energetic density material(HEDM).Science In China B.2002,45(1):21-29
    (19)Zhang J,Xiao J J,Xiao H M.Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP method and semiempirical MO methods.Inter.J.Quantum Chem.2002,86(3):305-312
    (20)Xu X J,Xiao H M,Gong X D,Ju X H,Chen Z X.Theoretical Studies on the Vibrational Spectra,Thermodynamic Properties,Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes.J.Phys.Chem.A 2005,109:11268-11274
    (21)Xu X J,Xiao H M,Ju X H,Gong X D,Zhu W H.Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials(HEDMs).J.Phys.Chem.A 2006,110:5929-5933
    (22)Xu X J,Xiao H M,Ma X F,Ju X H.Looking for High Energy Density Compounds among Hexaazaadamantane Derivatives with -CN,-NC,and -ONO_2 Groups.Inter.J.Quantum.Chem.2006,106(7):1561-1568
    (23)Xu X J,Xiao J J,Zhu W,Xiao H M,Huang H,Li J S.Molecular Dynamics Simulations for Pure ε-CL-20 and ε-CL-20-Based PBXs.J.Phys.Chem.B 2006,110:7203-7207
    (24)郑剑.美国高能量密度物质研究综述.固体火箭技术.1991,4:55
    (25)肖鹤鸣,李永富著.金属叠氮化物的能带和电子结构--感度和导电性[M].北京:科学出版社,1996.
    (26)肖鹤鸣,高能化合物的结构和性质,北京,国防工业出版社,2004.
    (27)肖鹤鸣,陈兆旭著.四唑化学的现代化理论[M].北京:科学出版社,2000.
    (28)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京,科学出版社,2008.
    (29)Delpuech A,Cherville J.Propellants,Explosives,1978,3(6):169.
    (30)Delpuech A,Cherville J.Propellants,Explosives,1979,4(6):121.
    (31)Kamlet M J,Adolph H G.Prop.,Explos.,Pyrotech.,1979,4(2):30.
    (32)J.S.Murray and P.Politzer.Chem.Phys.Energ.Mater..Netherland:Kluwer Academ.Publ.1990.157-173.
    (33)N.H.March.Electron Density Theory of Atoms andMolecules[M].Academic Press,NewYork,1992.
    (34)F.J.Owens,K.Jayasuriya,L.Abrahmsen et al.Computational Analysis of some Properties.Associated with the nitro groups in polynitroaromatic molecules[J].Chemical PhysicsLetters,1985,116:434-438.
    (35)Rice,B.M.;Sahu,S.;Owens,F.J.Density functional calculations of bond dissocation energies for NO_2 scission in some nitroaromatic molecules.J.Mol.Struct:THEOCHEM.2002,583:69.
    (36)J.S.Murray,P.Politzer.Relationships between Lattice Energies and Surface Electrostatic Potentials and Areas of Anions[J].J.Phys.Chem.A,1998,102:1018-1020.
    (37)Bowden F P,Yoffe A D.Initiation and Growth of Explosires in Liquids and Solids[M].CambridgeUniversity Pres,Cambridge,1952.
    (38)Bowden F P,Yoffe A D.Fast Reactions in Solids[M].Butterworth Scientific Publications,London,1958.
    (39)Chaudhri M M.Stab initation of explosions[J].Nature(London),1976,263:121.
    (40)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-hua.Theoretical Studies on the Structures,Thermodynamic Properties,Detonation Properties,and Pyrolysis Mechanisms of Spiro Nitramines.J.Phys.Chem.A,2006,110,3797-3807.
    (41)肖鹤鸣,王遵尧,姚剑敏.芳香族硝基炸药感度和安定性的量子化学研究Ⅰ.苯胺类硝基衍生物.化学学报,1985,43:14-18.
    (42)Fan J.F.;Xiao H.M.Theoretical study on pyrolysis and sensitivity of energetic compounds.(2)Nitro derivatives of benzene.Journal of Molecular Structure(Theochem),1996,365:225-229
    (43)Xiao,H.M.;Fan J.F.;Gu Z.M.;Dong H.S.Theoretical study on pyrolysis and sensitivity of energetic compounds(3)Nitro derivatives of aminobenzenes.Chemical Physics,1998,226:15-24
    (44)Xiao H.M.;Li Y.F.Banding and electronic structures of metal azides-Sensitivity and conductivity.Science in China(Series B),1995,38:538-545.
    (45)Zhu W.H.Xiao J.J.;Xiao H.M.Comparative first-principles study of structural and optical properties of alkali metal azides.J.Phys.Chem.B,2006,110:9856-9862.
    (46)Chen Z.X.;Xiao H.M.;Yang S.L.Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts,Chemical Physics,1999,250:243-248.
    (47)Chen Z.X.;Xiao H.M.Impact Sensitivity and Activation Energy of Pyrolysis for Tetrazole Compounds,International Journal of Quantum Chemistry,2000,79:350-357.
    (48)Zeman S.New Aspects of Impact Reactivity of Polynitro Compounds.Part Ⅳ.Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities.Propellants,Explosives,Pyrotechnics.2003,28:308-313.
    (49)Zeman S.and Krupka M.New Aspects of Impact Reactivity of Polynitro Compounds,Part Ⅲ.Impact Sensitivity as a Function of the Imtermolecular Interactions.Propellants,Explosives,Pyrotechnics,2003,28:301-307.
    (50)Zeman S.and Krupka M.New Aspects of Impact Reactivity of Polynitro Compounds,Part Ⅱ.Impact Sensitivity as "the First Reaction" of Polynitro Arenda.Propellants,Explosives,Pyrotechnics 2003,28:249-255.
    (51)Zeman S.New Aspects of the Impact Reactivity of Nitmmines.Propellants,Explosives,Pyrotechnics,2000,25:66-74.
    (52)Hedi Nefati,et al.Prediction of the Impact Sensitivity by Neural Networks[J].J.Chem.Inf.Comput.Sci,1996,36:804.
    (53)Soo Gyeong Cho,et al.Optimization of Neural Networks Architectures for Impact Sensitivity of Energetic Molecules[J].Bull.Korean Chem.Soc,2005,26(3):399.
    (54) Hartree D R. Wave mechanics of an atom with a non-coulomb central field. I. Theory and methods. II. Some results and discussion. III. Term values and intensities in series in optical spectra. Prog. Camb. Phil. Soc. 1928,24: 89-110; 426-437
    (55) Fock V Z. The initial degrees of freedoms of the electron. Phys. 1931, 68: 522-534
    (56) Roothan C C J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951,23: 69-89
    (57) Moller C, Plesset M S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934,46:618-622
    (58) Hohenberg P, Kohn W. Inhomogenous electron gas. Phys. Rev. 1964, B136: 864-871
    (59) Kohn W, Sham L. Self-consistent equations including exchange and correction effects. J. Phys. Rev. A 1965,140: 1133-1138
    (60) Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98: 5648-5652
    (61) Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37:785-789
    (62) Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986,33:8822-8824
    (63) Perdew J P, Burke K, Wang Y. Generalized gradient approximation for exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54: 16533-16539
    (64) Slater J C. Atomic Shielding Constants. Phys. Rev. 1930, 36: 57-64
    (65) Hariharan, P. C.; Pople, J. A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta, 1973, 28: 213-222.
    (66) Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004
    (67) Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892-7895.
    (68) Payne, M. C; Teter, M. P.; Allan, D.; C. Arias, T. A.; Joannopoulos, J. D. Iterative Minimization Techniques for Ab Initio Total Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64:1045-1097.
    (69) Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. III. CNDO Results for AB_2 and AB_3 Systems. J. Chem. Phys. 1966, 44: 3289-3296
    (70) Pople J A, Beveridge D L, Dobosh P A. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47: 2026-2033
    (71) Pople J A, Santry D P. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 1965, 43: 129-135
    (72) Bingham R C, Dewar M J S, Lo D H. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc. 1975, 97: 1285-1293
    (73) Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99: 4899-4907
    (74) Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107: 3902-3909
    (75) Stewart J J P. Optimization of parameters for semiempirical methods I. J. Comput. Chem. 1989, 10: 209-220
    (76) Materials Studio 3.0.1; Accelrys Inc.: San Diego, CA, 2004
    (77) Sun H, Rigby D. Polysiloxanes: ab initio force and structural, conformationa! and thermophysical properties. Spectrochimica Acta A. 1997, 153: 1301-1323
    (78) Sun H, Ren P, Fried J R. The COMPASS Force Field: Parameterization and Validation for Phosphazenes. Comput. Theor. Polym. Sci. 1998, 8: 229-246
    (79) Sun H. Compass: An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J. Phys. Chem. B 1998,102: 7338-7364
    (80) Bunte S W, Sun H. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field. J. Phys. Chem. B 2000, 104: 2477-2489
    (81) 克莱兰 B J 著,龚少明译。统计热力学。上海科学出版社, 1980
    (82) Hill T L. An Intrduction to Statistical Thermodynamics. New York: Addision-Wesley Publishing Company INC, 1964
    (83)傅献彩,沈文霞,姚天扬编.物理化学.第四版.高等教育出版社,1990
    (84)张熙和,云主惠编.爆炸化学.北京:国防工业出版社,1989.
    (85)惠君明,陈天云.炸药爆炸理论.南京:江苏科学技术出版社,1995
    (86)周霖编.爆炸化学基础.北京:北京理工大学出版社,2005
    (87)Kamlet M J,Jacobs S J.Chemistry of detonations.I.Simple method for calculating detonation properties of C-H-N-O explosives.J.Chem.Phys.1968,48:23-35
    (88)Qiu L,Xiao H M,Gong X D,Ju X H,Zhu W H.Crystal density predictions for nitramines based on quantum chemistry.J.Hazard.Mater.2007,141:280-288
    (89)孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社,1995
    (90)Lang Pei-Zhen,Ma Xun-fen,Lu Guang-hua,Wang Yi,Bian Yong.QSAR for the acute toxicity of nitroaromatics to the carp(Cyprinus Carpio).Chemosphere.1996,32(8):1547-1552
    (91)Netzeva T.I.,Dearden J.C.,Edwards R.,Worgan A.D.P.,Cronin M.T.D.QSAR Analysis of the Toxicity of Aromatic Compounds to Chlorella Wulgaris in a Novel Short-Term Assay.J.Chem.Inf.Comput.Sci.2004,44:258-265
    (92)Cronin M.T.D.,Netzeva T.I.,Dearden J.C.,Robert Edwards,and Andrew D.P.Worgan.Assessment and Modeling of the Toxicity of Organic Chemicals to Chlorella vulgaris:Development of a Novel Database.Chem.Res.Toxicol.2004,17:545-554
    (93)余建英,何旭宏编.数据统计分析与SPSS应用.北京:人民邮电出版社,2004
    (94)何晓群,刘文卿编.应用回归分析.北京:中国人民大学出版社,2001
    (1)Gilbert P S,Jack A.Research towards novel energetic materials.J.Energ.Mater.1986,45:5-28.
    (2)Agrawal P J.Recent trends in high-energy materials.Prog.Energy Combust.Sci.1998,24:1-30.
    (3)Zhang M X.,Eaton P E,Gilardi R.Hepta- and Octanitrocubanes.Angew.Chem.Int.Ed.2000,39(2):401-404.
    (4)Nedelko V V,Chukanov N V,Raevskii A V,Korsounskii B L,Larikova T S,Kolesova O I.Comparative Investigation of Thermal Decomposition of Various Modification of Hexanitrohexaazaisowurtzitane(CL-20).Propell.Explos.Pyrotech.2000,25:255-259.
    (5)Nielsen A T,Nissan P.A Polynitropolyaza caged explosives.Part 5,Naval Weapon Center Technical Publication,1986,6692.
    (6)Zhang J,Xiao H M.Computational studies on the infrared vibrational spectra,thermodynamic properties,detonation properties and pyrolysis mechanism of octanitrocubane.J.Chem.Phys.2002,116(24):10674-10683
    (7)Xiaojuan Xu,Heming Xiao,Xuehai Ju,Xuedong Gong,and Zhaoxu Chen.Theoretical Studies on the Vibrational Spectra,Thermodynamic Properties,Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes.J.Phys.Chem.A,2005,109,11268-11274.
    (8)Xu X J,Xiao H M,Ju X H,Gong X D,Zhu W H.Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials(HEDMs).J.Phys.Chem.A 2006,110:5929-5933
    (9)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-hua.Theoretical Studies on the Structures,Thermodynamic Properties,Detonation Properties,and Pyrolysis Mechanisms of Spiro Nitramines.J.Phys.Chem.A,2006,110,3797-3807.
    (10)Xiaojuan Xu,Heming Xiao,Xiufang Ma,Xuehai Ju.Looking for High Energy Density Compounds among Hexaazaadamantane Derivatives with -CN,-NC,and -ONO_2 Groups.Inter.J.Quantum.Chem.2006,106(7),1561-1568.
    (11)Qiu L,Xiao H M,Ju X H,Gong X D.Theoretical Study on the Structures and Properties of Cyclic Nitramines:Tetranitrotetraazadecalin(TNAD)and its Isomers.Int.J.Quant.Chem.2005,105:48-56
    (12)Qiu L,Xiao H M,Zhu W H,Ju X H,Gong X D.Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan.Chin.J.Chem.2006,24:1538-1546
    (13)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京,科学出版社,2008.
    (14)Cady,H.H.and Larson,A.C.The crystal structure of 1,3,5-triamino-2,4,6-trinitro- benzene.Acta Cryst.1965(18):485-496.
    (15)T.G.Towns.Vibrational spectrum of 1,3,5-triamino-2,4,6-trinitrobenzen.Spectrochimica Acta.1983,39A(9):801-804.
    (16)肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    (17)肖鹤鸣,王遵尧,姚剑敏,等.芳香族硝基炸药感度和安定性的量子化学研究,Ⅰ.苯胺类硝基化合物[J].化学学报,1985,43:14.
    (18)Xiao Heming,Fan Jianfen,Gu Ziming,Dong Haishan.Theoretical study on pyrolysis and sensitivity of energetic compounds(3)Nitro derivatives of aminobenzenes.Chemical Physics 1998,226:15-24.
    (19)姬广富,肖鹤鸣,居学海,董海山.TATB晶体结构的周期性密度泛函理论研究.化学学报,2003,,1186-1191.
    (20)王桂香,贡雪东,肖鹤鸣.高能化合物热解机理和撞击感度的理论研究--苯和苯胺类硝基衍生物.化学学报.2008,66,711-716.
    (21)Guixiang Wang,Xuedong Gong,Heming Xiao.Theoretical Study on the Vibrational Spectra and Thermodynamic Properties for Nitro Derivatives of Benzene and Aminobenzenes.2008,Chinese Journal of Chemistry.(已定稿)
    (22)Chen Zhaoxu,Xiao Jimei,Xiao Heming,Chiu Yinnan.Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method,Journal of Physical Chemistry,A,103(1999):8062-8066.
    (23)Lee,C.;Yang,W.;Pan',R.G.Development of the Colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789.
    (24)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (25)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (26) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03,Gaussian, Inc., Pittsburgh PA, 2003.
    (27) Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, MΦller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100: 16502-16513.
    (28) Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    (29) M.J. Kamlet and S.J. Jacobs, Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of CHNO Explosives, J.Chem.Phys. 1968,48,23.
    (30) 张熙和,云主惠.爆炸化学,北京:国防工业出版社, 1989.
    (31) Qiu Ling, Xiao He-Ming, Gong Xue-Dong, Ju Xue-Hai, Zhu Wei-Hua. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.
    (32) Stewart, J. J. P. J. Comput. Chem.1989,10,209.
    (33) (a) Dorsett, H.; White, A. Aeronautical and Maritime Research Laboratory, Defence Science & Technology Organization (DSTO). DSTO, Technical Report DSTO-GD-0253, Australia, 2000.
    (b) Sikder, A. K.; Maddala, G.; Agrawal, J. P.; Singh, H. J. Hazard. Mater. A 2001, 84,1.
    (34) Lide D R. Ed. CRC Handbook of Chemistry and Physics. Florida: CRC Press LLC: Boca Raton, 2002
    (35) Dewar, M. J. S.; Zoebisch, E. G; Healy, E. F.; Stewart, J. J. P. AM 1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107: 3902-3909.
    (36) Dewar, M. J. S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977,99: 4899-4907.
    (37) Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method.J.Am.Chem.Soc.1975,97:1285-1293.
    (38)Fan Jianfen,Xiao Heming.Theoretical study on pyrolysis and sensitivity of energetic compounds.(2)Nitro derivatives of benzene.Journal of Molecular Structure(Theochem)1996,365:225-229
    (39)Xiao Heming,Fan Jianfen,Gong Xuedong.Theoretical Study on Pyrolysis and Sensitivity of Energetic Compounds.(1)Simple Model Molecules Containing NO_2 Group.Propellants,Explosives,Pyrotechnics 22(1997):360-364.
    (40)Fan Jianfen,Gu Ziming,Xiao Heming,Dong Haishan.Theoretical study on pyrolysis and sensitivity of energetic compounds.(4)Nitro derivatives of phenols.Journal of Physical Organic Chemistry1998,11:177-184.
    (41)Stewart,J.J.P.J.Comput.-Aided Mol.Des.1990,4,1.
    (42)(a)http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi(SDBS No.:8511);
    (b)http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi(SDBS No.:19060).
    (43)A.T.Nielsen,R.L.Atkins,and W.P.Norris.Oxidation of Poly(nitr0)anilines to Poly(nitro)benzenes.Synthesis of Hexanitrobenzene and Pentanitrobenzene.J.Org.Chem.,1979,44(7):1181-1182.
    (44)Scott,A.P.;Radom,L.Harmonic Vibrational Frequencies:An Evaluation of Hartree-Fock,MΦller-Plesset,Quadratic Configuration Interaction,Density Functional Theory,and Semiempirical Scale Factors.J.Phys.Chem.1996,100:16502-16513.
    (45)Kamlet M J,Adolph H G.The relationship of Impact Sensitivity with Structure of Organic High Explosives.Ⅱ.Polynitroaromatic explosives.Prop.Explos.Pyrotech.1979,4(2):30-34
    (46)X.F.Zhang,Performance manual of raw and processed materials of overseas explosives,Weapon Industry Press,Beijing,People's Republic of China,1991.
    (47)Y.P.Zhong,Y.D.Hu,H.Z.Jiang,Performance manual of overseas explosives,Weapon Industry Press,Beijing,People's Republic of China,1991.
    (48)H.S.Dong,F.F.Zhou,High energy explosives and their corresponding performance,Science Press,Beijing,People's Republic of China,1989.
    (49)Olah,G.A.;Squire,D.R.Chemistry of energetic materials;Academic Press:San Diego,1991.
    (50)(a)Storm C.B.;Stine J.R.;Kramer J.F.Sensitivity Relationship in Energetic Materials;Los Alamos National Laboratory,LA-UR-89-2936,1989;
    (b)Storm C.B.;Stine J.R.;Kramer J.F.In Chemistry and Physics of Energetic Materials;Bulusu,S.N.,Ed.;Kluwer Academic Press:Dordrecht,Netherlands,1990;p 605.
    (51)Curtiss L A,Carpenter J E,Raghavachari K,Pople J A.Gaussian-2 theory for molecular energies of first- and second-row compounds.J.Chem.Phys.1991,94:7221-7230.
    (52)Politzer P,Lane P.Comparison of density functional calculations of C-NO_2,N-NO_2 and C-NF_2 dissociation energies.J.Mol.Struct.(Theochem)1996,388:51-55
    (53)Harris N J,Lammertsma K.Ab Initio Density Functional Computations of Conformations and Bond Dissociation Energies for Hexahydro-1,3,5-trinitro-1,3,5-triazine.J.Am.Chem.Soc.1997,119:6583-6589
    (1)T.Urbanski,Chemistry,Technology of Explosives,Pergamon Press,New York,1984.
    (2)J.Kohler,R.Meyer,Explosives,VCH.,New York,1993.
    (3)P.Politzer and J.M.Seminario.Chem.Phys.Lett.158,463(1989).
    (4)肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    (5)J.F.Fan;ZM.Gu and;H.M.Xiao;H.S.Dong.Theoretical study on pyrolysis and sensitivity of energetic compounds.Part 4.Nitro derivatives of phenols.Journal of Physical Organic Chemistry,1998,11:177-184.
    (6)P.C.Chen,S.C.Tzeng.Theoretical study on the molecular structures of dinitrophenols and trinitrophenols,Journal of Molecular Structure(Theochem).1999,467:243-257.
    (7)P.Srinivasan,M.Gunasekaran,T.Kanagasekaran,R.Gopalakfishnan,P.Ramasamy.2,4,6-trinitrophenol(TNP):An organic material for nonlinear optical(NLO)applications Journal of Crystal Growth.2006,289:639-646.
    (8)Attila Kovacs,Vladiszlav Izvekov,Gabor Keresztury,Gabor Pongor.Vibrational analysis of 2-nitrophenol.A joint FT-IR,FT-Raman and scaled quantum mechanical study,Chemical Physics.1998,238:231-243.
    (9)Vasile Chis.Molecular and vibrational structure of2,4-dinitrophenol:FT-IR,FT-Raman and quantum chemical calculations,Chemical Physics.2004,300:1-11.
    (10)H.Zhang,F.Chen,F.Zhao,C-M.Meng,Structural and Electronic properties of 2,4,6-trinitrophenol(TNP),Journal of Molecular Structure:THEOCHEM(2008),doi:10.1016/j.theochem.2008.01.033
    (11)M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Gaussian,Inc.,Pittsburgh PA,2003.
    (12)Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789.
    (13)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (14)Hariharan,P.C.;Pople,J.A.Self-consistent-field molecular orbital methods.Ⅻ.Further extension of Gaussian-type basis sets.Theor.Chim.Acta,1973,28:213-222.
    (15)Scott,A.P.;Radom,L.Harmonic Vibrational Frequencies:An Evaluation of Hartree-Fock,Mφller-Plesset,Quadratic Configuration Interaction,Density Functional Theory,and Semiempirical Scale Factors.J.Phys.Chem.1996,100:16502-16513.
    (16)Hill,T.L.Introduction to Statistic Thermodynamics(Addison-Wesley,New York,1960)
    (17)陈正衡 祝锡五译.爆炸物手册.北京:煤炭工业出版社,1979.
    (18)http://www.ep.net.cn/MSDS/wuzhi4/41010-1.htm(CAS No:51-28-5).
    (19)Zhang J,Xiao H M.Computational studies on the infrared vibrational spectra,thermodynamic properties,detonation properties and pyrolysis mechanism of octanitrocubane.J.Chem.Phys.2002,116(24):10674-10683
    (20)Xiaojuan Xu,Heming Xiao,Xuehai Ju,Xuedong Gong,and Zhaoxu Chen.Theoretical Studies on the Vibrational Spectra,Thermodynamic Properties,Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes.J.Phys.Chem.A,2005,109,11268-11274.
    (21)Xu X J,Xiao H M,Ju X H,Gong X D,Zhu W H.Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials(HEDMs).J.Phys.Chem.A 2006,110:5929-5933
    (22)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-hua.Theoretical Studies on the Structures,Thermodynamic Properties,Detonation Properties,and Pyrolysis Mechanisms of Spiro Nitramines.J.Phys.Chem.A,2006,110,3797-3807.
    (23)Xiaojuan Xu,Heming Xiao,Xiufang Ma,Xuehai Ju.Looking for High Energy Density Compounds among Hexaazaadamantane Derivatives with -CN,-NC,and -ONO_2 Groups.Inter.J.Quantum.Chem.2006,106(7),1561-1568.
    (24)Qiu L,Xiao H M,Ju X H,Gong X D.Theoretical Study on the Structures and Properties of Cyclic Nitramines:Tetranitrotetraazadecalin(TNAD)and its Isomers.Int.J.Quant.Chem.2005,105:48-56
    (25)Qiu L,Xiao H M,Zhu W H,Ju X H,Gong X D.Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan.Chin.J.Chem.2006,24:1538-1546
    (26)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京,科学出版社,2008.
    (27)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-Hua.Crystal density predictions for nitramines based on quantum chemistry.J.Hazard.Mater.2007,141,280-288.
    (28)M.J.Kamlet and S.J.Jacobs,Chemistry of Detonations.I.A Simple Method for Calculating Detonation Properties of CHNO Explosives,J.Chem.Phys.1968,48,23.
    (29)Harris N J,Lammertsma K.Ab Initio Density Functional Computations of Conformations and Bond Dissociation Energies for Hexahydro-1,3,5-trinitro-1,3,5-triazine.J.Am.Chem.Soc.1997,119:6583-6589
    (30)(a)Storm C.B.;Stine J.R.;Kramer J.F.Sensitivity Relationship in Energetic Materials;Los Alamos National Laboratory,LA-UR-89-2936,1989;(b)Storm C.B.;Stine J.R.;Kramer J.F.In Chemistry and Physics of Energetic Materials;Bulusu,S.N.,Ed.;Kluwer Academic Press:Dordrecht,Netherlands,1990;p 605
    (1)[波]T.乌尔班斯基著,孙荣康译.火炸药的化学与工艺学.第Ⅱ卷.北京:国防工业出版社,1976.
    (2)Fields,E.K.Meyerson,S.,Tetrahedron Letter,1968,10,1021.
    (3)Fields,E.K.Meyerson,S.,Adv.Free-Radical Chem.,1965,5:101
    (4)Initer,L.M.;Brower,K.R.;Oxley,J.C.,J.Org.Chem.,1991,56,3306
    (5)He,Y.Z.;Cui,J.P.;Mallard,W.G.;et al,J.Am.Chem.Soc.,1988,110,3754
    (6)肖鹤鸣,李永富,冯蓓雷,吴念勤,高宝华.芳香族硝基炸药感度和安定性的量子化学研究Ⅳ.甲苯和苯酚类硝基衍生物.华东工学院学报,1988,2:21-25
    (7)Gu Zhi-ming,FAN Jian-fen,XIAO He-ming and DONG Hai-shan.Theoretical study on pyrolysis and sensitivity of energetic compounds.Part Ⅴ:Nitro derivatives of methylbenzens,Chemical Research in Chinese University,2000,16:21-30.
    (8)M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseda,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J. Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D,K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Gaussian,Inc.,Pittsburgh PA,2003.
    (9)Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789.
    (10)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (11)Hariharan,P.C.;Pople,J.A.Self-consistent-field molecular orbital methods.Ⅻ.Further extension of Gaussian-type basis sets.Theor.Chim.Acta,1973,28:213-222.
    (12)Hill,T.L.Introduction to Statistic Thermodynamics(Addison-Wesley,New York,1960)
    (13)C.P.Nash,T.E.Nelson,J.J.P.Stewart,W.R.Carper,molecular structure and vibrational analysis of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene-α-d_3.Spectrochimica Acta.1989,45A:585-588.
    (14)J.J.P.Stewart,S.R.Bosco,W.R.Carper,Spectrochim.Acta.1986,42A:13.
    (15)鲁多夫·迈耶著.陈正衡 祝锡五译.爆炸物手册.北京:煤炭工业出版社,1979.
    (16)张杏芬.国外火炸药原材料性能手册.兵器工业出版社,1991.
    (17)Tarver,C..M.J.Chem.Eng.Data,1979,24:136.
    (18)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京:科学出版社,2008.
    (19)张熙和,云主惠.爆炸化学,北京:国防工业出版社,1989.
    (20)Storm C.B.;Stine J.R.;Kramer J.F.Sensitivity Relationship in Energetic Materials;Los Alamos National Laboratory,LA-UR-89-2936,1989;(b)Storm C.B.;Stine J.R.;Kramer J.F.In Chemistry and Physics of Energetic Materials;Bulusu,S.N.,Ed.;Kluwer Academic Press:Dordrecht,Netherlands,1990;p 605.
    (1)a)Ship K G.,Kaplan L A.,J.Org.Chem.,1964,29:2620-2623;b)1966,31:857.
    (2)Michael Kony,Ian J.Dagley,Daniel J.Whelan.Deuterium Isotope Effects on the Rates of Thermal Decomposition of 2,2',4,4',6,6'-Hexanitrostilbene in the Condensed Phase.J.Phys.Chem.1992,96,8001-8006
    (3)陆明,六硝基芪Ⅱ型的直接合成.兵工学报,1994,2:46-50.
    (4)Jinn-Shing Lee,Chung-King Hsu,Chih-Long Chang.A study on the thermal decomposition behaviors of PETN,RDX,HNS and HMX.Thermochimica Acta,2002,392:173-176.
    (5)陈智群,郑晓华,刘子如,潘清,汪渊.HNS的热行为研究,含能材料,2005,13:249-251.
    (6)周建华,池钰,王新锋,李金山,沈永兴.超细六硝基芪的热分解性能.火炸药学报,2006,29:38-40.
    (7)肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993.
    (8)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京:科学出版社,2008.
    (9)M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Gaussian,Inc.,Pittsburgh PA,2003.
    (10)Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789.
    (11)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (12)Hariharan,P.C.;Pople,J.A.Self-consistent-field molecular orbital methods.Ⅻ.Further extension of Gaussian-type basis sets.Theor.Chim.Acta,1973,28:213-222.
    (13)Hill,T.L.Introduction to Statistic Thermodynamics(Addison-Wesley,New York,1960)
    (14)Scott,A.P.;Radom,L.Harmonic Vibrational Frequencies:An Evaluation of Hartree-Fock,Mφller-Plesset,Quadratic Configuration Interaction,Density Functional Theory,and Semiempirical Scale Factors.J.Phys.Chem.1996,100:16502-16513.
    (15)http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi(SDBS No.:60630).
    (16)张杏芬.国外火炸药原材料性能手册.北京:兵器工业出版社,1991.
    (17)张熙和,云主惠.爆炸化学,北京:国防工业出版社,1989.
    (1)#12
    (2)J.C.Dacons,M.E.Sitzmann.Synthesis of 2,4,6-trinitrophenyl derivatives of heterocyclic compounds.J.Het.Chem.1977,14:1151.
    (3)Michael E.Sitzmann,Adelphi,Md.Method for preparing 2,5-dip icryl-1,3,4-oxadizole.USP 4777258.
    (4)M.E.Sitzmann,2,5-Dipicryl-1,3,4-oxadiazole:a shock sensitive explosive with high thermal stability(thermally stable substitute for PETN).J.Energ.Mater.1988,6:129-144.
    (5)盛涤伦,马风娥,吕巧莉.2,5-二苦基-1,3,4-(?)二唑的制备研究.火工品,1998,2:8-15.
    (6)M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Gaussian,Inc.,Pittsburgh PA,2003.
    (7)C.Lee,W.Yang,R.G.Parr,Development of the Colle-salvetti correlation-energy formula into a functional of the electron density,Phys.Rev.B.37(1988)785-789.
    (8)A.D.Becke,Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction,J.Chem.Phys.97(1992)9173-9177.
    (9)P.C.Hariharan,J.A.Pople,Self-consistent-field molecular orbital methods.Ⅻ.Further extension of Gaussian-type basis sets,Theor.Chim.Acta.28(1973)213-222.
    (10)Hill,T.L.Introduction to Statistic Thermodynamics(Addison-Wesley,New York,1960)
    (11)Scott,A.P.;Radom,L.Harmonic Vibrational Frequencies:An Evaluation of Hartree-Fock,Mφller-Plesset,Quadratic Configuration Interaction,Density Functional Theory,and Semiempirical Scale Factors.J.Phys.Chem.1996,100:16502-16513.
    (12)Zhang,J.;Xiao,H.M.J.Chem.Phys.2002,116,10674.
    (13)X.J.Xu,H.M.Xiao,X.H.Ju,X.D.Gong,Z.X.Chen,J.Phys.Chem.A,2005,109,11268.
    (14)X.J.Xu,H.M.Xiao,X.H.Ju,X.D.Gong,W.H.Zhu,J.Phys.Chem.A,2006,110,5929.
    (15)L.Qiu,H.M.Xiao,X.D.Gong,X.H.Ju,W.H.Zhu,J.Phys.Chem.A,2006,110,3797.
    (16)X.J.Xu,H.M.Xiao,X.F.Ma,X.H.Ju,Inter.J.Quantum.Chem.2006,106,1561.
    (17)L Qiu,H.M.Xiao,X.H Ju,X.D.Gong,Int.J.Quant.Chem.2005,105,48.
    (18)L Qiu,H.M.Xiao,W.H.Zhu,X.H.Ju,Gong,X.D.Chin.J.Chem.2006,24,1538.
    (19)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-Hua.Crystal density predictions for nitramines based on quantum chemistry.J.Hazard.Mater.2007,141,280-288.
    (20)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京:科学出版社,2008
    (1)Materials Studio 3.0,Accelys:San Diego,Ca.2004.
    (2)Sun,H.Compass:An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds.J.Phys.Chem.B,1998,102:7338-7364.
    (3)Mayo,S.L.;Olafson,B.D.;Goddard,W.A.Ⅲ DREIDING:A generic forcefield.J.Phys.Chem.1990,94:8897-8909.
    (4)Baur,W.H.;Kassner,D.The perils of Cc:comparing the frequencies of falsely assigned space groups with their general population Acta Crystallogr.B,1992,48:356-369.
    (5)Delly,B.An all-electron numerical method for solving the local density functional for polyatomic molecules.J.Chem.Phys.1990,92:508-517.
    (6)Delly,B.From molecules to solids with the DMol~3 approach.J.Chem.Phys.2000,113:7756-7764.
    (7)Hammer,B.;Hansen,L.B.;Norskov,J.K.Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals.Phys.Rev.B,1999,59:7413-7421.
    (8)Monkhorst,H.J.;Pack,J.D.Special points for Brillouin-zone integrations.Phys.Rev.B,1976,13:5188-5192.
    (9)Monkhorst,H.J.;Pack,J.D.Special points for Brillouin-zone integrations-a reply.Phys.Rev.B,1977,16:1748-1749.
    (10)Xiao,H.M.;Li,Y.F.Banding and electronic structures of metal azides-Sensitivity and conductivity.Sci.China.Ser.B 1995,38:538-545.
    (11)肖鹤鸣,李永富,钱建军.碱金属和重金属叠氮化物的感度和导电性研究.化学物理 学报,1994,10:235-240.
    (12)肖鹤鸣,李永富.金属叠氮物的能带和电子结构-感度和导电性.北京:科学出版社,1996.
    (13)Weihua Zhu,Jijun Xiao,Heming Xiao,Comparative first-principles study of structural and optical properties of alkali metal azides.J.Phys.Chem.B,2006,110,9856-9862.
    (14)Weihua Zhu,Jijun Xiao,Heming Xiao,Density functional theory study of the structural and optical properties of lithium azide,Chem.Phys.Lett.2006,422,117-121.
    (15)Zhu,W.H.;Xiao,H.M.Ab.Initio Study of Energetic Solids:Cupric Azide,Mercuric Azides,and Lead Azide.J.Phys.Chem.B,2006,110,18196-18203.
    (16)Xiao Juan Xu,He Ming xiao,Ji Jun Xiao,Wei Zhu,Huang hui,Li Jinshan.Molecular dynamics simulation for pure ε-CL-20 and ε-CL-20-based PBXs.J.Phys.Chem.B,2006,110,7203-7207.
    (17)WeiHua Zhu,JiJun Xiao,GuangFu Ji,Feng Zhao,HeMing Xiao,First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.Journal of Physical Chemistry B 2007,111,(44),12715 -12722.
    (18)盛涤伦,马风娥,吕巧莉.2,5-二苦基-1,3,4-(?)二唑的制备研究,火工品,1998,2:8-15.
    (19)Sitzmann,M.E.,2.5-Dipicryl-I,3,4-oxadiazole:a shock sensitive explosive with high thermal stability(thermally stable substitute for PETN).J.Energ.Mater.,1988,6,129-144.
    (1)Xiao Jijun,Zhang Ji,Yang Dong,Xiao Heming.Acta Chimica Sinica,2002,60(12):2110-2114
    (2)Zhang J,Xiao H M.Computational studies on the infrared vibrational spectra,thermodynamic properties,detonation properties and pyrolysis mechanism of octanitrocubane.J.Chem.Phys.2002,116(24):10674-10683
    (3)Xiao Heming.Structures and properties of energetic compounds,Beijing:National Defence Industry Press,2004
    (4)Xu X J,Xiao H M,Ju X H,Gong X D,Zhu W H.Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials(HEDMs).J.Phys.Chem.A 2006,110:5929-5933
    (5)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-hua.Theoretical Studies on the Structures,Thermodynamic Properties,Detonation Properties,and Pyrolysis Mechanisms of Spiro Nitramines.J.Phys.Chem.A,2006,110,3797-3807.
    (6)Qiu Ling,Xiao He-Ming,Gong Xue-Dong,Ju Xue-Hai,Zhu Wei-Hua.Crystal density predictions for nitramines based on quantum chemistry.J.Hazard.Mater.2007,141,280-288.
    (7)肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计.北京,科学出版社,2008.
    (8)S.Zeman.The relationship between differential thermal analysis data and the detonation characteristics of polynitroaromatic compounds.Thermochim,Acta,1980,41:199-212
    (9)Zeman V.Koci J.and Zeman S..Electfic Spark Sensitivity of Polynitro Compounds.Part Ⅲ:A Correlation with Detonation Velocity of some Nitramines.Energetic Materials,1999,7(4):172-175
    (10)Zeman V.,Koci J.and Zeman S..Electric Spark Sensitivity of Polynitro Compounds.Part Ⅱ:A Correlation with Detonation Velocity of some Polynitro Arenes.Energetic Materials,1999,7(3):127-132
    (11)Zeman S.and Koci J..Electric Spark Sensitivity of Polynitro Compounds.Part Ⅳ.A Relation to Thermal Decomposition Parameters.Energetic Materials,2000,8(1):18-26
    (12)M.J.Kamlet,S.J.Jacobs.Chemistry of detonation simple method of calculation detonation properties of CHNO explosives,J.Chem.Phys.,1968,48:23
    (13)Guixiang Wang,Heming Xiao,Xiaojuan Xu,Xuehai Ju.Detonation Velocities and Pressures,and their Relationships with Electric Spark Sensitivities for Nitramines.Propellants,Explosives,Pyrotechnics.2006,31,102-109.
    (14)Guixiang Wang,Heming Xiao,Xuehai Ju,Xuedong Gong.Detonation Velocities and Pressures,and their Relationships with Electric Spark Sensitivities for Nitro arenes.Propellants,Explosives,Pyrotechnics.2006,31,361-368.
    (15)王桂香,肖鹤鸣,居学海,贡雪东.含能材料的密度、爆速、爆压和静电感度的理论研究.化学学报.2007,65,5 17-524.
    (16)M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Gaussian,Inc.,Pittsburgh PA,2003.
    (17)Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789.
    (18)Becke,A.D.Density-Functional Thermochemistry Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction.J.Chem.Phys.1992,97:9173-9177.
    (19)Hadharan,P.C.;Pople,J.A.Theor.Chim.Acta.1973,28,213.
    (20)董海山,周芬芬,高能炸药及相关物性能,北京,科学出版社,1989.
    (21)Nielsen,A.T.;Chafin,A.P.;Christian,S.L.;Moore,D.W.;Nadler,M.P.;Nissan,R.A.;Vanderah,D.J.Tetrahrdron 1998,54,11793.
    (22)Coburn,M.D.;Harris,B.W.;Lee,K.Y.;Stineclpher,M.M.;Hayden,H.H.Ind Eng.Chem.Prod.Res.,1986,25,68.
    (23)钟一鹏,胡雅达,江宏志,国外火炸药性能手册,北京,兵器工业出版社,1990.
    (24)张杏芬,国外火炸药原材料性能手册,北京,兵器工业出版社,1991.
    (25)刘尚和,静电理论与防护[M],北京,兵器工业出版社,1999.
    (26)Rothstein L R,Petersen R.Predicting high explosive detonation velocities from their composition and structure.Propellants,Explosives,Pyrotechnics,1979,4:56-60
    (27)肖鹤鸣,王遵尧,姚剑敏.芳香族硝基炸药感度和安定性的量子化学研究Ⅰ.苯胺类硝基衍生物.化学学报,1985,43:14-18.
    (28)Fan J.F.;Xiao H.M.Theoretical study on pyrolysis and sensitivity of energetic compounds.(2)Nitro derivatives of benzene.Journal of Molecular Structure(Theochem),1996,365:225-229
    (29)Xiao,H.M.;Fan J.F.;Gu Z.M.;Dong H.S.Theoretical study on pyrolysis and sensitivity of energetic compounds(3)Nitro derivatives of aminobenzenes.Chemical Physics,1998,226:15-24
    (30)Xu X.J.;Xiao H.M.;Ju X.H.;Gong X.D.;Chen Z.X.Theoretical Studies on the Vibrational Spectra,Thermodynamic Properties,Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes.J.Phys.Chem.A,2005,109:11268-11274.
    (31)Xiao H.M.;Li Y.F.Banding and electronic structures of metal azides-Sensitivity and conductivity.Science in China(Series B),1995,38:538-545.
    (32)Zhu W.H.Xiao J.J.;Xiao H.M.Comparative first-principles study of structural and optical properties of alkali metal azides.J.Phys.Chem.B,2006,110:9856-9862.
    (33)Chen Z.X.;Xiao H.M.;Yang S.L.Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts,Chemical Physics,1999,250:243-248.
    (34)Chen Z.X.;Xiao H.M.Impact Sensitivity and Activation Energy of Pyrolysis for Tetrazole Compounds,International Journal of Quantum Chemistry,2000,79:350-357.
    (35)肖鹤鸣,高能化合物的结构和性质,北京,国防工业出版社,2004.
    (36)肖继军,李金山.单体炸药撞击感度的理论判别-从热力学判据到动力学判据.含能材料.2002,10:178-181.
    (37)Xu X.J.;Xiao H.M.;Fan J.F.;Chen Z.X.A quantum chemical study on thermolysis inititation mechanism and impact sensitivity of energetic materials.Central European Journal of Energetic Materials(CEJEM),2005,2(4):5-21.
    (38)余建英,何旭宏编.数据统计分析与SPSS应用.北京:人民邮电出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700